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1. Introduction

Irreducible compact hyperkähler manifolds, or irreducible holomorphic symplectic
manifolds, are a natural generalization of K3 surfaces in higher dimensions. The ge-
ometry of K3 surfaces is well studied. In particular, it is known that any two K3 surfaces
are deformation equivalent to each other, i.e., there is only one deformation type of K3
surfaces.

A natural question to ask is whether the same is true in higher dimensions. The answer
is negative due to Beauville’s examples. In every possible complex dimension 2n there are
at least the Hilbert scheme of n points on a K3 surface S, Hilbn(S), and the generalized
Kummer varieties Kn+1(A), where A is an Abelian surface. These two examples are
not deformation equivalent since they have different Betti numbers. There are two more
exceptional examples due to K. O’Grady in dimensions 6 and 10.

It is conjectured that in every fixed dimension there are finitely many deformation
types of irreducible compact hyperkähler manifolds. It is also conjectured that every
hyperkähler manifold can be deformed to one that admits a holomorphic Lagrangian
fibration. It would be interesting to classify the deformation types of the pairs (M,L) of
a hyperkähler manifold together with a Lagrangian fibration on it. In the present paper,
we show that the number of deformational classes of such pairs is finite, if one fixes the
smooth manifold underlying M .

In [18] Huybrechts proved that for a fixed compact manifold there are at most finitely
many deformation types of hyperkähler structures on it. Therefore, to prove that the
number of deformation classes of pairs (M,L) is finite, it would suffice to prove it when
a deformational class of M is fixed.

Let M
π−→ X be a Lagrangian fibration, where X is a normal projective variety.

Then H2(X) = C, hence rk Pic(X) = 1. Therefore, the primitive ample bundle LX

on X is unique (up to torsion). Denote by LM the semiample bundle π∗(LX) on M .
Clearly, c1(LM )rk M = 0; a (1,1)-class satisfying this equation is called parabolic. The
Lagrangian fibration M

π−→ X is uniquely determined by a class [c1(LM )] ∈ Pic(M)
which is parabolic and semiample (this is due to D. Matsushita, [23]; see [29] for a
detailed exposition of an early work on Lagrangian fibrations). Therefore, to classify the
Lagrangian fibrations it would suffice to classify pairs (M,LM ), where LM is a parabolic
semiample line bundle.

We prove that in the Teichmüller space of hyperkähler manifolds with a fixed parabolic
class the pairs admitting a Lagrangian fibration form a dense and open subset. The other
main result is that the action of the monodromy group has finitely many orbits. As a
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corollary of these results we obtain that for a fixed compact manifold, there are only
finitely many deformation types of hyperkähler structures equipped with a Lagrangian
fibration.

1.1. Hyperkähler manifolds

Definition 1.1. A hyperkähler manifold is a compact, Kähler, holomorphically symplectic
manifold.

Definition 1.2. A hyperkähler manifold M is called simple if H1(M) = 0, H2,0(M) = C.

Theorem 1.3 (Bogomolov’s Decomposition Theorem). (See [4,3].) Any hyperkähler mani-
fold admits a finite covering, which is a product of a torus and several simple hyperkähler
manifolds. �
Remark 1.4. Further on, all hyperkähler manifolds are assumed to be simple.

A note on terminology. Speaking of hyperkähler manifolds, people usually mean one
of two different notions. One either speaks of holomorphically symplectic Kähler mani-
fold, or of a manifold with a hyperkähler structure, that is, a triple of complex structures
satisfying quaternionic relations and parallel with respect to the Levi-Civita connection.
The equivalence (in compact case) between these two notions is provided by the Yau’s
solution of Calabi’s conjecture [3]. Throughout this paper, we use the complex algebraic
geometry point of view, where “hyperkähler” is synonymous with “Kähler holomorphi-
cally symplectic”, in lieu of the differential-geometric approach. The reader may check
[3] for an introduction to hyperkähler geometry from the differential-geometric point of
view.

Notice also that we included compactness in our definition of a hyperkähler manifold.
In the differential-geometric setting, one does not usually assume that the manifold is
compact.

1.2. The Bogomolov–Beauville–Fujiki form

Theorem 1.5. (See [13].) Let η ∈ H2(M), and dimM = 2n, where M is hyperkähler.
Then

∫
M

η2n = cq(η, η)n, for some integer quadratic form q on H2(M) and a constant
c > 0. �
Definition 1.6. This form is called Bogomolov–Beauville–Fujiki form. It is defined by
this relation uniquely, up to a sign. The sign is determined from the following formula
(Bogomolov, Beauville; [2], [17, 23.5])

λq(η, η) = (n/2)
∫

η ∧ η ∧Ωn−1 ∧Ωn−1
X
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+ (1 − n)
(
∫
X
η ∧Ωn−1 ∧Ωn)(

∫
X
η ∧Ωn ∧Ωn−1)∫

M
Ωn ∧Ωn

where Ω is the holomorphic symplectic form, and λ a positive constant.

Remark 1.7. The form q has signature (3, b2 − 3). It is negative definite on primitive
forms, and positive definite on the space 〈Ω,Ω, ω〉 where ω is a Kähler form, as seen
from the following formula

μq(η1, η2)

=
∫

X

ω2n−2 ∧ η1 ∧ η2 −
2n− 2

(2n− 1)2

∫
X
ω2n−1 ∧ η1 ·

∫
X
ω2n−1 ∧ η2∫

M
ω2n , μ > 0 (1.1)

(see e.g. [33, Theorem 6.1], or [17, Corollary 23.9]).

Definition 1.8. Let [η] ∈ H1,1(M) be a real (1,1)-class on a hyperkähler manifold M . We
say that [η] is parabolic if q([η], [η]) = 0. A line bundle L is called parabolic if c1(L) is
parabolic.

1.3. The hyperkähler SYZ conjecture

Theorem 1.9. (See D. Matsushita, [23].) Let π : M −→ X be a surjective holomorphic
map from a hyperkähler manifold M to X, with 0 < dimX < dimM . Then dimX =
1/2 dimM , and the fibers of π are holomorphic Lagrangian tori (this means that the
symplectic form vanishes on the fibers).2

Definition 1.10. Such a map π to a normal projective variety X is called a holomorphic
Lagrangian fibration.

Remark 1.11. The base of π is conjectured to be rational. J.-M. Hwang [19] proved that
X ∼= CPn, if it is smooth. D. Matsushita [24] proved that it has the same rational
cohomology as CPn.

Remark 1.12. The base of π has a natural flat connection on the smooth locus of π. The
combinatorics of this connection can be used to determine the topology of M [21,15].

Definition 1.13. Let (M,ω) be a Calabi–Yau manifold, Ω the holomorphic volume form,
and Z ⊂ M a real analytic subvariety, Lagrangian with respect to ω. If Ω|Z is propor-
tional to the Riemannian volume form, Z is called special Lagrangian (SpLag).

2 Here, as elsewhere, we assume that the hyperkähler manifold M is simple.
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The special Lagrangian varieties were defined in [16] by Harvey and Lawson, who
proved that they minimize the Riemannian volume in their cohomology class. This im-
plies, in particular, that their moduli are finite-dimensional. In [26], McLean studied
deformations of non-singular special Lagrangian subvarieties and showed that they are
unobstructed.

In [30], Strominger, Yau and Zaslow tried to explain the mirror symmetry phenomenon
using the special Lagrangian fibrations. They conjectured that any Calabi–Yau manifold
admits a Lagrangian fibration with special Lagrangian fibers. Taking its dual fibration,
one obtains “the mirror dual” Calabi–Yau manifold.

Definition 1.14. A line bundle is called semiample if LN is generated by its holomorphic
sections, which have no common zeros.

Remark 1.15. From semiampleness it obviously follows that L is nef. Indeed, let π :
M −→ PH0(LN )∗ be the standard map. Since the sections of L have no common zeros,
π is holomorphic. Then L ∼= π∗O(1), and the curvature of L is a pullback of the Kähler
form on CPn. However, the converse is false: a nef bundle is not necessarily semiample
(see e.g. [11, Example 1.7]).

Remark 1.16. Let π : M −→ X be a holomorphic Lagrangian fibration, and ωX an
ample class on X. Then η := π∗ωX is semiample and parabolic. The converse is also
true, by Matsushita’s theorem: if L is semiample and parabolic, L induces a Lagrangian
fibration. This is the only known source of non-trivial special Lagrangian fibrations.

Conjecture 1.17 (Hyperkähler SYZ conjecture). Let L be a parabolic nef line bundle on
a hyperkähler manifold. Then L is semiample.

Remark 1.18. This conjecture was stated by many people (Tyurin, Bogomolov, Has-
sett, Tschinkel, Huybrechts, Sawon); please see [29] for an interesting and historically
important discussion, and [31] for details and references.

Remark 1.19. The SYZ conjecture can be seen as a hyperkähler version of the “abundance
conjecture” (see e.g. [12, 2.7.2]).

Claim 1.20. Let M be an irreducible hyperkähler manifold in one of 4 known classes
known, that is, a deformation of a Hilbert scheme of points on K3, a deformation of
generalized Kummer variety, or a deformation of one of two examples by O’Grady. Then
M admits a deformation equipped with a holomorphic Lagrangian fibration.

Proof. When S is an elliptic K3 surface, the Hilbert scheme of points Hilbn(S) has an
induced Lagrangian fibration with smooth fibers that are products of n elliptic curves:
Hilbn(S) → Symn(P1) 	 Pn. Similarly, when A is an elliptic Abelian surface, the gen-
eralized Kummer variety Kn(A) admits a Lagrangian fibration. Another construction
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gives Lagrangian fibrations on Hilbn(S) and on Kn(A) if S contains a smooth genus n

curve and if A contains a smooth genus n + 2 curve (see Examples 3.6 and 3.8 in [29]).
O’Grady’s examples are deformation equivalent to Lagrangian fibrations, as follows

from Corollary 1.1.10 in [28]. �
2. Hyperkähler geometry: preliminary results

2.1. Teichmüller space and the moduli space

Here we cite the relevant result from the deformation theory of hyperkähler manifolds.
We follow [32].

Let M be a hyperkähler manifold (compact and simple, as usual), and Comp0 be
the Frèchet manifold of all complex structures of hyperkähler type on M . The quotient
Teich := Comp0 /Diff0 of Comp0 by isotopies is a finite-dimensional complex analytic
space [9]. This quotient is called the Teichmüller space of M . When M is a complex
curve, the quotient Comp0 /Diff0 is the Teichmüller space of this curve.

The mapping class group Γ = Diff+ /Diff0 acts on Teich in the usual way, and its
quotient Mod is the moduli space of M .

As shown in [18], Teich has a finite number of connected components. Take a connected
component TeichI containing a given complex structure I, and let Γ I ⊂ Γ be the set of
elements of Γ fixing this component. Since Teich has only a finite number of connected
components, Γ I has finite index in Γ . On the other hand, as shown in [32], the image of
the group Γ is commensurable to O(H2(M,Z), q).

In [32, Lemma 2.6] it was proved that any hyperkähler structure on a given simple
hyperkähler manifold is also simple. Therefore, H2,0(M, I ′) = C for all I ′ ∈ Comp. This
trivial observation is a key to the following well-known definition.

Definition 2.1. Let (M, I) be a hyperkähler manifold, and Teich its Teichmüller space.
Consider a map Per : Teich −→ PH2(M,C), sending J to the line H2,0(M,J) ∈
PH2(M,C). It is easy to see that Per maps Teich into the open subset of a quadric,
defined by

Per :=
{
l ∈ PH2(M,C)

∣∣ q(l, l) = 0, q(l, l̄) > 0
}
.

The map Per : Teich −→ Per is called the period map, and the set Per the period space.

The following fundamental theorem is due to F. Bogomolov [5].

Theorem 2.2. Let M be a simple hyperkähler manifold, and Teich its Teichmüller space.
Then the period map Per : Teich −→ Per is a local diffeomorphism (that is, an etale
map). Moreover, it is holomorphic. �
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Remark 2.3. Bogomolov’s theorem implies that Teich is smooth. However, it is not
necessarily Hausdorff (and it is non-Hausdorff even in the simplest examples). �
2.2. The polarized Teichmüller space

In [34, Corollary 2.6], the following proposition was deduced from [6] and [10].

Theorem 2.4. Let M be a simple hyperkähler manifold, such that all integer (1, 1)-classes
satisfy q(ν, ν) � 0. Then its Kähler cone is one of the two connected components of the
set K := {ν ∈ H1,1(M,R) | q(ν, ν) > 0}. �
Remark 2.5. From Theorem 2.4 it follows that on a hyperkähler manifold with
Pic(M) = Z, for any rational class η ∈ H1,1(M) with q(η, η) � 0, either η or −η is nef.

Remark 2.6. Consider an integer vector η ∈ H2(M) which is positive, that is, satisfies
q(η, η) > 0. Denote by Teichη the set of all I ∈ Teich such that η is of type (1, 1) on
(M, I). The space Teichη is a closed divisor in Teich. Indeed, by Bogomolov’s theorem,
the period map Per : Teich −→ Per is etale, but the image of Teichη is the set of all
l ∈ Per which are orthogonal to η; this condition defines a closed divisor Cη in Per, hence
Teichη = Per−1(Cη) is also a closed divisor.

Remark 2.7. When I ∈ Teichη is generic, Bogomolov’s theorem implies that the space
of rational (1, 1)-classes H1,1(M,Q) is one-dimensional and generated by η. This is seen
from the following argument. Locally around a given point I the period map Teichη −→
Per is surjective on the set Perη of all I ∈ Per for which η ∈ H1,1(M, I). However, the
Hodge–Riemann relations give

Perη =
{
l ∈ Per

∣∣ q(η, l) = 0
}
. (2.1)

Denote the set of such points of Teichη by Teichη
gen. It follows from Theorem 2.4 that,

for any I ∈ Teichη
gen, either η or −η is a Kähler class on (M, I).

Consider a connected component Teichη,I of Teichη. Changing the sign of η if neces-
sary, we may assume that η is Kähler on (M, I). By Kodaira’s theorem about stability
of Kähler classes, η is Kähler in some neighborhood U ⊂ Teichη,I of I. Therefore, the
sets

V+ :=
{
I ∈ Teichη

gen
∣∣ η is Kähler on (M, I)

}

and

V− :=
{
I ∈ Teichη

gen
∣∣ −η is Kähler on (M, I)

}



408 L. Kamenova, M. Verbitsky / Advances in Mathematics 260 (2014) 401–413
are open in Teichη
gen. It is easy to see that Teichη

gen is a complement to a union
of countably many divisors in Teichη corresponding to the points I ′ ∈ Teichη with
rk Pic(M, I ′) > 1. Therefore, for any connected open subset U ⊂ Teichη, the intersection
U ∩ Teichη

gen is connected. Since Teichη
gen is represented as a disjoint union of open sets

V+ � V−, every connected component of Teichη
gen and of Teichη is contained in V+ or

in V−. We obtained the following corollary.

Corollary 2.8. Let η ∈ H2(M) be a positive integer vector, Teichη the corresponding
divisor in the Teichmüller space, and Teichη,I a connected component of Teichη contain-
ing a complex structure I. Assume that η is Kähler on (M, I). Then η is Kähler for all
I ′ ∈ Teichη,I which satisfy rkH1,1(M,Q) = 1. �

We call the set Teichη
pol of all I ∈ Teichη for which η is Kähler the polarized Te-

ichmüller space, and η its polarization. From the above arguments it is clear that the
polarized Teichmüller space Teichη

pol is open and dense in Teichη.
The quotient Mη of Teichη

pol by the subgroup of the mapping class group fixing η

is called the moduli of polarized hyperkähler manifolds. It is known (due to the gen-
eral theory which goes back to Viehweg and Grothendieck) that Mη is Hausdorff and
quasiprojective (see e.g. [36] and [14]).

Remark 2.9. We conclude that there are countably many quasiprojective divisors Mη

immersed in the moduli space Mod of hyperkähler manifolds. Moreover, every algebraic
complex structure belongs to one of these divisors. However, these divisors need not be
closed. Indeed, as proven in [1], each of Mη is dense in Mod.

In [1, Theorem 1.7], the following theorem was proven.

Theorem 2.10. Let M be a compact, simple hyperkähler manifold, TeichI a connected
component of its Teichmüller space, and TeichI Ψ−→ TeichI /Γ I = Mod its projection
to the moduli space of complex structures. Consider a positive or negative vector η ∈
H2(M,Z), and let TeichI,η be the corresponding connected component of the polarized
Teichmüller space. Assume that b2(M) > 3. Then the image Ψ(TeichI,η) is dense in Mod.

The proof relies on a more general proposition about lattices.

Proposition 2.11. (See [1, Proposition 3.2, Remark 3.12].) Let V be an R-vector space
equipped with a non-degenerate symmetric form of signature (s+, s−) with s+ ≥ 3 and
s− ≥ 1. Consider a lattice L ⊂ V . Let Γ be a subgroup of finite index in O(L), and
l ∈ L. Then Γ · Gr++(l⊥) is dense in Gr++(V ).

Remark 2.12. Since the proof of this statement is symmetric in s+ and s−, the same
proposition is valid if we assume that s+ ≥ 1 and s− ≥ 3.
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3. Main results

3.1. The moduli of manifolds with Lagrangian fibrations

Here we assume that b2(M) � 7 as we need it for our proof of Theorem 3.4. The
authors conjecture that the result is valid for smaller Betti numbers as well.

Definition 3.1. Let L be a holomorphic line bundle on a hyperkähler manifold. We call
L Lagrangian if it is parabolic and semiample.

Definition 3.2. Let M be a hyperkähler manifold. Fix a parabolic class L ∈ H2(M,Z).
We denote by TeichL the Teichmüller space of all complex structures I of hyperkähler
type on M such that L is of type (1, 1) on (M, I). Clearly, TeichL is a divisor in the whole
Teichmüller space of M . The space TeichL is called the Teichmüller space of hyperkähler
manifolds with parabolic class.

Matsushita proves the following openness result in [25, Theorem 1.1]:

Theorem 3.3. Let Teich◦
L ⊂ TeichL be the set of all I ∈ TeichL for which L is Lagrangian.

Then Teich◦
L is open in TeichL. �

The main results of the present paper are the following two theorems.

Theorem 3.4. The subspace Teich◦
L ⊂ TeichL is dense and open in TeichL under the

condition that L or −L gives a Lagrangian fibration for some deformation of M .

Proof. Fix a positive class η ∈ H2(M,Z) and define Teich◦
L,η to be the open subset of

Teich◦
L for which η is a polarization. Consider the projection Ψ to the moduli space Mod

as defined in Theorem 2.10. Since Mη is quasiprojective (see [36]), then Ψ(Teich◦
L,η) is

Zariski open, and therefore dense in Ψ(TeichL,η).
Fix a negative vector L′ ∈ H2(M,Z) such that the sublattice 〈L,L′〉 is of rank 2.

Notice that Ψ(TeichL) = {l ∈ PH2(M,Z) | q(l, l) = 0, q(l, l̄) > 0, q(L, l) = 0}/ΓL and
Ψ(TeichL,η) = {l ∈ PH2(M,Z) | q(l, l) = 0, q(l, l̄) > 0, q(L, l) = 0, q(η, l) = 0}/ΓL,η.
Applying Proposition 2.11 to the quotient H2(M,Z)/〈L,L′〉, we see that Ψ(TeichL,L′,η)
is dense in Ψ(TeichL,L′) for any L′. Here we needed to assume b2 � 7, because H2(M,Z)
is of signature (3, b2 − 3) and the quotient H2(M,Z)/〈L,L′〉 is of signature (2, b2 − 4).
This satisfies the conditions of Proposition 2.11 since b2 − 4 � 3.

However,
⋃

L′ Ψ(TeichL,L′) is dense in Ψ(TeichL), and
⋃

L′ Ψ(TeichL,L′,η) is dense
in Ψ(TeichL,η). Therefore, Ψ(TeichL,η) is dense in Ψ(TeichL) and Teich◦

L is dense in
TeichL. �
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Remark 3.5. Together with Proposition 2.11, Theorem 3.4 implies that the set of mani-
folds with Lagrangian fibrations is dense within the deformation space of a hyperkähler
manifold M , if M admits a Lagrangian fibration.

Theorem 3.6. Consider the action of the monodromy group ΓI on H2(M,Z), and let
S ⊂ H2(M,Z) be the set of all classes which are parabolic and primitive. Then there are
only finitely many orbits of ΓI on S.

Proof. In the proof we use Nikulin’s technique of discriminant-forms described in [27].
Denote by Λ the lattice (H2(M,Z), q). It is a free Z-module of finite rank together

with a non-degenerate symmetric bilinear form q with values in Z. If {ei}i∈I is a basis of
the lattice Λ, its discriminant is defined to be discr(Λ) = det(ei ·ej). There is a canonical
embedding Λ ↪→ Λ∗ = Hom(Λ,Z) using the bilinear form of Λ. The discriminant group
AΛ = Λ∗/Λ is a finite Abelian group of order |discr(Λ)|. One can extend the bilinear
form to Λ∗ with values in Q and define the discriminant-bilinear form of the lattice
bΛ : AΛ×AΛ → Q/Z. It is a finite non-degenerate form. A subgroup H ⊂ AΛ is isotropic
if qΛ|H = 0, where qΛ is the quadratic form corresponding to bΛ. Given any subset
K ⊂ Λ, its orthogonal complement is K⊥ = {v ∈ Λ | (v,K) = 0}.

An embedding of lattices Λ1 ↪→ Λ2 is primitive if Λ2/Λ1 is a free Z-module. Take
a primitive vector v ∈ Λ with q(v) = 0. We can choose a vector f ∈ Λ with minimal
positive quadratic intersection α = q(v, f). Then 0 < α � |discr(Λ)|. It is implied by the
following lemma:

Lemma 3.7. The minimal positive intersection α divides discr(Λ).

Proof. Since v is primitive, we can choose a free Z-basis {v1 = v, v2, . . . , vn} of Λ,
where n = rk(Λ). If α = min{q(v, f) | f ∈ Zn}, then αZ is an ideal generated by
{q(v, vi), i = 1, . . . , n}. For every i = 1, . . . , n, q(v, vi) = α · ai for some ai ∈ Z. Thus
the matrix [q(vj , vi)] has first column divisible by α. Then det[q(vj , vi)] = discr(Λ) is
divisible by α. �

Let K be the primitive sublattice of Λ spanned by v and f . The intersection ma-
trix of Span(v, f) has determinant q(v, v)q(f, f) − q(v, f)2 = −α2 which is bounded:
−|discr(Λ)|2 � −α2 < 0. Since rk(K) = 2, K has at most four primitive isotropic
vectors (2 rk(K) = 4).

An overlattice of Λ is a lattice embedding i : Λ → Λ′ with Λ and Λ′ of the same rank,
or equivalently, such that HΛ′ = Λ′/Λ is a finite Abelian group. Note that we have the
inclusions: Λ ↪→ Λ′ ↪→ Λ′ ∗ ↪→ Λ∗. Therefore, HΛ′ ⊂ Λ′ ∗/Λ ⊂ Λ∗/Λ = AΛ.

Proposition 3.8. (See [27, Proposition 1.4.1].) The correspondence Λ′ → HΛ′ determines
a bijection between overlattices of Λ and isotropic subgroups of AΛ. Furthermore, H⊥

Λ′ =
Λ′ ∗/Λ and H⊥

Λ′/HΛ′ = AΛ′ .
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Let L = K⊥ be the orthogonal complement of K in Λ. Then K ⊕ L ⊂ Λ ⊂ K∗ ⊕ L∗.
Since det(L) is bounded, in view of Proposition 3.8, there are finitely many ways of
expressing Λ as an overlattice of ΛK

.= K ⊕K⊥ because AΛ is finite of order |discr(Λ)|
and there are finitely many isotropic subgroups.

Define the lattices Λ and Λ′ to be stably equivalent if there exists a lattice M such
that Λ ⊕M 	 Λ′ ⊕M . The following proposition is a reformulation of Theorem 1.1 in
Chapter 9 of Cassels’s book [8].

Proposition 3.9. There exist only a finite number of lattices stably equivalent to Λ. �
If we assume that there are infinitely many orbits of ΓI , this would imply that there

exist infinitely many non-isomorphic pairs of lattices (K,K⊥). Then for infinitely many
of them K⊥ would be stably equivalent to K⊥

1 for another K1 since there are only finitely
many choices for K. This contradicts Proposition 3.9 and the result follows. �
Corollary 3.10. For any hyperkähler manifold, there are only finitely many orbits of ΓI

on the set of all divisors TeichL with a parabolic class.

Combining Corollary 3.10 and Theorem 3.4, we obtain the following result.

Corollary 3.11. Let M be a hyperkähler manifold. Then there are only finitely many de-
formation types of Lagrangian fibrations (M, I) −→ S, for all complex structures on M .

Proof. By Remark 2.7 we can assume that H1,1(M,Q) is one-dimensional and generated
by a parabolic class L. Since either L or −L is nef, we can assume L to be nef. From
Theorem 3.4 it follows that for each pair (M,L) there exists a unique deformation type
of a fibration structure. We conclude finiteness of the deformation types of Lagrangian
fibrations since there are finitely many orbits of ΓI on the set TeichL. �
3.2. Kobayashi hyperbolicity in hyperkähler geometry

Definition 3.12. A compact manifold M is called Kobayashi hyperbolic if any holomorphic
map C −→ M is constant.

For an introduction to the hyperbolic geometry, please see [22].
As an application of Theorem 3.4, we obtain the following result.

Theorem 3.13. Let M be an irreducible holomorphic symplectic manifold in one of 4
known classes known, that is, a deformation of a Hilbert scheme of points on K3, a
deformation of generalized Kummer variety, or a deformation of one of two examples by
O’Grady. Then M is not Kobayashi hyperbolic.

Proof. From Brody’s lemma it follows that a limit of non-hyperbolic manifolds is again
non-hyperbolic. Therefore, it would suffice to find a dense set of non-hyperbolic manifolds
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within the moduli space. A hyperkähler manifold admitting a holomorphic Lagrangian
fibration is non-hyperbolic, because it contains complex tori. As follows from Claim 1.20,
all known types of hyperkähler manifolds admit a deformation which has a Lagrangian
fibration. By Remark 3.5, such deformations are dense in the moduli. �

It is conjectured that all hyperkähler and Calabi–Yau manifolds are not hyperbolic.
The strongest result about non-hyperbolicity of hyperkähler manifolds so far was due to
F. Campana, who proved in [7] that any twistor family of a hyperkähler manifold has at
least one fiber which is non-hyperbolic.3
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