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Abstract This paper proposes a definition of categorical model of the deep inference
system BV, defined by Guglielmi. Deep inference introduces the idea of performing
a deduction in the interior of a formula, at any depth. Traditional sequent calculus
rules only see the roots of formulae. However in these new systems, one can rewrite
at any position in the formula tree. Deep inference in particular allows the syntactic
description of logics for which there is no sequent calculus. One such system is BV,
which extends linear logic to include a noncommutative self-dual connective. This
is the logic our paper proposes to model. Our definition is based on the notion of
a linear functor, due to Cockett and Seely. A BV-category is a linearly distributive
category, possibly with negation, with an additional tensor product which, when
viewed as a bivariant functor, is linear with a degeneracy condition. We show that this
simple definition implies all of the key isomorphisms of the theory. We consider Gi-
rard’s category of probabilistic coherence spaces and show that it contains a self-dual
monoidal structure in addition to the x-autonomous structure exhibited by Girard.
This structure makes the category a BV-category. We believe this structure is also of
independent interest, as well-behaved noncommutative operators generally are.
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1 Introduction

This paper is an examination of deep inference prooftheory [5, 16] from the perspec-
tive of categorical logic. In particular, we will propose a general notion of categorical
model and give several examples of such structures.

Deep inference is an important new approach to the syntax of logical systems
introduced by Guglielmi, and subsequently studied by a number of researchers. We
mention the website http://alessio.guglielmi.name as an excellent source of informa-
tion. Deep inference is not a single logical system, but rather a new approach to
considering logic, in which sequent calculus is replaced by a new form of syntax with
several attractive features.

There are a number of deep inference logical systems, some corresponding to
classical-style logics, and some to linear logics. The one that we consider is BV.
This is an extension of multiplicative linear logic, designed to incorporate Retoré’s
noncommutative, self-dual connective seq [22]. We refer the reader to [16] for the
inference rules and syntax of BV. As this is a paper on semantics, they will not play a
role here.

Proofs in deep inference systems are reversible in the sense that one may invert
them and dualize the connectives and still obtain a valid proof. This sort of duality
is of course in sharp contrast to the sequent calculus. (This property is shared for
example with the two-sided proof nets of [3].)

Also important is that deep inference systems allow for a very satisfactory
treatment of the notion of context. Within deep inference systems, one can make sub-
stitutions within a proof at arbitrary depth. Formalizing a notion of covariant context
that allows for such substitutions in the sequent calculus is notoriously difficult.

Perhaps even more importantly, deep inference allows for the consideration of
systems which seemingly cannot be considered with sequent calculus at all. Here we
are thinking particularly of Retoré’s pomset logic, which is an extension of Girard’s
multiplicative linear logic MLL [14] to include a noncommutative self-dual connec-
tive. Retoré’s work was inspired by semantic considerations. Such a connective,
called seq, exists on the category of coherence spaces [14], and pomset logic was
an attempt to capture this structure syntactically. However, pomset logic is not a
sequent calculus in any standard sense. Subsequent work of Tiu [25] shows that no
sequent calculus could capture this logical connective. However, the deep inference
system BV handles the structure quite easily.

One of our goals is to develop a categorical semantics for the various deep
inference systems. Here, we only consider the specific system BV. As far as we know,
the first person to discuss the categorical structure of the linear logic deep inference
systems was Hughes in [17]. Hughes, in considering the deep inference system
corresponding to MLL, argues that many of the best features of deep inference are
just as true of categorical proof theory. In particular, the ability to make substitutions
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at arbitrary depth within a proof corresponds categorically to the (bi)functoriality of
the logical connectives.

But Hughes does not deal with the coherence issues at all. There is a valid reason
not to have considered coherence issues for deep inference, as the usual techniques of
categorical proof theory do not apply. Typically when trying to develop categorical
semantics, one determines coherence conditions by examining the cut-elimination
process. Cut-elimination is typically algorithmic, and there is an evident method of
turning the steps of the cut-elimination process into coherence equations. Having
done this, it is then evident that the denotation of an arbitrary proof in the logic is
equal to the denotation of a cut-free proof.

However, deep inference systems do not have cut rules or satisfy cut-elimination
in the usual sense. Thus while it is evident what functorial structure we will need
to model the connectives of BV, the appropriate coherence conditions are far
from clear. In this paper, we choose to model BV by using standard categorical
structures from which much of the desired symmetry can then be derived. We
believe that the simplicity of our definition together with the observation that the key
isomorphisms are consequences imply that we have captured the structure correctly.
In particular, the self-duality of the noncommutative connective seq is a consequence
of our structure, as are the linear distributions relating tensor and seq, and seq
and par.

The typical starting point for modelling the multiplicative fragment of linear logic
is the notion of *x-autonomous category, due to Barr [2, 23]. We instead consider
the equivalent notion of linearly distributive category with negation [3, 6]. While this
notion is equivalent, it is a more natural structure to consider as the multiplicative
disjunction par is taken as a primitive. Further, the way that negation is added to an
LDC is much closer to the way negation is introduced in BV. Indeed the paper [3]
introduces a two-sided variant of Danos-Regnier proof nets as a way of analyzing
the coherence problem for such categories. These nets are quite close to the syntax
of BV and satisfy many of the same desirable symmetries.

We also make use of the notion of morphism between LDCs. These are the linear
functors of Cockett and Seely [8]. This is not simply a functor commuting with the
connectives and isomorphisms of an LDC, but rather a pair of functors, one of which
is monoidal with respect to tensor and the other comonoidal with respect to par.
There are also further natural transformations and coherence conditions required.
The authors show that much of the additional structure one adds to multiplicative
linear logic can be described as a linear functor. In particular, both the exponential
and additive fragments of linear logic can be viewed as linear functors. In the -
autonomous case, the notion of linear functor reduces to that of monoidal functor,
as expected. Furthermore, in the case of x-autonomous categories or equivalently
LDCs with negation, the linear functor satisfies strong commutation properties with
respect to negation. We make use of this commutation to derive the self-duality of
our seg-connective.

We here introduce the notion of a degenerate linear functor, which is a linear func-
tor such that the two functor components are equal. There are several consequences
for the coherence conditions to this as well. Then we define a BV-category to be an
LDC C, together with an additional monoidal structure, with functor part denoted @,
such that the functor @: C x C — C, is a degenerate linear functor. (There are some
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coherence requirements as well.) We then show that all of the desired properties
for our models hold as a consequence of this simple definition. We also show that
Retoré’s original construction in coherence spaces gives an example.

Finally, to illustrate the generality of our definition, we also give a new example
of a seq connective, on Girard’s category of probabilistic coherence spaces. Girard
introduces the category of probabilistic coherence spaces with the intent of using
semantic and proof-theoretic ideas in the consideration of structures arising in
quantum mechanics. Probabilistic coherence spaces were also studied extensively by
Danos and Erhard in [9]. They wish to consider this notion as providing semantics of
a probabilistic version of PCF, as well as a framework for considering probabilistic
games in the sense of [10]. In their semantics, there is a natural interpretation
of probabilistic PCF terms; in particular, a term of type Int is modelled as a
subprobability distribution, which gives the probability that the term reduces to
integer n.

It is ultimately hoped that the ideas of the present paper, especially the semantic
model of probabilistic coherence spaces, can be used to analyze the discrete quantum
causal dynamics of [4].

2 Linear Functors

In [8], Cockett and Seely introduce the notion of a linearly distributive functor,
hereafter called linear functor. This is the proper notion of morphism between
linearly distributive categories (LDCs). This will provide the foundation for our
definition of model of BV. So we here review the basic idea, and introduce the new
notion of degenerate linear functor. We assume familiarity with the notion of linearly
distributive category. See [3, 6] where they are called weakly distributive. Some in-
formation on them is contained in the Appendix.

Definition 2.1 Let X and Y be monoidal categories. Then a functor F: X — Y is
monoidal if it is equipped with natural transformations (denoting the tensor unit for
both X and Y by T):

mg: F(A)® F(B) — F(A® B)
mr: T — F(T)

satisfying standard equations. Conversely F is comonoidal if equipped with
transformations:

ng: F(A® B) - F(A) ® F(B)
nr: F(T)—> T

satisfying dual equations.
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If the categories in question are also symmetric, then one must also assume
commutation with the symmetries, e.g.

F(A® B) e . p(A)® F(B)
F(e) c
F(B® A) e, p(B)® F(A)

Definition 2.2 Let X and Y be symmetric LDCs. A linear functor F: X — Y is a pair
of functors Fg: X — Y and Fiy: X — Y such that Fg is symmetric monoidal with
respect to tensor and Fi is symmetric comonoidal with respect to par. So there must
be natural transformations:

Vol F®(A) ® F@(B) d F)g(A ® B)

All of this data must satisfy a number of coherence conditions as specified in [§].

In [8], it is demonstrated that much of the crucial structure of linear logic falls
into the framework of linear functor. For example, both the exponentials and the
additives form linear functors. But it is also a familiar notion in the following
sense:

Theorem 2.3 (Cockett-Seely) A linear functor between x-autonomous categories
(viewed as LDCs) is the same thing as a monoidal functor.

We are interested in a special case of this definition, in which the two functors are
equal. We call this a degenerate linear functor. In this situation, one can take vg = ng
and v = ng. These assumptions also greatly simplify the coherence conditions.

We now record the complete definition:

Definition 2.4 Let X and Y be symmetric LDCs. Then a degenerate linear functor
from X to Y is a functor F: X — Y such that F is symmetric monoidal with respect to
tensor and symmetric comonoidal with respect to par. This means that there are maps
Mg, mT, np and n, as in Definition 2.1. (We will generally drop the subscripts when
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this causes no confusion.) We further require the following diagrams to commute
(noting that as usual § is the linear distribution):

F(A) @ F(B3C) L% pa) @ (F(BySF(C))
m 5
F(A® (B3C) (F(4) & F(B)9F(C)
F(5) mgid
F((A ®’B)>§?C) - F(A® B’)’?F(C)
F(A4sB) o F(C) "2 (p(ayeF(B) @ F(C)
m 5
F((A%B) & C) F(AYS(F(B)) ® F(C))
F(0) idgm
F((48(B®C)) — F(A)$F(B® C)

One of the consequences of this definition is that such a functor commutes with
any existing negations:

Lemma 2.5 Let X and Y be symmetric LDCs with negation. If F: X - Y is a
degenerate linear functor, then for all objects A, one has F(A)* = F(A%Y).

Proof This can be proved directly, but it also follows from Remark 6 of [8]. The
isomorphisms are constructed as follows.

The map F(A') — F(A)' is the transpose of the map F(AY) ® F(A) — L
obtained by

F(AY)® F(A) > F(A*® A) > F(1) > L

where each map is evident.
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The map F(A)* — F(A') is the transpose of the map T — F(A)2F(A%Y)
obtained by

T — F(T) > F(A®A") > F(A)9F (A")

2.1 Linear Natural Transformations

We now review the appropriate notions of transformation between linear functors.

Definition 2.6

e JetXandY be monoidal categories. Let F, G: X — Y be monoidal functors. A
monoidal transformation 6 : F — G is a natural transformation such that

Mmg; 0 =00, mg: FA®Q FB— G(A® B) mr;0=m7: T — G(T)
The notion of comonoidal transformation is defined dually.
e LetXandY belLDCs.Let F, G: X — Y be linear functors. A linear transforma-
tion is a pair of natural transformations

9®1F®—>G® Q?IG?%F@

such that 6 is monoidal with respect to tensor, 6 is comonoidal with respect to
par and several coherence conditions are satisfied. See [8].

3 Definition of BV-category
The fundamental structure which our models of BV will carry is what we call a weak
interchange structure on an LDC. Basically, this will consist of an additional monoidal

structure for which the tensor product, viewed as a 2-variable functor, is degenerate
linear and the structure maps are all linear natural transformations.

Definition 3.1 A pre-BV-structure on a symmetric LDC C is an additional monoidal
structure (C, @, I) such that the functor (called seq):

:CxC—C
is a symmetric degenerate linear functor, and the structure isomorphism:
a: Ao(BoC)— (AoB)oC

is a linear natural transformation, where A @ (B @ C) is given the evident degenerate
linear functor structure.
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We call a symmetric LDC with a pre-BV-structure a pre-BV-category.
A BV-category is a pre-BV-category together with an isomorphism m: I — T
such that

id id id
Tol OM o ToTmOM T om 45
m ® id p D wT 0
TRl T
A

The first equation says that m is an isomix map. (For more on this, see the Appendix.)
The second says that m~! acts as a counit for the comultiplication w+. Together we
call these equations the m-equations.

4 Weak Interchange Structure

While the definitions of pre-BV-category and BV-category are quite concise, they
contain a large amount of information, which we now unpack. The key is the
notion of a weak interchange structure. We begin by focussing on the monoidal
case.

The result seems to be a new example of a structure for categories with (multiple)
monoidal structures. It obviously takes its name from the interchange rule for double
categories, although there we have an equality, and here just a natural transforma-
tion. We note that Melliés has also used double categories for the semantics of linear
logic, although the setting seems to be entirely different [21].

4.1 Weak Interchanges in Monoidal Categories

Definition 4.1 Suppose that a category (C, ®, T) is a symmetric monoidal category.
Then a weak interchange is an additional monoidal structure (C, @, I) and natural
transformations:

w=wg: (ROU)Q(ToV)—> (RIT)o(URYV)
wr: T —>TT

such that several diagrams commute which we specify now.
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e We must first make sure that the weak interchange commutes with the associa-
tivities. This amounts to:

(RoU)®((ToV)]®(SoW)

(RoU)@[(ToV)®(So W)

w R id id®w
(ReT)o (U V)] (SoW) (RoU)@|[(T®S)o (VeWw)

(ReT)® S|o[(UaV)e W] R (TeSoU((VeW)

e The weak interchange must commute with the unit isomorphisms. This amounts
to the following equation, and its dual (with the unit on the right):

-1

T® (A0 B) AoB

wT ® id A to !

(T@T)@(A@B)T(T@)A)@(T@B)

e The weak interchange must commute with the commutativity isomorphism of ®.
(We remind the reader that only ® is assumed to be commutative, and not @.)

(RoU)®(ToV)

(ToV)®(RoU)

(ReT)o(URV)

e (T®R)o(VeU)

e The associativity isomorphism for @ must be monoidal with respect to ®. This
leads to the equation:

w;id @ w

[Ao(BoO)e[A o (B o)) (Ap Ao [(Be B)o (CeC))]

a® o «

w;w @ id

[(AoB)oC)e (Ao B) o] (A Ao (Be B)o(CxC)
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e The map wt must be coassociative, i.e.

T or -ToT
wT id @ wT
ToT ———~ToToT
wT ©1id

We have the following evident observation:

Theorem 4.2 Let C be a monoidal category. Weak interchanges on C correspond
bijectively to monoidal structures (@, I) on C such that the functor @: C x C — C
is symmetric monoidal, and the associativity isomorphism for @ is a monoidal natural
transformation.

4.2 Weak Interchanges in LDCs

So far, we have only been describing a weak interchange structure on a monoidal
category. In the case of a symmetric LDC, we also assume duals of the form

w' =w: (CRE) @ (D®F) - (Co DYS(EQ F)
w:lol—>1

satisfying the duals to the above equations. We then also require the following
diagram and its symmetric dual:

(A2 B) ® [(C9E) @ (D9F)]

[A® (C9E)] @ [B® (D9F)]

id @ w' 0048
(A@ B) & [(C @ D)’?(E @ F)] [(A & C)’?E] @ [(B & D)’?F]
) w'
id @ w

(Ao B)® (C@D)]e(E o F)

[(A®C)o (B® D)]e(E o F)

Theorem 4.3 Let C be a symmetric LDC. Then weak interchange structures corre-
spond bijectively to pre-BV-structures on C.
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4.3 Consequences of BV-structure

Theorem 4.4 Suppose (C, ®, T) and (C, @, I) are monoidal categories connected by
a weak interchange, and an isomorphism m: I — T satisfying the m-equations of
Definition 3.1. Then the natural transformation §; defined by

id @ \ id @ (m @ id)

(RoU)®V (RoU)®(IoV)

(RoU)(ToV)

pid

(ReT)o(UaV) RoO(U®V)

together with the symmetric variant §g defined by evident analogy determine a linear
distribution.

Proof This is a lengthy exercise in diagram chasing. We verify one of the equations.
Refering to the numbering of [6], equation 5 of the definition of LDC is:

T® (Ao B)

’ll\j

Ao B

T®A)oB
( ) ANloid

In our system, this becomes:

~1
Ao B

T® (A2 B)
p®id
(Tol)® (Ao B) Aot

(idom)®id

(T@T)@(A@B)—U; (T®A)o(TeDB)

This follows from the observation that wt = (id @ m) o p, and then one of the
basic equations for BV-category. O

Corollary 4.5 [n the case of a BV-category, the resulting linearly distributive structure
is isomix. (For information on isomix categories, see the Appendix.)
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Proof This follows immediately from the definition of an isomix LDC, as described
in the Appendix. o

Also, we have the following fundamental property of Retoré’s seq connective.

Theorem 4.6 Given a pre-BV-category C with negation, the functor @, hereafter called
seq, is self-dual. Explicitly, the isomorphism is given by the transpose of the map:

(RroUY @ (RoU) S (RERY QU0 U) ™S 1ol —2 1

Exploiting the dualities of a category with negation, we can claim:

Theorem 4.7 Given a BV-category with negation, we have the following:

e A linearly distributive structure from (C, @, I) to (C,’9, 1), obtained as the dual
of that of Lemma 4.4.
(C, @, I)and (C,’9, L) are connected by a weak interchange.
An isomorphism m': 1 — [ giving an isomix structure from Q to ’g.
The composite mom’': L — T makes the original LDC an isomix category.

5 Retoré’s Noncommutative Operator on Coherence spaces

We assume the reader is familiar with Coh, the category of coherence spaces and
linear maps, as well as the x-autonomous structure of Coh. Christian Retoré in [22]
exhibited an additional monoidal structure on Coh.

Definition 5.1 Suppose that X = (| X|, Cx) and Y = (]Y], Cy) are coherence spaces.
Define a new coherence space X @ Y by defining a symmetric, reflexive relation on
| X| x |Y] by the rule:

(x,y) < (¥,y) ifand onlyif (x ~x andy =) ory ~ y

We call this connective seq.

Theorem 5.2 (Retoré) The seq-connective has the following properties:

@ is noncommutative.

@ is coherently associative, with unit given by the one-point coherence space. This
gives an additional monoidal structure to Coh.

© is self-dual, ie. (X @ Y)* = X+t @ YL

There are canonical linear morphisms:

XY - X0oY—> X®Y

In each case, the morphism has the identity as its underlying relation.
We can now more succinctly state:

Theorem 5.3 Coh is a BV-category.
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Proof All of the necessary structure maps are certainly present. The only issue is the
commutativity of the coherence equations. This is straightforward. Note in particular
that all of the necessary diagrams commute in the category of relations. O

6 Probabilistic Coherence Spaces

Jean-Yves Girard, in [15], introduced the notion of a probabilistic coherence space,
with an eye towards applying ideas from linear logic to the analysis of quantum struc-
ture. We begin by reviewing the basic definitions.

Definition 6.1 (Girard) Let X be a finite set. In keeping with the language of
coherence spaces, we will refer to X as the carrier. Let R(X) denote the set of all
functions of the form f: X — R* where Rt denotes the nonnegative reals. These
will be referred to as measures. Then two elements of f, g € R(X) are said to be polar
(notation: f L g)if

Y fg) <1

xeX

We will denote Yy f(x)g(x) by (f, g).
Then, if A is a subset of R(X), one defines A in the obvious way, i.e.

At ={feRX)|Vge A, fLg

A probabilistic coherence space (PCS) is a finite set X with an A € R(X) such that
A = A*+. The elements of A will be called allowable measures. We will frequently
denote the PCS (X, A) simply by A.

Theorem 6.2 (Girard) Let (X, A) be a PCS. Then

® A is nonempty.
e Aisaclosed, convex subset of R(X).
e A is downward closed under the pointwise order on RX.

Conversely, any subset satisfying these properties is a PCS.

We have the following standard result for constructions of this sort. It can be
seen as an instance of the general notion of abstract orthogonality due to Hyland
and Schalk [18].

Lemma 6.3 Every subset of R(X) of the form A+ is a PCS.

In contrast to ordinary coherence spaces, it is easier to define linear implication
first, and then use de Morgan duality to define tensor.
Let ® €e R(X x Y) and f € R(X). Define [®] f € R(Y) by:

[®1f(y) =Y ®(x, y) f(x)

xeX

This formula defines a bijection between R(X x Y) and the linear maps from
R(X) to R(Y).
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Theorem 6.4 The set of linear maps from R(X) to R(Y) which take A to B is a PCS,
when viewed as a subset of R(X x Y). This PCS will be denoted A — B.

We first note that since X and Y are finite, we have the isomorphism of positive
cones of vector spaces:

R(X xY)=ZR(X)®@R(Y)

So we will now represent elements of R(X x Y) by Zic; f; ® gi, with f; € R(X)
and g; € R(Y).
Now the theorem follows from the observation:

A—B=|{foglfecAge B}

Then one defines
A®B=(A— BY)"

One can equivalently define A ® B as the convex closure of { f @ g|f € A, g € B}.
We obtain a category by taking as morphisms from (X, A) to (Y, B) the linear
maps in A —o B. This category will be denoted PCS. We have:

Theorem 6.5 (Girard) PCS is an isomix x-autonomous category.

Proof All of the necessary structure is contained in Girard’s constructions defined

above. We note that the tensor product and closed structure have already been

defined. The unit for the tensor is I = ({*}, [0, 1]), i.e. the carrier is the one-point
set and the allowable measures are those mapping * to the closed unit interval.

One can readily verify that this is also the unit for par, as well as a dualizing object.

]

We will in fact restrict to a subcategory which is more appropriate for our purpose.

Definition 6.6 Let A = (X, A) be a PCS. Then A is bounded if for all g € R(X),

sup(f, g) < oo
feA

A is replete if for all g € R(X), there exists f € A with (f, g) > 0.
A PCS which is bounded and replete will be called a brPCS. The full subcategory
of bounded replete spaces will be denoted BRPCS.

Lemma 6.7 The properties of being bounded and replete are dual, i.e. if A is bounded,
then A~ is replete, and vice-versa. In particular, if A is bounded and replete, so is A*.

We also note that the bounded, replete objects are closed under the operations of
tensor and negation, and so:

Remark 6.8 BRPCS is a x-autonomous subcategory.
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6.1 The seg-connective for Bounded, Replete PCS

Definition 6.9 We define the seq functor on the category PCS by the formula:

A@B:{Zﬁ@gmﬁfiefland > gieB

iel iel

The intuition here is that this is a linearization of the definition of the operator @
in the category of (ordinary) coherence spaces, using + and ®, instead of union and
cartesian product.

We need first to see that we do in fact have an object in BRPCS. Hence we give a
direct proof.

Theorem 6.10 For any bounded, replete PCS, we have the equation:
(A@ B)* = At ¢ B+

Proof We first show that AL @ B* C (A @ B)*.Solet Y fi® g € At @ B*. Thus
foralli, fie A* and ) g, € B*. Let > h;®k; € A@ B. So for all j, hj € A and
> kje B. We have

<Z fi®gn Yy hi® k]'> =Y (fih)) (g kj) < [H}‘?}X(fi’ hijl- (g kj) <1
i j '

i,j ij

So) fi®gie (Ao B)"
For the converse, let }_ f; ® g; € (A @ B)*. We may suppose that the set {g;} is
linearly independent, and thus there exists a dual basis {h;} such that

(hi. gj) = 8
We also suppose that, for all i,
Si=sup(fi, f) =1
feA

This is allowable, since we know that S; # oo because A is bounded. Also S; # 0,
since A is replete. So if S; # 1 for some i, we can replace the original element with

Zéfi‘gsz‘gi

We note that given this assumption, we have that f; € A%, as desired. Also since
A is a closed set, for every i, there exists an F; € A with (f;, F;) = 1. It remains to
show that ) g; € B+.

For contradiction, suppose that this is not the case. Then there exists a g € B with
(>"gi.8) > 1. Let g =) A;h;. We note that this implies ) F; ® A;h; € A @ B. We
now calculate as follows:

<Z F; @ Aihi, Z [i® g,> = Z (Fi, fi) (hihi, gi) = Z (Aihi, gi) > 1

l L

But this contradicts that ) f;® g; € (A @ B)*. i
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Corollary 6.11 If A and B are bounded, replete PCS, then sois A @ B.

Proof The bounded and replete properties are straightforward. The fact that the
space is a PCS follows from the self-duality of the connective. Evidently, (A @
Byt =A@ B. a

Note that we have also proven the following, which will be required in the next
theorem:

Lemma 6.12 Each element of A @ B can be written in the form )", f; ® g;, where f; €
A, Y, 8i € B and the set {g;}ic1 is linearly independent.

Theorem 6.13 The structure (BRPCS, @, I) is a monoidal category.
Proof Letv =733, [;j® 8 ®hi € (A0 B) © C, where
Zhi eC, Vi Zgif € B, and Vij fije A.
i j
Then we have
Zgi/-(g)h[ = Z(Zgi/) ®hie BoCand v= Zﬁj@(gij®hi)
ij i j ij

Sove A (B O).

Conversely.letv=>)", iQwic A (B®@C).So fie Aandw =) ,w;e BoC.
We note thatw =}, g;® hj with g; € Band ) h; € C. By the previous lemma, we
may assume the set {/} jc; is linearly independent, and hence may be completed to a
basis. Then for each w;, we may write:

w; = Zgij®hj
j
So:

dwi=) gi®hj=> (Z&'/) ®hj with Y g;=g;eB
i ij [ i

j i

]

Hence:

]

U=Zfi® Zgzy‘@h;‘ =Z<Zﬁ®gu‘>®h1
i ij i

It is straightforward to verify that this last expression describes an element of (A @
B)yoC.
The unit is a one-point set, with the unit interval as its allowable measures. O

Note that the unit is the same for all three connectives. We next note that the
seg-connective is indeed intermediate to tensor and par, i.e.
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Theorem 6.14 [n the category PCS, we have inclusions:

ARBC Ao BC A%B

Proof We will show that A@ BC At — B.Solet) fi®gic Ao B.Lethe A*.
Then

[Z fi® g,} M) =YY filogMhi) =Y g D ki) <Y gily)

By downward closure, we conclude that the lefthand side is in B.
For the other inclusion, one can simply apply the dualizing functor to the first
inequality to obtain:

At@ B =(A* < B) C (Ao B =At0 B

Next we demonstrate the existence of the crucial map that we need:

Lemma 6.15 The category BRPCS has a weak interchange, i.e. a map:
w: (RoU)®(ToV)—> (RTHoU®YV)
satisfying the previously stated conditions.
Proof A typical element of (R@ U) @ (T @ V) is of the form v =), s; ® w;, with
sie RoUandw; e T@QV.Thuss; =3 ;r;jQujandr;je R, } uj € U. Also w; =

>k tk ® vy, satisfying similar conditions. Then such an element is mapped by the
weak interchange to

Z (rj ® t) ® (1 ® w)

ik
It is then straightforward to verify that this vectorisin (R® 7) @ (U ® V) O
We now claim the main result for this section.

Theorem 6.16 BRPCS is a BV-category.

Proof Again, we have established all of the necessary morphisms, and the commu-
tativity of the coherence diagrams is straightforward. O

7 Conclusion

7.1 Related Work

There has been other work on categorical versions of various deep inference systems
prior to this. In addition to the Hughes work already mentioned [17], there are the

works of Fithrmann-Pym [13], as well as McKinley [20]. (In particular, McKinley
also noted that the inference rules for the seg-connective amount to monoidality.)
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These both consider classical logic deep inference systems rather than BV. The
fundamental idea here is to replace the usual notion of equivalence between proofs
with inequalities, thereby avoiding the semantic collapse which occurs in naive
attempts to model classical logic categorically.

Further work on categorical models of classical logic has focussed on the sig-
nificance of the medial rule as considered in [5]. We mention in particular the works
of Lamarche and Strassburger [19, 24]. The medial rule is of a similar type as our
weak interchange, and occurs in a very different context.

The category of probabilistic coherence spaces is also considered by Danos and
Ehrhard in [9]. In that paper, the authors show that this category is not only -
autonomous, but supports the structure of a full model of classical linear logic. In
particular, they construct a comonad modelling the exponential fragment. They then
show that in the associated model of the A-calculus, one can interpret a probabilistic
version of PCF.

7.2 Future Work

There are several ideas worth further exploration arising from this paper. First would
be the extension of the notion of probabilistic coherence space to general measure
spaces, as opposed to finite sets. It is likely that the resulting category will no longer
be closed, but rather have a nuclear ideal in the sense of [1].

Also we would like to see how general our formula is. In particular, it should
be applicable to categories such as Girard’s category of quantum coherence spaces
[15]. Ehrhard’s category of finiteness spaces [11], or Ehrhard’s category of Kothe
spaces [12].

We are hopeful that we can use the structure of BV to improve upon the discrete
quantum causal dynamics of [4]. The additional connective of BV should yield a
better encoding than MLL, as used in [4]. This is the subject of an ongoing discussion
between Blute, Guglielmi, Ivanov, Panangaden and Strassburger.

Finally, it is reasonable to ask whether this definition of model of BV is definitive.
This will only be settled when the relationship between proof nets for BV and the
free BV-category is established. This issue must be postponed for a later day. We
claim here that our equations form a minimal basis for the correct notion of model.
Surely any notion of model will satisfy these eqations. We claim here only that they
are sufficient to generate the key isomorphisms of the theory, and that the notion of
degenerate linear functor provides a succinct and convenient notion for organizing
this data.

Acknowledgements The authors would like to thank Robin Cockett, Alessio Guglielmi, Francois
Lamarche, Robert Seely and Lutz Strassburger for numerous helpful conversations. All three
authors received the support of NSERC.

Appendix: LDCs and the Mix Rule

We assume the reader is familiar with the notion of linearly distributive category
with negation [3, 6]. This will be our starting point. In this first definition, we will
use neutral symbols for the connectives, as it will apply to several combinations of
connectives in BV. This first definition is due to Cockett and Seely [7].
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Definition A.1 Let C be a category with monoidal structures (C,(O,Ll) and
(C, 0, T), forming a linearly distributive category. So we have natural transforma-
tions of the form

Sr: AQ (BOC) — (A B)OC

8.: (AOB)OC— AQ(BOO)

making the diagrams of [6] commute. We will hereafter refer to both maps as §, since
the type will always be clear from the context.

Then an isomix structure for this category consists of an isomorphism m: L — T
such that the following diagram commutes:

AOB MOU | 4o (Lo) 1OmOB) 4 5 (Tom)
u()id OR
(A01) O B (A0 TI0B
(idOm) O id u=tQid
(A0T) O B or AO(T O B) idou”? AOB

In the above, all of the isomorphisms are the coherent isos specified by the
monoidal structure. The map m is called the isomix map

We mention the following result, which is stated in [7]. It deals with the case in
which the two units are equal, and not merely isomorphic.

Lemma A.2 [f Cis a LDC such that T = L, then C is an isomix LDC.

We also mention an additional result not explicitly stated in [7] which has proven
to be useful. The importance of isomix categories has also been noted by Strassburger
and Lamarche [19, 24], which is where the following result can be found. For them,
isomix plays a large role in modelling classical logic via the use of the medial rule [5].

Theorem A.3 An isomophism m: L — T is an isomix map if and only if the follow-
ing diagram commutes:

id®@m
1l®lL - 1l®T
m ® id P
T®L - 1
A
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