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MAPPINGS OF GENERALIZED VARIATION
AND COMPOSITION OPERATORS

V. V. Chistyakov UDC 517.983.3

1. Introduction

Let R[a,b] be the algebra of all real functions f : [a, b] → R on the closed interval [a, b], BV [a, b] be
the subalgebra of functions of bounded (in the sense of Jordan) variation in R[a,b], h : [a, b]×R→ R be a
given function of two variables, and H : R[a,b] → R[a,b] be the Nemytskii composition operator generated
by the function h according to the following rule:

(Hf)(t) = h(t, f(t)), t ∈ [a, b], f ∈ R[a,b].

In [18], Matkowski and Mís have shown that if the operator H acts from BV [a, b] onto itself and satisfies
the Lipschitz condition, then we have the following for the function h that generates it: if h∗(t, x) =
lim
s→t−0

h(s, x) is the left regularization of h with respect to the first argument, then h∗(t, x) = h0(t) +

h1(t)x for all t ∈ (a, b] and x ∈ R, where the functions h0, h1 ∈ BV [a, b] are left continuous. This
result is of interest since, as is shown by examining the function h(t, x) = sinx, the space BV [a, b]
cannot be replaced by the space C[a, b] of continuous functions and by the space Lp(a, b) of p-power
(p ≥ 1) Lebesgue-integrable functions. The representation of the generating function h (often without
applying a regularization) in the above form has been established by many authors in different spaces,
namely, in the space of Hölder functions [13] and in the space of Lipschitzian functions [14] (where such
a representation was found for the first time) and also in the space of Lipschitzian mappings [16], in the
space of differentiable functions [15], in the space of functions of bounded second p-variation [17], in the
space of functions of Riesz-bounded p-variation [19,20], in the space of mappings of bounded generalized
variation of the Riesz–Orlicz type [3,4], and in some others (see also the references in [3]).

The goal of the present paper is to describe generating Lipschitzian functions of Nemytskii composi-
tion operators mapping between spaces of mappings having bounded generalized variation in the sense of
Wiener–Young–Orlicz. The generalized variation of this type was studied mainly for real-valued functions
[8, 12, 21, 25, 26]. Much less is known about the properties of mappings of bounded generalized variation
taking values in normed spaces (see, e.g., [1, 2, 7]), because of the fundamental difficulties. In Sec. 2, we
develop the theory of mappings of bounded generalized variation, and then, in Sec. 3, we apply this theory
for the characterization of composition operators satisfying the Lipschitz condition (Theorems 7 and 8
and Corollary 9).

The results of the present paper were presented at the workshop “Theory of functions, its applications
and related issues,” dedicated to the 130th anniversary of the birth of D. F. Egorov, held on September
13–18, 1999 in Kazan’ [5].

2. Mappings of Bounded Variation

Notation. Let I = [a, b] be a closed interval of the real line R (a, b ∈ R, a < b). For the set X, let XI

denote the set of all mappings f : I → X acting from I into X. Let Φ be the set of all convex continuous

functions ϕ : R+ = [0,∞)→ R+ such that ϕ(ρ) = 0 only for ρ = 0, and let Φ0 =

{
ϕ ∈ Φ : lim

ρ→0

ϕ(ρ)

ρ
= 0

}
.
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Any function ϕ ∈ Φ is strictly increasing; its inverse is denoted by ϕ−1. For ϕ, ψ ∈ Φ, we write ψ �
0
ϕ

if lim sup
ρ→0

ψ(ρ)

ϕ(Cρ)
<∞ for a certain constant C > 0 (or, equivalently, if there exist constants C0 > 0 and

ρ0 > 0 such that ψ(ρ) ≤ C0ϕ(Cρ) for all ρ ∈ [0, ρ0]). If ψ �
0
ϕ and ϕ �

0
ψ, then we say that ϕ and ψ are

equivalent in a neighborhood of zero and write ϕ ∼
0
ψ. We use the following abbreviations: LNS = linear

normed space, BS = Banach space, NA = normalized algebra, BA = Banach algebra.
Throughout this paper, the letters X, Y , and Z (possibly with subscripts) denote an LNS; the norms

in these spaces (which are different in general) are denoted by ‖ · ‖. Unless otherwise stated, we assume
that ϕ and ψ (with subscripts) are the elements of the set Φ.

Definition. The (generalized) ϕ-variation of the mapping f ∈ XI is

Vϕ(f) = Vϕ(f, I) = sup
T

m∑
i=1

ϕ
(
‖f(ti)− f(ti−1)‖

)
, (1)

where the supremum is taken over all positive integers m and over all tuples of points T = {ti}mi=0 such
that a = t0 < t1 < · · · < tm−1 < tm = b (i.e., over all partitions of the closed interval I).

For ϕq(ρ) = ρq (ρ ≥ 0, q ≥ 1), (1) gives the classical concept of the variation of the mapping f in the
sense of C. Jordan [23, Chapter 8] whenever q = 1, and in the sense of N. Wiener [25] whenever q > 1.
The general definition (1) involving the (nondecreasing continuous) function ϕ is due to L. Young [26].

It is known that the functional Vϕ is nondecreasing , that is, Vϕ(f, J) ≤ Vϕ(f, I) if I contains the
closed interval J ; it is semiadditive, that is, Vϕ(f, [a, c])+Vϕ(f, [c, b]) ≤ Vϕ(f, [a, b]) for a ≤ c ≤ b, and it is
(sequentially) lower semicontinuous, that is, Vϕ(f, I) ≤ lim inf

n→∞
Vϕ(fn, I) if the sequence fn ∈ XI pointwise

converges to f ∈ XI on I as n→∞.
The set of all mappings f ∈ XI for which the quantity defined by (1) is finite is convex (but it is

not necessarily a linear space), and Vϕ(·) = Vϕ( · , I) is a convex functional on this set. We denote by
Wϕ(I;X) the linear space of all f ∈ XI such that Vϕ(f/λ) <∞ for a certain constant λ > 0 (depending
on f). For f ∈ XI the following criterion holds: f ∈ Wϕ(I;X) if and only if f(t) = g(χ(t)) for all t ∈ I,
where χ : I → R is a nondecreasing bounded function and the mapping g : J → X, acting from the image
J = χ(I) of the function χ in the space X, has the following property for a certain constant λ > 0:

‖g(t)− g(s)‖ ≤ λϕ−1(|t− s|)

for all t, s ∈ J . This statement can be obtained from [7, Theorem 3.2] (if one sets Φ(ρ) = ϕ(ρ/λ)). In
particular, a similar criterion (with ϕ(ρ) = ρ and λ = 1) holds for mappings of bounded variation in the
sense of Jordan [1,2], where it was just found.

In the linear space Wϕ(I;X), we introduce the norm ‖f‖ϕ = ‖f(a)‖+ pϕ(f), where

pϕ(f) = pϕ(f, I) = inf

{
λ > 0 : Vϕ

(
f

λ

)
≤ 1

}
, f ∈Wϕ(I;X). (2)

For X = R, the LNS Wϕ(I;R) was studied by Musielak and Orlicz [21], CiemnoczoRlowski and Orlicz [8],
and Maligranda and Orlicz [12]. In particular, it is shown in [12] that the space Wϕ(I;R) is a BA. The
seminorm defined by (2) is called the Luxemburg–Nakano–Orlicz seminorm [10,22,24].

Certain properties of pϕ are reflected in the following lemma.

Lemma 1. For the mapping f ∈Wϕ(I;X), we have:

(a) if t, s ∈ I, then ‖f(t)− f(s)‖ ≤ ϕ−1(1)pϕ(f);
(b) if pϕ(f) > 0, then Vϕ

(
f/pϕ(f)

)
≤ 1;

(c) for λ > 0, we have that pϕ(f) ≤ λ if and only if Vϕ(f/λ) ≤ 1; if Vϕ(f/λ) = 1, then pϕ(f) = λ (the
converse is not true in general);

(d) if a sequence fn ∈Wϕ(I;X) pointwise converges to f as n→∞ on I, then pϕ(f) ≤ lim inf
n→∞

pϕ(fn).
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Proof. (a) For any t, s ∈ I, by virtue of (1) and (2), we have

ϕ

(
‖f(t)− f(s)‖

λ

)
≤ Vϕ

(
f

λ

)
≤ 1 ∀λ > pϕ(f),

whence, taking the inverse function ϕ−1, we obtain (a).
(b) Suppose that a sequence of numbers λn > λ = pϕ(f) converges to λ as n → ∞. It follows

from the definition of the number λ that Vϕ(f/λn) ≤ 1 for all positive integers n. Since f/λn pointwise
converges to f/λ on I as n → ∞, by the lower semicontinuity of the functional Vϕ(·), we obtain that
Vϕ(f/λ) ≤ lim inf

n→∞
Vϕ(f/λn) ≤ 1.

(c) To prove the first assertion, it suffices to show that if 0 < pϕ(f) < λ, then Vϕ(f/λ) < 1, and this
is directly implied by the convexity of Vϕ(·) and assertion (b), that is,

Vϕ
(
f

λ

)
≤

pϕ(f)

λ
Vϕ
(

f

pϕ(f)

)
≤

pϕ(f)

λ
< 1.

To prove the second assertion, it suffices to observe that the cases where pϕ(f) > λ and pϕ(f) < λ
are impossible.

(d) We set α = lim inf
n→∞

pϕ(fn) and assume that α < ∞. Then α = lim
k→∞

pϕ(fnk) for a certain

subsequence {fnk}
∞
k=1 in {fn}∞n=1; therefore, for any ε > 0, there exists k0(ε) ∈ N such that pϕ(fnk) < α+ε

for all k ≥ k0(ε). It follows from the definition of pϕ(fnk) that Vϕ
(
fnk/(α + ε)

)
≤ 1 for k ≥ k0(ε), and

since fnk/(α + ε)→ f/(α + ε) pointwise on I as k →∞, the lower semicontinuity of Vϕ( · ) yields

Vϕ
(

f

α + ε

)
≤ lim inf

k→∞
Vϕ
(

fnk
α + ε

)
≤ 1.

Therefore, pϕ(f) ≤ α + ε for all ε > 0. �
Property (a) in Lemma 1 means that any mapping f ∈Wϕ(I;X) is bounded. This property can be

substantially refined: the image f(I) of a mapping f ∈ Wϕ(I;X) is a completely bounded and separable
subset of X, and if, in addition, X is a BS, then f(I) is precompact (i.e., the closure of f(I) in X is
compact). Indeed, assume the contrary: for some ε > 0, the image f(I) cannot be covered by finitely
many balls from X of radius ε centered at f(I). Proceeding by induction, we construct a sequence
{xn}∞n=0 ⊂ f(I) as follows: setting x0 = f(a) and determining the elements x1, . . . , xn−1 ∈ f(I), we
choose xn ∈ f(I) in such a way that ‖xn− xj‖ ≥ ε for all j = 0, 1, . . . , n− 1. If xn = f(tn), where tn ∈ I,
n ∈ N, then it is clear that tn �= tk for n �= k; therefore, we can assume without loss of generality that
tn−1 < tn for all n ∈ N. Then for the partition Tn = {a} ∪ {ti}ni=1 ∪ {b} of the closed interval I we have
the following:

Vϕ
(
f

λ

)
≥

n∑
i=1

ϕ

(
‖f(ti)− f(ti−1)‖

λ

)
≥ nϕ

( ε
λ

)
for any λ > 0. Therefore, Vϕ(f/λ) = ∞ for all λ > 0; this contradicts the condition f ∈ Wϕ(I;X). It
remains to note that a bounded set is separable in an LNS and precompact in a BS.

Note that Helly’s selection principle, which is known for functions/mappings of Jordan bounded
variation (i.e., when ϕ(ρ) = ρ; see [9], [23, Chapter 8, Sec. 4], and [2, Sec. 5]) and bounded ϕ-variation
(see [21, 1.3] and [7, Sec. 6]), is extended to the space Wϕ(I;X) as well. In proving the following theorem,
we use certain ideas of [21, 1.3].

Theorem 2 (generalized Helly’s selection principle). Let X be an LNS (over R or C) and F ⊂Wϕ(I;X)
be an infinite family of mappings such that the set F(t) = {f(t) | f ∈ F} is precompact in X for any
t ∈ I and sup

f∈F
pϕ(f) < ∞. Then the family F contains a sequence of mappings that converges pointwise

on I to a certain mapping from Wϕ(I;X).
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Proof. Choosing a number λ > 0 in such a way that sup
f∈F

pϕ(f) ≤ λ, we have by Lemma 1(c) that

Vϕ(f/λ) ≤ 1 for all f ∈ F . Determining the nonnegative function vf (t) = Vϕ(f/λ, [a, t]), t ∈ I = [a, b],
for f ∈ F , we have that the infinite family of nondecreasing functions {vf | f ∈ F} is uniformly bounded
(from above by the constant 1); therefore, by Helly’s selection principle for monotonic functions (see [9]
and [23, Chapter 8, Sec. 4, Lemma 2]), there exists a sequence {fn}∞n=1 ⊂ F such that the functions vfn
converge pointwise on I to a nondecreasing bounded function v ∈ RI as n→∞. Taking into account that
for any t ∈ I, the set {fn(t)}∞n=1 is precompact in X, we can assume without loss of generality (passing,
if necessary, to a subsequence in {fn}∞n=1 on the basis of the standard diagonal process) that fn(t) is
convergent in X as n→∞ at all rational points t ∈ I and at points t = a and t = b.

If we show that the sequence fn(t) converges in X at all irrational points t ∈ (a, b) that are points of
continuity of the function v, then, taking into account that the set of points of discontinuity of the function
v is no more than countable and the sequences {fn(s)}∞n=1 are precompact in X for all s ∈ I, we apply
the diagonal process to choose a subsequence from the sequence {fn}∞n=1; this subsequence converges to
a certain mapping f ∈ XI at each point t ∈ I. By virtue of the lower semicontinuity of the functional
Vϕ( · ), we obtain Vϕ(f/λ) ≤ 1 or pϕ(f) ≤ λ.

Thus, let us prove that if t ∈ (a, b) is an irrational point of continuity of the function v, then fn(t)
converges in X as n → ∞. We take ε > 0 and a rational number s ∈ (a, t) such that 0 ≤ v(t) − v(s) <
1
3ϕ
(
ε/(3λ)

)
. By virtue of the pointwise convergence of vfn to v, we choose a number n0 ∈ N in such a

way that

max
{
|vfn(t)− v(t)|, |vfn(s)− v(s)|

}
<

1

3
ϕ
( ε

3λ

)
, n ≥ n0.

By virtue of definition (1) and the semiadditivity of Vϕ( · ) we have

ϕ

(
‖fn(t)− fn(s)‖

λ

)
≤ Vϕ

(
fn
λ
, [s, t]

)
≤ vfn(t)− vfn(s)

≤
∣∣vfn(t)− v(t)

∣∣+ (v(t) − v(s)
)

+
∣∣v(s)− vfn(s)

∣∣,
which implies ‖fn(t) − fn(s)‖ ≤ ε/3 for all n ≥ n0. We choose a number m0 ∈ N such that ‖fn(s) −
fm(s)‖ ≤ ε/3 for all n,m ≥ m0 and set N = max{n0,m0}. Then for n,m ≥ N , we obtain

‖fn(t)− fm(t)‖ ≤ ‖fn(t)− fn(s)‖+ ‖fn(s)− fm(s)‖+ ‖fm(s)− fm(t)‖ ≤ ε,

i.e., the sequence {fn(t)}∞n=1 is fundamental in X. Now, the fact that this sequence is precompact in X
implies that it converges to a certain element from X as n→∞. �

Remark 1. Theorem 2 holds under weaker constraints, namely, one can assume that X is an arbitrary
metric space, ϕ : R+ → R+ is a nondecreasing unbounded continuous function, and ϕ(ρ) = 0 for ρ = 0
only, while the condition sup

f∈F
pϕ(f) <∞ can be replaced by the following one: there exist constants λ > 0

and C > 0 such that Vϕ(f/λ) ≤ C for all f ∈ F .

Lemma 3. If f : I = [a, b]→ R is a bounded monotonic function, then f ∈Wϕ(I;R) and

pϕ(f) = |f(b)− f(a)|/ϕ−1(1)

for any function ϕ ∈ Φ.

Proof. We first show that Vϕ(f/λ) = ϕ
(
|f(b)−f(a)|/λ

)
, λ > 0. This relation is well known (see [21, 1.03]),

but we give an alternative proof of it. Since {a, b} is a partition of I, we have ϕ
(
|f(b)−f(a)|/λ

)
≤ Vϕ(f/λ).

To prove the converse inequality, assume that T = {ti}mi=0 is a partition of I and t ∈ I, so that tk−1 ≤ t ≤ tk
for some 1 ≤ k ≤ m. Let Vϕ[f, T ] denote the sum under the supremum sign in (1) and corresponding to
the partition T . Since f is monotonic, we have

|f(t)− f(tk−1)|+ |f(tk)− f(t)| = |f(tk)− f(tk−1)|;
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therefore, applying the inequality ϕ(ρ1) + ϕ(ρ2) ≤ ϕ(ρ1 + ρ2), ρ1 ≥ 0, ρ2 ≥ 0, we obtain

Vϕ

[
f

λ
, T ∪ {t}

]
= Vϕ

[
f

λ
, T

]
− ϕ

(
|f(tk)− f(tk−1)|

λ

)

+ ϕ

(
|f(t)− f(tk−1)|

λ

)
+ ϕ

(
|f(tk)− f(t)|

λ

)
≤ Vϕ

[
f

λ
, T

]
.

Thus, the more points T contains, the less is Vϕ[f/λ, T ]. Therefore, Vϕ[f/λ, T ] ≤ ϕ
(
|f(b)− f(a)|/λ

)
for

any partition T of the closed interval I, and the converse inequality is proved.
Let f(a) �= f(b). By virtue of the formula obtained above, Vϕ(f/λ) = 1 if and only if λ = |f(b) −

f(a)|/ϕ−1(1); therefore, it remains to apply Lemma 1(c). The case where f(a) = f(b) is obvious. �

Theorem 4. (a) Let (X,Y,Z) be a triple of LNSs for which there exists a bilinear mapping M : X×Y →
Z such that ‖xy‖ ≤ ‖x‖ · ‖y‖ for all x ∈ X and y ∈ Y , where xy = M(x, y). If f ∈ Wϕ(I;X) and
g ∈Wϕ(I;Y ), then for the product fg ∈ ZI defined by the rule (fg)(t) = f(t)g(t), t ∈ I, we have

fg ∈Wϕ(I;Z), ‖fg‖ϕ ≤ γ‖f‖ϕ‖g‖ϕ,

where γ = γ(ϕ) = max{1, 2ϕ−1(1)}. If, in addition, X is a BS, then Wϕ(I;X) is a BS as well.
(b) If ψ �

0
ϕ, then Wϕ(I;X) ⊂ Wψ(I;X), and if, in addition, X is a BS, then there exists a constant

κ = κ(ϕ,ψ) > 0 such that ‖f‖ψ ≤ κ‖f‖ϕ for all f ∈Wϕ(I;X).

Proof. (a) 1. By Lemma 1(a), for any f ∈Wϕ(I;X), we have the estimate

‖f‖u = sup
t∈I
‖f(t)‖ ≤ ‖f(a)‖+ ϕ−1(1)pϕ(f). (3)

If g ∈Wϕ(I;Y ), let us show that the following inequality holds:

pϕ(fg) ≤ pϕ(f)‖g‖u + ‖f‖upϕ(g) ≡ λ. (4)

One can assume without loss of generality that pϕ(f), pϕ(g), ‖f‖u, and ‖g‖u are different from zero.
Let T = {ti}mi=0 be an arbitrary partition of the closed interval I. Setting ∆fi = f(ti) − f(ti−1) and
similarly for ∆gi and ∆(fg)i, using the monotonicity and the convexity of the function ϕ, and applying
Lemma 1(b), we obtain

m∑
i=1

ϕ

(
‖∆(fg)i‖

λ

)
=

m∑
i=1

ϕ

(
‖(∆fi)g(ti) + f(ti−1)(∆gi)‖

λ

)

≤
m∑
i=1

ϕ

(
‖∆fi‖ · ‖g‖u + ‖f‖u · ‖∆gi‖

λ

)

≤
pϕ(f)‖g‖u

λ

m∑
i=1

ϕ

(
‖∆fi‖

pϕ(f)

)
+
‖f‖upϕ(g)

λ

m∑
i=1

ϕ

(
‖∆gi‖

pϕ(g)

)

≤
pϕ(f)‖g‖u

λ
Vϕ
(

f

pϕ(f)

)
+
‖f‖upϕ(g)

λ
Vϕ
(

g

pϕ(g)

)

≤
pϕ(f)‖g‖u

λ
+
‖f‖upϕ(g)

λ
= 1.

Since T is arbitrary, we obtain Vϕ(fg/λ) ≤ 1; this implies pϕ(fg) ≤ λ.
The inequality ‖fg‖ϕ ≤ γ‖f‖ϕ‖g‖ϕ now follows from (3), (4), and the definition of the norm ‖ · ‖ϕ.
2. If X is complete, we show that Wϕ(I;X) is a complete space as well. Let {fn}∞n=1 ⊂Wϕ(I;X) be

a fundamental sequence. Then the sequence {fn(t)}∞n=1 is fundamental in X for any t ∈ I by Lemma 1(a).
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The completeness of X implies that the sequence fn converges pointwise on I to a certain mapping f ∈ XI

as n→∞. By Lemma 1(d), we have

‖fn − f‖ϕ ≤ lim inf
m→∞

‖fn − fm‖ϕ = lim
m→∞

‖fn − fm‖ϕ ∈ R
+, n ∈ N,

and since {fn}∞n=1 is fundamental in Wϕ(I;X), we have

lim sup
n→∞

‖fn − f‖ϕ ≤ lim
n→∞

lim
m→∞

‖fn − fm‖ϕ = 0,

which implies lim
n→∞

‖fn − f‖ϕ = 0. To prove that f ∈ Wϕ(I;X), we note that the sequence {pϕ(fn)}∞n=1
is fundamental; therefore, it is bounded, thus it remains to apply Lemma 1(d).

(b) 1. Let ψ �
0
ϕ and f ∈ Wϕ(I;X). Then there exist constants C > 0, C0 > 0, and ρ0 > 0 such

that ψ(ρ) ≤ C0ϕ(Cρ) for all 0 ≤ ρ ≤ ρ0, and there exists a number λ > 0 such that v = Vϕ(f/λ) < ∞.
Let T = {ti}mi=0 be a partition of I and ∆fi = f(ti) − f(ti−1), i ∈ A = {1, . . . ,m}. If B is the set of

all subscripts i ∈ A for which ‖∆fi‖/(λC) > ρ0, then, in view of
∑
i∈A

ϕ

(
‖∆fi‖

λ

)
≤ v, the number of

elements in B does not exceed the number v/ϕ(Cρ0), and also the inequality ‖∆fi‖ ≤ λϕ−1(v), i ∈ A,
holds. Then

m∑
i=1

ψ

(
‖∆fi‖

λC

)
=
∑
i∈A\B

+
∑
i∈B

≤
∑
i∈A\B

C0ϕ

(
‖∆fi‖

λ

)
+
∑
i∈B

ψ

(
ϕ−1(v)

C

)

≤ C0v + ψ

(
ϕ−1(v)

C

)
·

v

ϕ(Cρ0)
.

Since the partition T is arbitrary, we conclude that Vψ
(
f/(λC)

)
< ∞; therefore, f ∈ Wψ(I;X). Note

that the inclusion Wϕ(I;X) ⊂Wψ(I;X) implies the relation ψ �
0
ϕ (see [8, Theorem 4.1.1]).

2. Let X be a BS, and let ψ �
0
ϕ. By virtue of assertion (a), Wϕ(I;X) and Wψ(I;X) are BSs as

well. The identity operator Id, which is defined by the rule Id(f) = f , maps Wϕ(I;X) into Wψ(I;X) and
is closed (by virtue of (3) and the definition of the norm ‖ · ‖ϕ); therefore, by the closed-graph theorem,
this operator is continuous. It remains to determine the desired number κ = κ(ϕ,ψ) as an operator norm
of the operator Id. �

Remark 2. (a) As a consequence of Theorem 4(a), we note that Wϕ(I;X) is an NA (respectively, a BA)
if X is an NA (respectively, a BA). In this case, from the theory of Banach algebras it is known that on
the space Wϕ(I;X), there exists a norm ||| · ||| such that |||f ||| ≤ ‖f‖ϕ ≤ γ|||f ||| and |||fg||| ≤ |||f ||| · |||g||| for
all f , g ∈Wϕ(I;X).

(b) Theorem 4(b) implies that for ϕ ∼
0
ψ, the spaces Wϕ(I;X) and Wψ(I;X) consist of one and the

same mappings and the norms in these spaces are equivalent. In particular, for ϕ ∈ Φ\Φ0, we have ϕ ∼
0
ϕ1

(see notation on p. 2456); therefore, Wϕ(I;X) coincides with the space of mappings of Jordan bounded
variation. In what follows, we are interested primarily in the case where ϕ ∈ Φ0, which corresponds to
the generalized ϕ-variation in the sense of Wiener–Young–Orlicz.

Lemma 5. If X is a BS, then the mapping f ∈ Wϕ(I;X) has the left limit f(t − 0) ∈ X at each point
t ∈ (a, b] and the right limit f(t+ 0) ∈ X at each point t ∈ [a, b); moreover, the set of points of continuity
of f on I = [a, b] is no more than countable.

Proof. It suffices to note that Vϕ(f/λ) < ∞ for a certain constant λ > 0 and apply Lemma 4.1 and
Theorem 4.2 from [7]. �

Let W ∗
ϕ(I;X) denote the subset in Wϕ(I;X) that consists of those mappings that are left continuous

on the half-interval (a, b]. If X is a BS and f ∈Wϕ(I;X), define the left regularization f∗ : I → X of the
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mapping f by the following rule:

f∗(t) = lim
s→t−0

f(s) for a < t ≤ b,

f∗(a) = lim
t→a+0

f∗(t).

Let us show that the limit of f∗(a) ∈ X does exist, by using the Cauchy criterion for the existence of
a limit in a complete space X. We fix ε > 0. The existence of the limit f(a+ 0) = lim

t→a+0
f(t) implies that

there exists δ = δ(ε) > 0 such that if a < t ≤ a + δ, then ‖f(t)− f(a + 0)‖ ≤ ε. Assume that tj ∈ [a, b],
0 < tj − a ≤ δ, j = 1, 2. For small σ > 0 (σ < tj − a, j = 1, 2), we have

‖f∗(t1)− f∗(t2)‖ ≤ ‖f
∗(t1)− f(t1 − σ)‖ + ‖f(t1 − σ)− f(t2 − σ)‖+ ‖f(t2 − σ)− f∗(t2)‖,

where the middle expression is estimated by

‖f(t1 − σ)− f(t2 − σ)‖ ≤ ‖f(t1 − σ)− f(a + 0)‖+ ‖f(a + 0)− f(t2 − σ)‖ ≤ 2ε.

From the existence of f∗(tj) = lim
s→tj−0

f(s), by choosing (by decreasing) a small σ > 0, we find that

‖f∗(tj) − f(tj − σ)‖ ≤ ε, j = 1, 2. Finally, ‖f∗(t1) − f∗(t2)‖ ≤ 4ε for 0 < tj − a ≤ δ(ε), j = 1, 2, and it
remains to apply the Cauchy criterion mentioned above.

Lemma 6. If X is a BS and f ∈Wϕ(I;X), then f∗ ∈W ∗
ϕ(I;X).

Proof. 1. Let us show that the mapping f∗ is left continuous on (a, b]. To this end, note that if f is
left continuous at a point a < t ≤ b, then f∗(t) = f(t). By Lemma 5, the set of points at which f is
continuous is everywhere dense in [a, b]; therefore, if t ∈ (a, b], then there exists a sequence {sn}∞n=1 of
points of continuity of f lying strictly to the right of t and such that sn → t as n→∞. Then we have

lim
s→t−0

f∗(s) = lim
n→∞

f∗(sn) = lim
n→∞

f(sn) = lim
s→t−0

f(s) = f∗(t) in X.

2. Now, let us prove that f∗ ∈ Wϕ(I;X), and, moreover, that pϕ(f∗) ≤ pϕ(f). Without loss of
generality, we assume that λ = pϕ(f) > 0. Let Q = {1, 2, 3, . . . } be a finite or countable set, and let
{τn}n∈Q ⊂ (a, b] be the set of points of left discontinuity of the mapping f ∈ Wϕ(I;X). We define the
mapping f1 : [a, b]→ X, which is distinct from f only at the point τ1, by the following rule: f1(t) = f(t)
for t �= τ1 and f1(τ1) = f(τ1 − 0), and show that pϕ(f1) ≤ λ. Let τ1 �= b. If the partition T = {ti}mi=0 of
the closed interval I = [a, b] does not contain the point τ1, then the following estimate is obvious:

m∑
i=1

ϕ

(
‖∆(f1)i‖

λ

)
=

m∑
i=1

ϕ

(
‖∆fi‖

λ

)
≤ Vϕ

(
f

λ

)
≤ 1.

On the other hand, if the partition T contains the point τ1, so that τ1 = tk for a certain number
k ∈ {1, . . . ,m− 1}, then

m∑
i=1

ϕ

(
‖∆(f1)i‖

λ

)
=

k−1∑
i=1

ϕ

(
‖∆fi‖

λ

)
+ ϕ

(
‖f(τ1 − 0)− f(tk−1)‖

λ

)

+ ϕ

(
‖f(tk+1)− f(τ1 − 0)‖

λ

)
+

m∑
i=k+2

ϕ

(
‖∆fi‖

λ

)
.

(5)

For any ε > 0, there exists s, tk−1 < s < tk = τ1, such that the sum of the middle two summands on the
right in the last relation does not exceed

ϕ

(
‖f(s)− f(tk−1)‖

λ

)
+ ϕ

(
‖f(tk+1)− f(s)‖

λ

)
+ ε.
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Since the set {ti}
k−1
i=0 ∪ {s} ∪ {ti}

m
i=k+1 is a partition of I, the estimate

m∑
i=1

ϕ

(
‖∆(f1)i‖

λ

)
≤ Vϕ

(
f

λ

)
+ ε ≤ 1 + ε, ε > 0

follows. Therefore, Vϕ(f1/λ) ≤ 1, and hence pϕ(f1) ≤ λ. Now, if τ1 = b, then the arguments are similar
(one should not take into account the summands in (5)).

If the mappings f1, . . . , fn−1 have already been defined, then for t ∈ I, we set fn(t) = fn−1(t) for
t �= τn and fn(τn) = fn−1(τn − 0) = f(τn − 0), n = 2, 3, . . . . Then, by induction and by what was proved
above, we have

pϕ(fn) ≤ pϕ(fn−1) ≤ . . . ≤ λ, n ∈ Q.

For a finite Q, the lemma is proved; therefore, let Q be infinite. Defining the mapping f∗(t) = f(t) for
t ∈ I for all n ∈ Q if t �= τn, and f∗(τn) = f(τn − 0) for n ∈ Q, and noting that fn converges pointwise to
f∗ on [a, b] as n→∞, by Lemma 1(d) we obtain

pϕ(f∗) ≤ lim inf
n→∞

pϕ(fn) ≤ λ = pϕ(f).

Finally, taking into account that f∗(t) = f∗(t) for t �= a and f∗(a) = f∗(a + 0), so that f∗ differs from
f∗ only at the point a, by virtue of what was proved above we conclude that pϕ(f∗) ≤ pϕ(f∗) ≤ pϕ(f),
which is the result required. �

3. Composition Operators

Definition. The Nemytskii composition operator generated by the mapping h : I×X → Y is the operator
H : XI → Y I defined for f ∈ XI by the following rule:

(Hf)(t) ≡ H(f)(t) = h(t, f(t)), t ∈ I.

For each x ∈ X, we denote by h∗( · , x) the left regularization of the mapping h( · , x) : I → Y if such
a regularization exists, so that h∗ : I ×X → Y . For instance, if Y is a BS and h( · , x) ∈Wψ(I;Y ) for all
x ∈ X, then by Lemma 6 we have h∗( · , x) ∈W ∗

ψ(I;Y ) for all x ∈ X.

Let L(X;Y ) be the LNS of all linear continuous operators mapping from X into Y that is equipped
with the standard norm.

Theorem 7. Let the Nemytskii composition operator H : XI → Y I be generated by the mapping h :
I ×X → Y , and let ϕ, ψ ∈ Φ.

(a) If X is a real LNS, Y is a BS, and H acts from Wϕ(I;X) into Wψ(I;Y ) and is a Lipschitzian
operator (in the sense of norms of spaces indicated above), then there exists a constant µ0 > 0 such
that

‖h(t, x1)− h(t, x2)‖ ≤ µ0‖x1 − x2‖, t ∈ I, x1, x2 ∈ X, (6)

and there exists mappings h0 ∈ W ∗
ψ(I;Y ) and h1 ∈ L(X;Y )I with the property that h1( · )x ∈

W ∗
ψ(I;Y ) for all x ∈ X such that

h∗(t, x) = h0(t) + h1(t)x, t ∈ I, x ∈ X. (7)

(b) Conversely, if X is a BS, Y is an LNS, ψ �
0
ϕ, and h(t, x) = h0(t) + h1(t)x for all (t, x) ∈ I ×X,

where h0 ∈Wψ(I;Y ) and h1 ∈Wψ(I;L(X;Y )), then the operator H maps Wϕ(I;X) into Wψ(I;Y )
and satisfies the global Lipschitz condition.
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Proof. (a) 1. Since the operator H : Wϕ(I;X) → Wψ(I;Y ) is Lipschitzian, there exists a constant
µ > 0 such that ‖Hf1 −Hf2‖ψ ≤ µ‖f1 − f2‖ϕ and, in particular, pψ(Hf1 −Hf2) ≤ µ‖f1 − f2‖ϕ for all
f1, f2 ∈Wϕ(I;X). For ‖f1−f2‖ϕ > 0, the last inequality (by Lemma 1(c)) is equivalent to the inequality

Vψ
(

Hf1 −Hf2
µ‖f1 − f2‖ϕ

)
≤ 1;

therefore, from here and by the definitions of the operator H and the functional Vψ, it follows that for
any positive integer m and any a ≤ α1 < β1 < α2 < β2 < . . . < αm < βm ≤ b, we have

m∑
i=1

ψ

(
‖h(βi, f1(βi))− h(βi, f2(βi))− h(αi, f1(αi)) + h(αi, f2(αi))‖

µ‖f1 − f2‖ϕ

)
≤ 1. (8)

For α, β ∈ R, α < β, we define the Lipschitzian function ηα,β : R → [0, 1] by the following rule:
ηα,β(s) = 0 for s ≤ α, ηα,β(s) = (s− α)/(β − α) for α ≤ s ≤ β, and ηα,β(s) = 1 for s ≥ β.

2. Let us prove (6). Let x1, x2 ∈ X. If a < t ≤ b, then, setting m = 1, β1 = t, and α1 = a
in (8), substituting the mappings fj(s) = ηa,t(s)xj , s ∈ I, j = 1, 2, in (8), and observing that ‖f1 −
f2‖ϕ = ‖x1 − x2‖/ϕ−1(1) by Lemma 3, we obtain inequality (6) with µ0 = µψ−1(1)/ϕ−1(1). If, on the
other hand, t = a, then, setting m = 1, β1 = b, and α1 = a in (8) and substituting the mappings
fj(s) =

(
1− ηa,b(s)

)
xj, s ∈ I, j = 1, 2, into inequality (8), we obtain the inequality (6) with the desired

constant µ0 = µψ−1(1)
(
1 + 1/ϕ−1(1)

)
.

From the definition of h∗, we find that inequality (6) holds if one substitutes h∗ for h in it. Thus, for
any t ∈ I, the mapping h∗(t, · ) : X → Y is (Lipschitz) continuous.

3. Let us prove (7). Let t ∈ (a, b], and let a < α1 < . . . < βm < t in inequality (8), where m is
arbitrary. We substitute the mappings fj(s) = ηm(s)x1 + (2− j)x2, t ∈ I, xj ∈ X, j = 1, 2, in (8), where
the function ηm : I → [0, 1] is defined in the following way: ηm(s) = 0 for a ≤ s ≤ α1, ηm(s) = ηαi,βi(s)
for αi ≤ s ≤ βi, i = 1, . . . ,m, ηm(s) = 1− ηβi,αi+1(s) for βi ≤ s ≤ αi+1, i = 1, . . . ,m− 1, and ηm(s) = 1
for βm ≤ s ≤ b. Then we have

m∑
i=1

ψ

(
‖h(βi, x1 + x2)− h(βi, x1)− h(αi, x2) + h(αi, 0)‖

µ‖x2‖

)
≤ 1. (9)

Since the constant mappings lie in Wϕ(I;X) and H takes its values in Wψ(I;Y ), we have h( · , x) ∈
Wψ(I;Y ) for all x ∈ X. Taking into account the continuity of ψ and the definition of h∗ and passing to
the limit in (9) as α1 → t− 0, we find that the following inequality holds for all a < t ≤ b:

‖h∗(t, x1 + x2)− h∗(t, x1)− h∗(t, x2) + h∗(t, 0)‖ ≤ µ‖x2‖ψ
−1(1/m),

and, therefore, it holds also at the point t = a. In the limit, as m→∞, for all t ∈ I and x1, x2 ∈ X, we
obtain the relation

h∗(t, x1 + x2)− h∗(t, x1)− h∗(t, x2) + h∗(t, 0) = 0 in Y. (10)

For each t ∈ I, we define the operator St : X → Y by the following rule: St(x) = h∗(t, x) − h∗(t, 0),
x ∈ X, and then we rewrite relation (10) in the form

St(x1 + x2) = St(x1) + St(x2), x1, x2 ∈ X.

Thus, St is a continuous (by virtue of (6) for h∗) and additive operator; therefore, the assumption that
X is real implies that St ∈ L(X;Y ) for all t ∈ I. Setting h0(t) = h∗(t, 0) and h1(t)x = St(x), t ∈ I,
x ∈ X, we find that h0 ∈ Y I , h1 ∈ L(X;Y )I and relation (7) holds. Noting that h0( · ) = h∗( · , 0) and
h1( · )x = h∗( · , x)−h∗( · , 0), we conclude that h0 and h1( · )x belong to the space W ∗

ψ(I;Y ) for all x ∈ X.

(b) To prove the converse statement, note that the operator H acts by the following rule: (Hf)(t) =
h0(t) + h1(t)f(t), t ∈ I, f ∈ Wϕ(I;X). Since ψ �

0
ϕ, Wϕ(I;X) ⊂ Wψ(I;X) by Theorem 4(b); therefore,

Theorem 4(a), if applied to the triple (L(X;Y ),X, Y ) of LNSs, yields h1f ∈ Wψ(I;Y ), so that H maps
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Wϕ(I;X) into Wψ(I;Y ). Once again applying Theorem 4(a, b), for all f1, f2 ∈ Wϕ(I;X) we obtain the
inequality

‖Hf1 −Hf2‖ψ = ‖h1(f1 − f2)‖ψ ≤ κ(ϕ,ψ)γ(ψ)‖h1‖ψ‖f1 − f2‖ϕ,

whence it follows that the operator H satisfies the Lipschitz condition. �

Remark 3. A statement similar to Theorem 7 also holds for the right regularization of the mapping
h( · , x). However, generally speaking, one cannot substitute h for h∗ in relation (7) (see the example in
[18, p. 157], which is given for real-valued functions of Jordan bounded variation). For X = Y = R and
ϕ(ρ) = ρ, Theorem 7 yields the results of [18].

Remark 4. For a BA X and for given h0, h1 ∈Wϕ(I;X), it is not difficult to find the condition on the
mapping h1 under which the linear functional equation x = h0 + h1x is solvable for x ∈ Wϕ(I;X) using
the contracting mapping principle, namely, ‖h1‖ϕ < 1/γ(ϕ). On the other hand, Theorem 7 means that
one cannot directly apply the Banach principle mentioned above in the space Wϕ(I;X) for the solution
of the equation x = h(t, x) if the mapping h(t, x) depends “nonlinearly” on the variable x.

The immediate consequence and generalization of Theorem 7 is the following theorem.

Theorem 8. Let the Nemytskii operator H : (X1 × · · · × Xn)I → Y I be generated by a mapping h :
I ×X1 × · · · ×Xn → Y according to the following rule:

H(f1, . . . , fn)(t) = h
(
t, f1(t), . . . , fn(t)

)
, t ∈ I, fi ∈ XI

i , i = 1, . . . , n.

If X1, . . . ,Xn are real LNSs, Y is a BS, and the operator H maps Wϕ1(I;X1) × · · · ×Wϕn(I;Xn) into

Wψ(I;Y ) and is a Lipschitzian operator, then h∗(t, x1, . . . , xn) = h0(t) +
n∑
i=1

hi(t)xi for all t ∈ I and

xi ∈ Xi, i = 1, . . . , n, where h0 ∈ W ∗
ψ(I;Y ) and hi ∈ L(Xi;Y )I such that hi( · )xi ∈ W ∗

ψ(I;Y ) for all
xi ∈ Xi, i = 1, . . . , n.

Conversely, if Xi is a BS, ψ �
0
ϕi, hi ∈Wψ(I;L(Xi;Y )), i = 1, . . . , n, Y is an LNS, h0 ∈Wψ(I;Y ),

and h(t, x1, . . . , xn) = h0(t) +
n∑
i=1

hi(t)xi for all t ∈ I and xi ∈ Xi, i = 1, . . . , n, then H maps the direct

product Wϕ1(I;X1)× · · · ×Wϕn(I;Xn) into Wψ(I;Y ) and is a globally Lipschitzian operator.

Theorem 8, in turn, is extended to the case where Y = Y1 × · · · × Yk.
We present a criterion for the Lipschitzness of a composition operator.

Corollary 9. Let the Nemytskii operator H : (Rn)I → RI be generated by a function h : I × Rn → R
such that h∗ = h, and let ψ �

0
ϕi, i = 1, . . . , n. The operator H maps Wϕ1(I;R) × · · · ×Wϕn(I;R) into

Wψ(I;R) and is Lipschitzian if and only if h(t, x1, . . . , xn) = h0(t) +
n∑
i=1

hi(t)xi for all t ∈ I and xi ∈ R,

where h0, hi ∈W ∗
ψ(I;R), i = 1, . . . , n.

The results presented above are extended to multivalued mappings of bounded generalized ϕ-varia-
tion and multivalued composition operators ([6]); a detailed description of them is to appear.

Concluding this paper, we present a remark concerning composition operators on the space 8ϕ, ϕ ∈ Φ.
We denote by 8ϕ the space of all real sequences x = {xn}∞n=1 ∈ R

N such that there exists a number λ > 0

(depending on x) for which
∞∑
n=1

ϕ
(
|xn|/λ

)
<∞. The space 8ϕ is an LNS with the norm

‖x‖ϕ = inf

{
λ > 0 :

∞∑
n=1

ϕ

(
|xn|

λ

)
≤ 1

}
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and with the BA, in which the following inequalities hold:

sup
n∈N
|xn| ≤ ϕ−1(1)‖x‖ϕ,

‖xy‖ϕ ≤ ϕ−1(1)‖x‖ϕ‖y‖ϕ for all x, y ∈ 8ϕ,

where xy = {xnyn}∞n=1 (see, e.g., [11, Sec. 3 and Theorem 10.3]).
The following example shows that an analog of Theorem 7 does not hold in the space 8ϕ. For a

function h : N×R→ R, the composition operator H : RN → RN is defined by the rule (Hx)(n) = h(n, xn),
n ∈ N, x = {xn}∞n=1 ∈ R

N. Let the function h be defined by the formula h(n, x) = sinx, n ∈ N, x ∈ R.
Since

∞∑
n=1

ϕ

(
| sinxn|

‖x‖ϕ

)
≤
∞∑
n=1

ϕ

(
|xn|

‖x‖ϕ

)
≤ 1,

we have ‖Hx‖ϕ ≤ ‖x‖ϕ for all x ∈ 8ϕ, so that H maps 8ϕ onto itself. Taking into account the inequalities

∞∑
n=1

ϕ

(
| sinxn − sin yn|

‖x− y‖ϕ

)
≤
∞∑
n=1

ϕ

(
|xn − yn|

‖x− y‖ϕ

)
≤ 1,

we find that ‖Hx−Hy‖ϕ ≤ ‖x− y‖ϕ for all x, y ∈ 8ϕ.
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