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In this paper, we establish conditions for the discreteness of extremal probability measures on finite-
dimensional spaces. This problem appears in Choquet theory [1]—[6], stochastic financial mathemat-
ics [7]—]9], in the construction of examples of the solution of the Monge—Kantorovich problem [10].

The proof the main result of the paper is not based on these papers.

1. Recall some notation and definitions. Let (E, &) be a measurable space, and let M (E) be the set of
probability measures on (E,&). Let f: E — R* be any &-measurable positive bounded function. We
shall use the following notation:

i) extr A is the set of extreme points of the set A;
i) I* £ |supppl, p € M(E).
2. To state the main assertion, we shall need the following definition and auxiliary statement.

Definition 1. A probability measure p* on (E, &) is said to be extremal with respect to the set of
probability measures & C M (E) if, for any &-measurable bounded function f: E — R, the following
relation holds:

sup /E f(2) uldr) = /E £ () i (d). (1)

HER

Proposition 1. There exists an extremal probability measure p* with respect to the set R C M (FE)
if and only if R is a weakly relatively compact set.

Remark 1. The sufficiency of the condition in Proposition 1 is a consequence of the fact that R is a a
weakly relatively compact set, of the definition of an upper bound, and of the Dunford—Pettis theorem.
The proof of this statement repeats almost word-for-word the proof of Theorem 5 from [9]. The necessity
is obvious.

Remark 2. Let R C M (E) satisy the inequality sup,,em [ || p(dx) < oo. Itis well known[11, Sec. 2,
Chap. III] that, in this case, R is a weakly relatively compact set and the extremal (with respect to it)
probability measure p* and the finite Lebesgue integral m* £ [ @ p*(dx) exist.
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964 VASIL’EV et al.
3. Let

D2 {yeR?: / ef (@)= (z—m") p*(dx) < oo}.
E
Obviously, D # @. The following statement is the main result of the present paper.

Theorem. The following assertions are valid:

1) Let E=R% d < co. The extremal (with respect to the set SR) probability measure p* is
discrete if and only if there exists a v* € D such that the following inequality holds:

/E el @ =0 =) ey < [E el @=0re=m?) * (dw), (2)

where 7y is any one from D and I* < d + 1.

2) Let E be a d-dimensional compact set, d < oo. Then there exists a discrete probability
measure p* € M(E), I" < d+ 1, such that the following relations hold:

e
igéﬂ@mmwaéﬂmmwngkﬁm» (3)

where x; € extr B, 1 <4 < I*; Jurther, ¢; 2 p*({x;}) > 0and Y12 cizy = m*, 31 e = 1.

4. This section is devoted to the proof of the theorem, which is based on the solution of the auxiliary
problem considered below.

4.1. Consider the auxiliary problem

f@)=(va=m*)  *cq inf . 4
/Ee p (dx) — inf (4)

Definition 2. By a solution of problem (4) we mean a vector v* € D such that

v inf /E @)~ Gre=m) () /E F @~ o= (i) 5)

4.2. The proof of the theorem is based on the solvability of problem (4). We shall need some auxiliary
statements.

Proposition 2. The solution of problem (4) exists if and only if inequality (2) holds.

Proof. The proof of the assertion of Proposition 2 is obvious. O

The validity of assertion 1) of the theorem follows from the following proposition.

Proposition 3. The following assertions are equivalent:
1)~v* is a solution of problem (4);
2) any measurable bounded function f(x) admits the unique representation

£@) = [ fa)ut(dn) + (77— ) (6)
E
3) u* is discrete and IM < d+1.
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CONDITIONS FOR THE DISCRETENESS OF EXTREMAL PROBABILITY MEASURES 965

Proof of Proposition 3. The implication 1)=2). Let g: E — R*\ {0} be any &-measurable
bounded function. Forany A € &, set

) # [ e o) .
Obviously,
i) p#ps
i) ueR.

Note that the measure p* dominates any measure i € R, and hence p < p*. Therefore, the following
inequality holds:

v é/ el @ =0 a=m®) () > / el @=0"e=m™) (),
E E

which, in view of (7), can be rewritten as

/g(x) exp{f(z) = (v, z —m") —Inv}p*(dr) < / g(x) p* (dz). (8)
E E

Since the measurable function g(z) from (8) is arbitrary, we obtain the inequality
fl@)— (" z—m")—Inv<0 p*-ae.
On the other hand, from (5) we find the equality

[E exp{f(x) = (7,2 — m*) — Inw} * (da) = 1.
Therefore, u*-a.e.

f(z) =Inv+ ("2 —m"). 9)
Let us integrate both sides of relation (9) with respect to the measure p*. We see that

lnv:/Ef(m),u*(dm).

This implies (6).
Let us prove the uniqueness of the representation (6). The proof is argued by contradiction. Suppose
that there exists a5 € D, 5 # ~*, such that p*-a.e.

f(z) = [E f(@) p*(dz) + (3,2 — m”), (10)

We subtract relation (6) from (10), obtaining (¥ —v*,x — m*) = 0 p*-a.e. It follows from the fact
that f(z) is bounded and from (6) that (v*, 2 — m*)? is bounded. Therefore, there exists a covariance
matrix K of the random vector x with respect to the measure p*. Therefore,

[Eﬁ—w*,x—m*ﬁu*(dx)=<ﬁ—w*,f<ﬁ—w*>>=o. (11)

[t follows from the positive definiteness of the matrix K and relations (11) that we have a contradiction
with the assumption % £ ~*. Hence our assumption is false and the representation (6) is unique.

The implication 2) = 3). First, let us make several remarks. Since p* is a probability measure, it
follows that it admits the unique decomposition (see[12, Sec. 9]):
pr=ap+ (1—a)p™,  acol],

where ;*¢ is a continuous probability measure and p*? is a discrete probability measure. Therefore, the
measure p*4 is concentrated at the atoms of the measure p* whose number is finite or countable. Since
the measures p*% and p* are singular ([12, Sec. 9]), it follows that there exist &-measurable sets B
and B such that:
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966 VASIL’EV et al.
i) BUB = E;,
iiy BNB = @;
i) p*°(B) =1 (u*(B) = 0), i*(B) = 1 (1*(B) = 0).
Therefore, for any A € &, the following relations hold:
ap*(A) =p(ANB),  (1—-a)u*(4) =" (ANB), (12)

where a = p*(B) and 1 — a = p*(B). To prove this assertion, it suffices to show that, for any A € &,
the following equality holds:

HH(A) = 1(A). (13)
In view of the assumption, the indicators 14(x), 15(x), and 1,-5(x) admit the following unique
representations with respect to the measures p*:

La(w) = w*(A) + (v 2 —m"),  1g(z) = p*(B) + (4P ,2 —m*), (14)
Lynp(@) = 1" (ANB) + (v47F 2 — m"), (15)
respectively. Since
La(2)15(2) = 1y 5(@),
it follows from (14) and (15) that p*-a.e.
p(ANB) + (v, z —m*) = " (A)p* (B) + p (A)(vF,z — m*)
+p (B)yh e —m*) + (v 2z = m*) (P e —m*).  (16)

Relation (16) holds for all z € supp p*. Since m* is the barycenter of the measure p*, it follows that
it belongs to the relative interior supp p*. Therefore, we set x = m*. Then, using (16), we obtain the
relation

W(ANB) = u*(A)* (B).
This equality and (12) imply (13).
To complete the proof of this assertion, it remains to note that:
i) since p* is a discrete probability measure, it follows that it is a convex combination of a finite or
countable number of Dirac measures [11, Sec. 2, Chap. II] concentrated at various isolated points
x; € suppu* C K,

ii) there exists a one-to-one correspondence between the Dirac measures and the points z; €
supp p*;

iii) it follows from Carathéodory’s theorem [13, Sec. 17, Chap. IV]that I*" < d + 1.
The implication 3)=-1). Denote
B(r) & / eF@=(ra=m®) (1)
E

Since the measure p* is discrete and I® < d+ 1, it follows that m* and ®(~y) admit, respectively, the
representations

Iz Iz
m* = Z %, D(y) = Z ciexp{f(zi) — (v,x; —m™)}, (17)
i=1 i=1
where x; € supp p*. The assumptions of the theorem also imply:

MATHEMATICALNOTES Vol.94 No.6 2013



CONDITIONS FOR THE DISCRETENESS OF EXTREMAL PROBABILITY MEASURES 967
i) D=R%
ii) forany x € E, the following inequality holds: | f(z)| < c.

Therefore, by Jensen’s inequality, we have
O(y) > e “>0. (18)

Let us pass to the proof of the implication. Let I*" = 1. Then it follows from (17) that, for any bounded
v € D, inequalities p*((y, > — m*) > 0) > 0 and p*((y,» — m*) < 0) > 0 hold. Therefore, any v € R?
is a solution of problem (4).

Suppose that 1 < I*" < d + 1, and I'(i1*) is the convex hull supp p*. It is known that m* belongs to
the relative interior I'(u*). Therefore, it follows from (17) that there exist x;, ; € E such that z; < m*,
xj > m*. Therefore, ®(7) is strictly convex and, by (18), it is a function bounded below; also, ®(y) — oo

as || — oo. Therefore, there exists a v* € R? such that inf.cp ®(y) = ®(7*). The proof is complete.
O

Remark 3. The proof of the implication from 2) to 3) in Proposition 3 and the uniqueness of the
representation (6) implies the uniqueness of the discrete measure p*.

4.3. Proof of assertion 2) of the theorem. It follows from the compactness of the set E that:

i) M= M(FE) is a compact set in the topology of weak convergence of probability measures;

ii) by Proposition 1, there exists a probability measure u* € M (F) that dominates any other measure
u € M(E); therefore, i < p*, and hence p* is an extreme point of the set M (E);

iii) there exists a* € D that satisfies (2).

Therefore, it follows from the assertion of Proposition 3 that the measure p* is discrete. The discreteness
of the measure p* implies that it is the convex hull of the Dirac measures. As was already noted in the
proof of the implication from 2) to 3) in Proposition 3, there exists a one-to-one correspondence between
the Dirac measures and the points x; € supp u* Therefore, by Carathéodory’s theorem, the measure p*
is concentrated at no more than d + 1 points. Since the measure p* is extreme, it follows that its support
is concentrated on extr E. Hence the validity of (3) is established.

Remark 4. If f(x) is a continuous function, then assertion 2) of the theorem is well known. In this case,
its new proof may be of interest.

Remark 5. It follows from assertion 2) of the theorem that the support of the measure p* is concentrated
on extr E. We can easily verify that the converse of assertion 2) of the theorem is valid.
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