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a b s t r a c t

LetM be ahyperkählermanifold, andη a closed, positive (1, 1)-formwith rk η < dimM .We
associate to η a family of complex structures onM , called a degenerate twistor family, and
parametrized by a complex line. When η is a pullback of a Kähler form under a Lagrangian
fibration L, all the fibers of degenerate twistor family also admit a Lagrangian fibration,with
the fibers isomorphic to that of L. Degenerate twistor families can be obtained by taking
limits of twistor families, as one of the Kähler forms in the hyperkähler triple goes to η.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Complex structures obtained from non-degenerate closed 2-forms

The degenerate twistor spaces (Definition 3.17) are obtained through the following construction.

Definition 1.1. A complex-valued 2-form Ω on a real manifold M is called non-degenerate if Ω(v, ·) ≠ 0 for any non-zero
tangent vector v ∈ TmM . Complex structures on M can be obtained from complex sub-bundles B = T 1,0M ⊂ TM ⊗R C
satisfying

B ⊕ B = TM ⊗R C, [B, B] ⊂ B (1.1)

(Claim 3.3).

To obtain such B, take a non-degenerate (Definition 1.1), closed 2-formΩ ∈ Λ2(M, C), satisfyingΩn+1
= 0, where 4n =

dimR M . Then kerΩ := {v ∈ TmM ⊗R C | Ω(v, ·) = 0} satisfies the conditions of (1.1) (see Theorem 3.5).
Degenerate twistor spaces are obtained by constructing a family Ωt of such 2-forms, parametrized by t ∈ C, on hyper-

kählermanifolds. The relationΩn+1
t = 0 follows from the properties of cohomology of hyperkählermanifolds, most notably

the Fujiki formula, computation of cohomology performed in [1], and positivity (see Section 3.5).

1.2. Degenerate twistor families and Teichmüller spaces

In this subsection, we provide a motivation for the term ‘‘degenerate twistor family’’. We introduce the twistor families
of complex structures on hyperkählermanifolds and the corresponding rational curves in themoduli, called the twistor lines.
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A degenerate twistor family is a family Z of deformations of a holomorphically symplectic manifold (M, Ω) associated
with a positive, closed, semidefinite form η satisfying ηn−i

∧ Ω i+1
= 0, for all i = 0, 1, . . . , n, where dimC M = 2n (Theo-

rem 3.10). In this subsection, we define a twistor family of a hyperkähler manifold, and explain how these families can be
obtained as limits of twistor deformations.

Throughout this paper, a hyperkähler manifold is a compact, holomorphically symplectic manifold M of Kähler type. It is
called simple (Definition 2.3) if π1(M) = 0 and H2,0(M) = C. We shall (sometimes silently) assume that all hyperkähler
manifolds we work with are simple.

A hyperkähler metric is a metric g compatible with three complex structures I, J, K satisfying the quaternionic relations
IJ = −JI = K , which is Kähler with respect to I, J, K . By the Calabi–Yau theorem, any compact, holomorphically symplectic
manifold of Kähler type admits a hyperkähler metric, which is unique in each Kähler class (Theorem 2.2).

A hyperkähler structure is a hyperkählermetric g togetherwith the compatible quaternionic action, that is, a triple of com-
plex structures satisfying the quaternionic relations and Kähler. For any (a, b, c) ∈ S2 ⊂ R3, the quaternion L := aI+bJ+cK
defines another complex structure onM , also Kähler with respect to g . This can be seen because the Levi-Civita connection
∇ of (M, g) preserves I, J, K , hence ∇L = 0, and this implies integrability and Kählerness of L.

Such a complex structure is called induced complex structure. TheCP1-family of induced complex structures obtained this
way is in fact holomorphic (Section 2.1). It is called the twistor deformation. The twistor families can be described in terms
of periods of hyperkähler manifolds as follows.

Definition 1.2. Let M be a compact complex manifold, and Diff0(M) a connected component of its diffeomorphism group
(also known as the group of isotopies). Denote by Comp the space of complex structures on M , equipped with topology
induced from the C∞-topology on the space of all tensors, and let Teich := Comp/Diff0(M). We call it the Teichmüller space.

Definition 1.3. Let

Per : Teich −→ PH2(M, C)

map J to a line H2,0(M, J) ∈ PH2(M, C). The map Per is called the period map.

For a simple hyperkähler manifold, an important bilinear symmetric form q ∈ Sym2H2(M, Q)∗ is defined, called Bogo-
molov–Beauville–Fujiki form (Definition 2.6). This form is a topological invariant of the manifoldM , allowing one to describe
deformations of a complex structure very explicitly. Recall that two points x, y on a topological space are called non-
separable, if all their neighborhoods Ux ∋ x, Uy ∋ y intersect. We denote the corresponding symmetric relation in Teich
by x ∼ y. D. Huybrechts has shown that x ∼ y for x, y ∈ Teich implies that the corresponding complex manifolds (M, x)
and (M, y) are bimeromorphic [2]. In [3] it was shown that ∼ defines an equivalence relation on Teich; the corresponding
quotient space Teich/∼ is called the birational Teichmüller space, and denoted by Teichb.

Define the period space Per as

Per := {l ∈ P(H2(M, C)) | q(l, l) = 0, q(l, l) > 0}.

The global Torelli theorem [3] can be stated as follows.

Theorem 1.4. Let M be a simple hyperkähler manifold, Teichb the birational Teichmüller space, and Per : Teichb −→ P(H2(M,
C)) the period map. Then Per maps Teichb to Per, inducing a diffeomorphism of each connected component of Teichb with Per.

Proof. See [3]. �

Remark 1.5. The period space Per is equipped with a transitive action of SO(H2(M, R)). Using this action, one can identify
Perwith the Grassmann space of 2-dimensional, positive, oriented planes Gr

+,+(H2(M, R)) = SO(b2−3, 3)/SO(2)×SO(b2−
3, 1). Indeed, for each l ∈ PH2(M, C), the space generated by ⟨Im l, Re l⟩ is 2-dimensional, because q(l, l) = 0, q(l, l) ≠ 0
implies that l ∩ H2(M, R) = 0. This produces a point of Gr

+,+(H2(M, R)) from l ∈ Per. To obtain the converse correspon-
dence, notice that for any 2-dimensional positive plane V ∈ H2(M, R), the quadric {l ∈ V ⊗R C | q(l, l) = 0} consists of two
lines l ∈ Per. A choice of one of two lines is determined by the orientation in V .

We shall describe the Teichmüller space and the moduli of hyperkähler structures in the same spirit, as follows.
Recall that any hyperkähler structure (M, I, J, K , g) defines a triple of Kähler forms ωI , ωJ , ωK ∈ Λ2(M) (Section 2.1).

A hyperkähler structure on a simple hyperkähler manifold is determined by a complex structure and a Kähler class (Theo-
rem 2.2).

We call hyperkähler structures equivalent if they can be obtained by a homothety and a quaternionic reparametrization:

(M, I, J, K , g) ∼ (M, hIh−1, hJh−1, hKh−1, λg),

for h ∈ H∗, λ ∈ R>0. Let TeichH be the set of equivalence classes of hyperkähler structures up to the action of Diff0(M), and
TeichH

b its quotient by ∼ (the non-separability relation).
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Theorem 1.6. Consider the period map

PerH : TeichH
b −→ Gr+++(H2(M, R))

associating the plane ⟨ωI , ωJ , ωK ⟩ in the Grassmannian of 3-dimensional positive oriented planes to an equivalence class of hy-
perkähler structures. Then PerH is injective, and defines an open embedding on each connected component of TeichH

b .

Proof. As follows from global Torelli theorem (Theorem 1.4) and Remark 1.5, a complex structure is determined (up to dif-
feomorphism and a birational equivalence) by a 2-plane V ∈ Gr

+,+(H2(M, R)) = SO(b2−3, 3)/SO(2)×SO(b2−3, 1), where
V = ⟨ReΩ, ImΩ⟩, andΩ a holomorphically symplectic form (defined uniquely up to amultiplier). Letω ∈ H1,1(M, I) = V⊥

be a Kähler form. The corresponding hyperkähler structure gives an orthogonal triple of Kähler formsωJ , ωK ∈ V , ωI := ω ∈

V⊥ satisfying q(ωI , ωI) = q(ωJ , ωJ) = q(ωK , ωK ) = C . The group SU(2)×R>0 acts on the set of such orthogonal bases tran-
sitively. Therefore, a hyperkähler structure is determined (up to equivalence of hyperkähler structures and non-separability)
by a 3-planeW = ⟨ωI , ωJ , ωK ⟩ ⊂ H2(M, R).

We have shown that PerH is injective. To finish the proof of Theorem 1.6, it remains to show that PerH is an open embed-
ding. However, for a sufficiently small v ∈ ⟨ωJ , ωK ⟩

⊥
= H1,1

R (M, I), the form v + ωI is also Kähler (the Kähler cone is open
in H1,1

R (M, I)), hence W ′
= ⟨ωI + v, ωJ , ωK ⟩ also belongs to an image of PerH . This implies that the differential D(PerH ) is

surjective. �

Every hyperkähler structure induces a whole 2-dimensional sphere of complex structures on M , as follows. Consider a
triple a, b, c ∈ R, a2 +b2 + c2 = 1, and let L := aI +bJ + cK be the corresponding quaternion. Quaternionic relations imply
immediately that L2 = −1, hence L is an almost complex structure. Since I, J, K are Kähler, they are parallel with respect to
the Levi-Civita connection. Therefore, L is also parallel. Any parallel complex structure is integrable, and Kähler.We call such
a complex structure L = aI + bJ + cK a complex structure induced by the hyperkähler structure. The corresponding complex
manifold is denoted by (M, L). There is a holomorphic family of induced complex structures, parametrized by S2 = CP1.
The total space of this family is called the twistor space of a hyperkähler manifold; it is constructed as follows.

LetM be a hyperkähler manifold. Consider the product Tw(M) = M × S2. Embed the sphere S2 ⊂ H into the quaternion
algebra H as the set of all quaternions J with J2 = −1. For every point x = m× J ∈ X = M × S2 the tangent space TxTw(M)
is canonically decomposed TxX = TmM ⊕ TJS2. Identify S2 with CP1, and let IJ : TJS2 → TJS2 be the complex structure
operator. Consider the complex structure Im : TmM → TmM onM induced by J ∈ S2 ⊂ H.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies ITw ◦ ITw = −1. It depends smoothly on the point x, hence it
defines an almost complex structure on Tw(M). This almost complex structure is known to be integrable (see e.g. [4,5]).

Definition 1.7. The space Tw(M) constructed above is called the twistor space of a hyperkähler manifold.

The twistor space defines a family of deformations of a complex structure onM , called the twistor family; the correspond-
ing curve in the Teichmüller space is called the twistor line.

Let (M, I, J, K) be a hyperkähler structure, and W = ⟨ωI , ωJ , ωK ⟩ the corresponding 3-dimensional plane. The twistor
family gives a rational lineCP1

⊂ Teich, which can be recovered fromW as follows. Recall that by the global Torelli theorem,
each component of Teich is identified (up to gluing together non-separable points)with the GrassmannianGr

+,+(H2(M, R)).
There is a CP1 of oriented 2-dimensional planes inW ; this family is precisely the twistor family associated with the hyper-
kähler structure corresponding toW .

In the present paper, we consider what happens if one takes a 3-dimensional plane W ⊂ H2(M, R) with a degenerate
metric of signature (+, +, 0). Instead of a CP1 worth of complex structures, as happens whenW is positive, the set of pos-
itive 2-planes in W ⊂ H2(M, R) is parametrized by C = R2. It turns out that the corresponding family can be constructed
explicitly from an appropriate semipositive form on a manifold, whenever such a form exists. Moreover, this family (called
a degenerate twistor family; see Definition 3.17) is holomorphic and has a canonical smooth trivialization, just as the usual
twistor family.

1.3. Semipositive (1, 1)-forms, degenerate twistor families and SYZ conjecture

Let (M, I, Ω) be a simple holomorphically symplectic manifold of Kähler type (that is, a hyperkähler manifold), and
η ∈ Λ1,1(M, I) a real, positive, closed (1, 1)-form. By Fujiki formula, either η is strictly positive somewhere, or at least half
of the eigenvalues of η vanish (Proposition 3.9). In the latter case, the form Ωt := Ω + tη is non-degenerate and satisfies
the assumption Ωn+1

t = 0 for all t , hence defines a complex structure (Theorem 3.10).
This is used to define the degenerate twistor space (Theorem 3.18).
Positive, closed forms η ∈ Λ1,1(M)with


M ηdimCM

= 0 are called semipositive. Such forms necessarily lie in the boundary
of a Kähler cone; this implies that their cohomology classes are nef (Definition 3.8).

Notice that we exclude strictly positive forms from this definition.

Remark 1.8. The conventions for positivity of differential forms and currents are intrinsically confusing. Following the
French tradition, one says ‘‘positive form’’ meaning really ‘‘non-negative’’, and ‘‘strictly positive’’ meaning ‘‘positive defi-
nite’’. On top of it, for (n − k, n − k) forms on n-manifold, with 2 6 k 6 n − 2, there are two notions of positive forms,
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called ‘‘strongly positive’’ and ‘‘weakly positive’’; this creates monsters such that ‘‘strictly weakly positive’’ and ‘‘non-strictly
strongly positive’’. The various notions of positivity in this paper are taken (mostly) from [6], following the French conven-
tions as explained.

The study of nef classes which satisfy

M ηdimCM

= 0 (such classes are called parabolic) is one of the central themes of
hyperkähler geometry. One of the most important conjectures in this direction is the so-called hyperkähler SYZ conjecture,
due to Tyurin–Bogomolov–Hassett–Tschinkel–Huybrechts–Sawon ([7–9]; formore history, please see [10]). This conjecture
postulates that any rational nef class η on a hyperkähler manifold is semiample, that is, associated with a holomorphic map
ϕ : M −→ X, η = ϕ∗ωX , where ωX is a Kähler class on X . For nef classes which satisfy


M ηdimCM > 0 (such nef classes are

known as big), semiampleness follows from the Kawamata base point free theorem [11], but for parabolic classes it is quite
non-trivial.

If a parabolic class η is semiample, it can obviously be represented by a smooth, semipositive differential form. The con-
verse implication is not proven. However, in [10] it was shown that whenever a rational parabolic class can be represented
by a semipositive form, it is Q-effective (that is, represented by a rational effective divisor).

Existence of a smooth semipositive form in a given nef class is a separate (and interesting) question of hyperkäh-
ler geometry. The following conjecture is supported by empirical evidence obtained by S. Cantat and Dinh–Sibony ([12],
[13, Theorem 5.3], [14, Corollary 3.5]).

Conjecture 1.9. Let η be a parabolic nef class on a hyperkähler manifold. Then η can be represented by a semipositive closed
form with mild (say, Hölder) singularities.

Notice that η can be represented by a closed, positive current by compactness of the space of positive currents with
bounded mass; however, there is no clear way to understand the singularities of this current.

If this conjecture is true, a cohomology class is Q-effective whenever it is nef and rational [10,15]; this would prove a
part of SYZ conjecture.

One of theways of representing a nef class by a semipositive form is based on reverse-engineering the construction of de-
generate twistor spaces. Let η be a parabolic nef class on a hyperkähler manifold (M, I),Ω its holomorphic symplectic form,
and W := ⟨η, ReΩ, ImΩ⟩ the corresponding 3-dimensional subspace in H2(M, R). Clearly, the Bogomolov–Beauville–
Fujiki form on W is degenerate of signature (+, +, 0). The set S of positive, oriented 2-dimensional planes V ⊂ W is
parametrized by C. Identifying the Grassmannian Gr++(H2(M, R)) with a component of Teichb as in Theorem 1.6, we ob-
tain a deformationZ −→ S; as explained in Section 1.2, this family can be obtained as a limit of twistor families. The twistor
families are split as smooth manifolds: Tw(M) = M × CP1; this gives an Ehresmann connection ∇ on the twistor family
Tw(M) −→ CP1. This connection satisfies ∇Ωt = λωI , that is, a derivative of a holomorphically symplectic form is pro-
portional to a Kähler form. If this connection converges to a smooth connection ∇0 on the limit family Z −→ C, we would
obtain ∇Ωt = λη, where η is a limit of Kähler forms, hence semipositive. This was the original motivation for the study of
degenerate twistor spaces.

1.4. Degenerate twistor spaces and Lagrangian fibrations

The main source of examples of degenerate twistor families comes from Lagrangian fibrations.
Let (M, Ω) be a simple holomorphically symplectic Kähler manifold, and ϕ : M −→ X a surjective holomorphic map,

with 0 < dim X < dimM . Matsushita (Theorem 2.9) has shown that ϕ is a Lagrangian fibration, that is, the fibers of ϕ are
Lagrangian subvarieties inM , and all smooth fibers of ϕ are Lagrangian tori. It is not hard to see that X is projective [16]. Let
ωX be the Kähler formon X . Then η := ϕ∗ωX is a semipositive form, and Theorem3.10 togetherwith Theorem3.5 implies the
existence of a degenerate twistor familyZ −→ C, with the fibers holomorphically symplecticmanifolds (M, Ω+tη), t ∈ C.
For each fiber Y := ϕ−1(y), the restriction η|Y vanishes, because η = ϕ∗ωX . Therefore, the complex structure induced by
Ωt = Ω + tη on Y does not depend on t . This implies that the fibers of ϕ remain holomorphic and independent from t ∈ C.

Theorem 1.10. Let M be a simple hyperkähler manifold equipped with a Lagrangian fibration ϕ : M −→ X, and (Mt , Ωt) the
degenerate twistor deformation associatedwith the family of non-degenerate 2-formsΩ+tη, η = ϕ∗ωX as in Theorem 3.10. Then
the fibration Mt

ϕt
−→ X is also holomorphic, and for any fixed x ∈ X, the fibers of ϕt are naturally isomorphic: ϕ−1

t (x) ∼= ϕ−1(x)
for all t ∈ C.

Proof. The complex structure on Mt is determined from T 0,1Mt = kerΩt . Let Z := ϕ−1(x). Since η(v, ·) = 0 for each
v ∈ TzZ , one has TZ ∩ kerΩt = T 0,1Z , hence the complex structure on Z is independent from t . Since Z is Lagrangian in
Mt , its normal bundle is dual to TZ and trivial when Z is a torus (that is, for all smooth fibers of ϕ). Therefore, the complex
structure on NZ is independent from t ∈ C. This implies that the projectionMt

ϕ
−→ X is holomorphic in the smooth locus of

ϕ for all t ∈ C. To extend it to the points where ϕ is singular, we notice that a map is holomorphic whenever its differential
is complex linear, and complex linearity of a given tensor needs to be checked only in an open dense subset. �

Remark 1.11. In [17], Eyal Markman considered the following procedure. One starts with a Lagrangian fibration π on a hy-
perkählermanifold and takes a 1-cocycle on the base ofπ taking values in fiberwise automorphisms of the fibration. Twisting
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the π by such a cocycle, one obtains another Lagrangian fibration with the same base and the respective fibers isomorphic
to that of π . Markman calls this procedure ‘‘the Tate–Shafarevich twist’’. In this context, degenerate twistor deformations
associated with semipositive forms η, [η] ∈ H2(M, Z), occur very naturally; Markman calls them ‘‘Tate–Shafarevich lines’’.
One can view η = ϕ∗ωX as lying in

ϕ∗H1,1(X) = ϕ∗H1(X, Ω1X) ⊂ H1(M, ϕ∗Ω1X) = H1(M, TM/X ),

where TM/X is the fiberwise tangent bundle, and ϕ∗Ω1X = TM/X because M −→ X is a Lagrangian fibration. Of course, this
cocycle comes from X so it is constant in the fiber direction; it describes the deformation infinitesimally. Integrating the
vector field then gives a 1-cocycle on X taking values in the bundle of fibrewise automorphisms. This is the 1-cocycle giving
the ‘‘Tate–Shafarevich twist’’.

Remark 1.12. The degenerate twistor family constructed in Theorem 3.18 consists of a family of complex structures, but it
is not proven that all fibers, which are complex manifolds, are also Kähler (hence hyperähler). As is, the Kähler property is
known only over a small open subset in the base (affine line), since the condition of being Kähler is open.We expect all mem-
bers of the degenerate twistor family to be Kähler, but there is no obvious way to prove this. However, it is easy to show that
the set of points on the base affine line corresponding to non-Kähler complex structures is closed and countable.

2. Basic notions of hyperkähler geometry

2.1. Hyperkähler manifolds

Definition 2.1. Let (M, g) be a Riemannian manifold, and I, J, K endomorphisms of the tangent bundle TM satisfying the
quaternionic relations

I2 = J2 = K 2
= IJK = −IdTM .

The triple (I, J, K) together with the metric g is called a hyperkähler structure if I, J and K are integrable and Kähler with
respect to g .

Consider the Kähler forms ωI , ωJ , ωK onM:

ωI(·, ·) := g(·, I·), ωJ(·, ·) := g(·, J·), ωK (·, ·) := g(·, K ·). (2.1)
An elementary linear-algebraic calculation implies that the 2-form

Ω := ωJ +
√

−1ωK (2.2)
is of Hodge type (2, 0) on (M, I). This form is clearly closed and non-degenerate, hence it is a holomorphic symplectic form.

In algebraic geometry, the word ‘‘hyperkähler’’ is essentially synonymous with ‘‘holomorphically symplectic’’, due to the
following theorem, which is implied by Yau’s solution of Calabi conjecture [18,19].

Theorem 2.2. Let M be a compact, Kähler, holomorphically symplectic manifold, ω its Kähler form, dimC M = 2n. Denote by
Ω the holomorphic symplectic form on M. Assume that


M ω2n

=

M(ReΩ)2n. Then there exists a unique hyperkähler metric g

within the same Kähler class as ω, and a unique hyperkähler structure (I, J, K , g), with ωJ = ReΩ, ωK = imΩ . �

2.2. The Bogomolov–Beauville–Fujiki form

Definition 2.3. A hyperkähler manifoldM is called simple if π1(M) = 0,H2,0(M) = C. In the literature, such manifolds are
often called irreducible holomorphic symplectic, or irreducible symplectic varieties.

This definition is motivated by the following theorem of Bogomolov [20].

Theorem 2.4 ([20]). Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyper-
kähler manifolds. �

Theorem 2.5 ([21]). Let η ∈ H2(M), and dimM = 2n, where M is a simple hyperkähler manifold. Then

M η2n

= λq(η, η)n,
for some integer quadratic form q on H2(M), and λ ∈ Q a positive rational number. �

Definition 2.6. This form is called Bogomolov–Beauville–Fujiki form. It is defined by this relation uniquely, up to a sign. The
sign is determined from the following formula (Bogomolov, Beauville; [18], [9, 23.5])

λq(η, η) = (n/2)

X
η ∧ η ∧ Ωn−1

∧ Ω
n−1

− (1 − n)


X η ∧ Ωn−1

∧ Ω
n
 

X η ∧ Ωn
∧ Ω

n−1



M Ωn ∧ Ω

n

where Ω is the holomorphic symplectic form, and λ a positive constant.
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Remark 2.7. The form q has signature (3, b2 − 3). It is negative definite on primitive forms, and positive definite on the
space ⟨ReΩ, ImΩ, ω⟩ where ω is a Kähler form, as seen from the following formula

µq(η1, η2) =


X
ω2n−2

∧ η1 ∧ η2 −
2n − 2

(2n − 1)2


X ω2n−1

∧ η1 ·

X ω2n−1

∧ η2
M ω2n

, µ > 0 (2.3)

(see e.g. [1, Theorem 6.1], or [9, Corollary 23.9]).

Definition 2.8. Let [η] ∈ H1,1(M) be a real (1, 1)-class in the closure of the Kähler cone of a hyperkähler manifold M . We
say that [η] is parabolic if q([η], [η]) = 0.

2.3. The hyperkähler SYZ conjecture

Theorem 2.9 (D. Matsushita, see [22]). Let π : M −→ X be a surjective holomorphic map from a simple hyperkähler manifold
M to a complex variety X, with 0 < dim X < dimM. Then dim X = 1/2 dimM, and the fibers of π are holomorphic Lagrangian
(this means that the symplectic form vanishes on the fibers).1

Definition 2.10. Such a map is called a holomorphic Lagrangian fibration.

Remark 2.11. The base of π is conjectured to be rational. J.-M. Hwang [23] proved that X ∼= CPn, if X is smooth and M
projective. D. Matsushita [16] proved that it has the same rational cohomology as CPn whenM is projective.

Remark 2.12. The base of π has a natural flat connection on the smooth locus of π . The combinatorics of this connection
can be (conjecturally) used to determine the topology ofM [24–26].

Remark 2.13. Matsushita’s theorem is implied by the following formula of Fujiki. LetM be a hyperkähler manifold, dimC M
= 2n, and η1, . . . , η2n ∈ H2(M) cohomology classes. Then

C

M

η1 ∧ η2 ∧ · · · =
1

(2n)!


σ

q(ησ1ησ2)q(ησ3ησ4) · · · q(ησ2n−1ησ2n) (2.4)

with the sum taken over all permutations, and C a positive constant, called Fujiki constant. An algebraic argument (see e.g.
Corollary 2.15) allows to deduce from this formula that for any non-zero η ∈ H2(M), one would have ηn

≠ 0, and ηn+1
= 0,

if q(η, η) = 0, and η2n
≠ 0 otherwise. Applying this to the pullback π∗ωX of the Kähler class from X , we immediately obtain

that dimC X = n or dimC X = 2n. Indeed, ωdimCX
X ≠ 0 and ω

dimCX+1
X = 0. This argument was used by Matsushita in his

proof of Theorem 2.9. The relation (2.4) is another form of Fujiki’s theorem (Theorem 2.5), obtained by differentiation of
M η2n

= λq(η, η)n.

2.4. Cohomology of hyperkähler manifolds

Further on in this paper, some basic results about cohomology of hyperkähler manifolds will be used. The following
theorem was proved in [1], using representation theory.

Theorem 2.14 ([1]). Let M be a simple hyperkähler manifold, and H∗
r (M) the part of cohomology generated by H2(M). Then

H∗
r (M) is isomorphic to the symmetric algebra (up to the middle degree). Moreover, the Poincare pairing on H∗

r (M) is non-
degenerate. �

This brings the following corollary.

Corollary 2.15. Let η1, . . . ηn+1 ∈ H2(M) be cohomology classes on a simple hyperkähler manifold, dimC M = 2n. Suppose that
q(ηi, ηj) = 0 for all i, j. Then η1 ∧ η2 ∧ · · · ∧ ηn+1 = 0.

Proof. See e.g. [15, Corollary 2.15]. This equation also follows from (2.4). �

3. Degenerate twistor space

3.1. Integrability of almost complex structures and Cartan formula

An almost complex structure on amanifold is a section I ∈ End(TM) of the bundle of endomorphisms, satisfying I2 = −Id.
It is called integrable if [T 1,0M, T 1,0M] ⊂ T 1,0M , where T 1,0M ⊂ TM ⊗R C is the eigenspace of I , defined by

v ∈ T 1,0M ⇔ I(v) =
√

−1v.

1 Here, as elsewhere, we silently assume that the hyperkähler manifoldM is simple.
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Equivalently, I is integrable if [T 0,1M, T 0,1M] ⊂ T 0,1M , where T 0,1M ⊂ TM ⊗R C is a complex conjugate to T 1,0M ⊂

TM ⊗R C.
One of the ways of making sure a given almost complex structure is integrable is by using the Cartan formula expressing

the de Rham differential through commutators of vector fields.

Proposition 3.1. Let (M, I) be a manifold equipped with an almost complex structure, and Ω ∈ Λ2,0(M) a non-degenerate
(2, 0)-form (Definition 3.4). Assume that dΩ = 0. Then I is integrable.

Proof. Let X ∈ T 1,0M and Y , Z ∈ T 0,1(M). Since Ω is a (2, 0)-form, it vanishes on (0, 1)-vectors. Then Cartan formula
together with dΩ = 0 implies that

0 = dΩ(X, Y , Z) = Ω(X, [Y , Z]). (3.1)

From the non-degeneracy ofΩ we obtain that unless [Y , Z] ∈ T 0,1(M), for some X ∈ T 1,0M , onewould haveΩ(X, [Y , Z]) ≠

0. Therefore, (3.1) implies [Y , Z] ∈ T 0,1(M), for all Y , Z ∈ T 0,1(M), which means that I is integrable. �

Remark 3.2. It is remarkable that the closedness of Ω is in fact unnecessary. The proof of Proposition 3.1 remains true if
one assumes that dΩ ∈ Λ3,0(M) ⊕ Λ2,1(M).

Notice that the sub-bundle T 1,0M ⊂ TM ⊗R C uniquely determines the almost complex structure. Indeed, I(x + y) =
√

−1x −
√

−1y, for all x ∈ T 1,0M, y ∈ T 0,1M = T 1,0M , and we have a decomposition T 1,0M ⊕ T 0,1M = TM ⊗R C. This
decomposition is the necessarily and sufficient ingredient for the reconstruction of an almost complex structure:

Claim 3.3. Let M be a smooth, 2n-dimensional manifold. Then there is a bijective correspondence between the set of almost
complex structures, and the set of sub-bundles T 0,1M ⊂ TM ⊗R C satisfying dimC T 0,1M = n and T 0,1M ∩ TM = 0 (the last
condition means that there are no real vectors in T 1,0M). �

The last two statements allow us to define complex structures in terms of complex-valued 2-forms (see Theorem 3.5
below). For this theorem, any reasonable notion of non-degeneracy would suffice; for the sake of clarity, we state the one
we would use.

Definition 3.4. Let Ω ∈ Λ2(M, C) be a smooth, complex-valued 2-form on a 2n-dimensional manifold. Ω is called non-
degenerate if for any real vector v ∈ TmM , the contraction Ω y v is non-zero.

Theorem 3.5. Let Ω ∈ Λ2(M, C) be a smooth, complex-valued, non-degenerate 2-form on a 4n-dimensional real manifold.
Assume that Ωn+1

= 0. Consider the bundle

T 0,1
Ω (M) := {v ∈ TM ⊗ C | Ω y v = 0}.

Then T 0,1
Ω (M) satisfies assumptions of Claim 3.3, hence defines an almost complex structure IΩ on M. If, in addition, Ω is closed,

IΩ is integrable.

Proof. Integrability of IΩ follows immediately from Proposition 3.1. Let v ∈ TM be a non-zero real tangent vector. Then
Ω y v ≠ 0, hence T 0,1

Ω (M) ∩ TM = 0. To prove Theorem 3.5, it remains to show that rk T 0,1
Ω (M) > 2n. Clearly, Ω is non-

degenerate on TM⊗C
T0,1Ω (M)

, hence its rank is equal to 4n − rk T 0,1
Ω (M). From Ωn+1

= 0 it follows that rank of Ω cannot exceed

2n, hence rk T 0,1
Ω (M) > 2n. �

3.2. Semipositive (1, 1)-forms on hyperkähler manifold

Definition 3.6. Let η ∈ Λ1,1(M, R) be a real (1, 1)-form on a complex manifold (M, I). It is called semipositive if η(x, Ix) > 0
for any x ∈ TM , but it is nowhere positive definite.

Remark 3.7. Fix a Hermitian structure h on (M, I). Clearly, any semipositive (1, 1)-form is diagonal in some h-orthonormal
basis in TM . The entries of its matrix in this basis are called eigenvalues; they are real, non-negative numbers. The maximal
number of positive eigenvalues is called the rank of a semipositive (1, 1)-form.

Definition 3.8. A closed semipositive form η on a compact Kählermanifold (M, I, ω) is a limit of Kähler forms η+εω, hence
its cohomology class is nef (belongs to the closure of the Kähler cone). Its cohomology class [η] is parabolic, that is, it satisfies
M [η]

dimCM
= 0. However, not every parabolic nef class can be represented by a closed semipositive form [27].

Proposition 3.9. On a simple hyperkähler manifold M, dimC M = 2n, any semipositive (1, 1)-form has rank 0 or 2n.
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Proof. This assertion easily follows from Corollary 2.15. Indeed, if q(η, η) ≠ 0, one has

M η2n

= λq(η, η)n ≠ 0, hence its
rank is 4n. If q(η, η) = 0, its cohomology class [η] satisfies [η]

n
≠ 0 and [η]

n+1
= 0 (Corollary 2.15). Since all eigenvalues of

η are non-negative, its rank is twice the biggest number k forwhich one has ηk
≠ 0. However, since ηk is a sumofmonomials

of an orthonormal basis with non-negative coefficients,

M ηk

∧ ω2n−k
= 0 ⇔ ηk

= 0 for any Kähler form ω on (M, I).
Then [η]

n
≠ 0 and [η]

n+1
= 0 imply that the rank of η is 2n. �

The main technical result of this paper is the following theorem.

Theorem 3.10. Let (M, Ω) be a simple hyperkähler manifold, dimR M = 4n, and η ∈ Λ1,1(M, I) a closed, semipositive form of
rank 2n. Then the 2-form Ω + tη satisfies the assumptions of Theorem 3.5 for all t ∈ C: namely, Ω + tη is non-degenerate, and
(Ω + tη)n+1

= 0.

Proof. Non-degeneracy ofΩt := Ω + tη is clear. Indeed, let u := |t|t−1, and letωu := Re uωK + im uωJ . Thenωu is a Hermi-
tian form associated with the induced complex structure Im uJ −Re uK , hence it is non-degenerate. However, the imaginary
part of uΩt is equal to ωu (see (2.1)). Then Im(Ωt y v) ≠ 0 for each non-zero real vector v ∈ TM .

To see that (Ω + tη)n+1
= 0, we observe that this relation is true in cohomology; this is implied from [28] using the

same argument as was used in the proof of Proposition 3.9.
Each Hodge component of (Ω + tη)n+1 is proportional to Ωn−p

∧ηp+1, and it is sufficient to prove that Ωn−p
∧ηp+1

= 0
for all p.

We deduce this from two observations, which are proved further on in this section.

Lemma 3.11. Let (M, Ω), dimR M = 4n be a holomorphically symplectic manifold, and η ∈ Λ1,1(M, I) a closed, semipositive
form of rank 2n. Assume that Ωn−p

∧ ηp+1 is exact. Then

Ωn−p
∧ Ω

n−p
∧ ηp+1

= 0,

for all p.

Proof. See Section 3.3. �

Lemma 3.12. Let (M, Ω), dimR M = 4n, be a holomorphically symplectic manifold and ρ ∈ Λp+1,p+1(M, I) a strongly positive
form (Definition 3.13). Suppose that Ωn−p

∧ Ω
n−p

∧ ρ = 0. Then Ωn−p
∧ ρ = 0.

Proof. See Section 3.4. �

3.3. Positive (p, p)-forms

We recall the definition of a positive (p, p)-form (see e.g. [6]).

Definition 3.13. Recall that a real (p, p)-form η on a complex manifold is calledweakly positive if for any complex subspace
V ⊂ TM , dimC V = p, the restriction ρ|V is a non-negative volume form. Equivalently, this means that

(
√

−1)pρ(x1, x1, x2, x2, . . . , xp, xp) > 0,

for any vectors x1, . . . , xp ∈ T 1,0
x M . A real (p, p)-form on a complex manifold is called strongly positive if it can be locally

expressed as a sum

η = (
√

−1)p


i1,...,ip

αi1,...,ipξi1 ∧ ξ i1 ∧ · · · ∧ ξip ∧ ξ ip ,

running over some set of p-tuples ξi1 , ξi2 , . . . , ξip ∈ Λ1,0(M), with αi1,...,ip real and non-negative functions onM .

The following basic linear algebra observations are easy to check (see [6]).
All strongly positive forms are also weakly positive. The strongly positive and the weakly positive forms form closed,

convex cones in the space Λp,p(M, R) of real (p, p)-forms. These two cones are dual with respect to the Poincare pairing
Λp,p(M, R) × Λn−p,n−p(M, R) −→ Λn,n(M, R).

For (1, 1)-forms and (n−1, n−1)-forms, the strong positivity is equivalent to weak positivity. Finally, a product of a weakly
positive form and a strongly positive one is always weakly positive (however, a product of two weakly positive forms may
be not weakly positive).

Clearly, an exactweakly positive formη on a compact Kählermanifold (M, ω) always vanishes. Indeed, the integral

M η∧

ωdimM−p is strictly positive for a non-zeroweakly positive η, because the convex cones of weakly and strongly positive forms
are dual, and ωdimM−p sits in the interior of the cone of strongly positive forms. However, by Stokes’ formula, this integral
vanishes whenever η is exact.

Now we are in position to prove Lemma 3.11. The form Ωn−p
∧ Ω

n−p
∧ ηp+1 is by assumption of this lemma exact, but

it is a product of a weakly positive form Ωn−p
∧ Ω

n−p and a strongly positive form ηp+1, hence it is weakly positive. Being
exact, this form must vanish.
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Remark 3.14. A form is strongly positive if it is generated by products of dzi ∧ dz i with positive coefficients; hence η and
all its powers are positive. The form Ω ∧ Ω and its powers are positive on all complex spaces of appropriate dimensions,
which can be seen by using Darboux coordinates. This means that this form is weakly positive.

3.4. Positive (p, p)-forms and holomorphic symplectic forms

Now we shall prove Lemma 3.12. This is a linear-algebraic statement, which can be proven pointwise. Fix a complex
vector space V , equipped with a non-degenerate complex linear 2-form Ω . Every strongly positive form ρ on V is a sum of
monomials (

√
−1)pξi1 ∧ ξ i1 ∧ · · · ∧ ξip ∧ ξ ip with positive coefficients, and the equivalence

Ωn−p
∧ ρ ≠ 0 ⇔ Ωn−p

∧ Ω
n−p

∧ ρ ≠ 0

is implied by the following sublemma.

Sublemma 3.15. Let V be a complex vector space, equipped with a non-degenerate complex linear 2-form Ω ∈ Λ2,0V . Then for
any monomial ρ = (

√
−1)pξi1 ∧ ξ i1 ∧ · · · ∧ ξip ∧ ξ ip for which Ωn−p

∧ ρ is non-zero, the form Ωn−p
∧ Ω

n−p
∧ ρ is non-zero

and weakly positive.

Proof. Let ξj1 , ξj1 , . . . , ξjn−p be the elements of the basis in V complementary to ξi1 , ξi1 , . . . , ξip , andW ⊂ V the space gen-
erated by ξj1 , ξj1 , . . . , ξjn−p . Clearly, a form α is non-zero onW if and only if α ∧ρ is non-zero, and positive onW if and only
if α ∧ ρ is positive.

Now, Sublemma 3.15 is implied by the following trivial assertion: for any (n − p)-dimensional subspace W ⊂ V such
that Ωn−p

|W is non-zero, the restriction Ωn−p
∧ Ω

n−p
|W is non-zero and positive.

This proves Sublemma 3.15, and Lemma 3.12 follows as indicated. �

As a corollary of the vanishing of the forms Ωn−p
∧ ηp+1, we prove the following statement, used further on.

Lemma 3.16. Let (M, Ω) be a simple holomorphically symplectic manifold, dimR M = 4n and η ∈ Λ1,1(M, I) a closed, semi-
positive form of rank 2n. Let It be the complex structure on M defined by Ω + tη, as in Theorem 3.10. Then η ∈ Λ1,1(M, It).

Proof. By construction, (M, It) is a holomorphically symplectic manifold, with the holomorphic symplectic form Ωt :=

Ω + tη. For a holomorphic symplectic manifold (M, Ωt), dimR M = 4n, there exists an elementary criterion allowing one to
check whether a given 2-form η is of type (1, 1): one has to have η ∧ Ωn

t = 0 and η ∧ Ω
n
t = 0. However, from Lemma 3.12

it follows immediately that η ∧ Ωn
t = 0 and η ∧ Ω

n
t = 0, hence η is of type (1, 1). �

3.5. Degenerate twistor space: a definition

Just as it is donewith the usual twistor space, to define a degenerate twistor spacewe construct a certain almost complex
structure, and then prove it is integrable. The proof of integrability is in fact identical to the argument which could be used
to prove that the usual twistor space is integrable.

Definition 3.17. Let (M, Ω) be an irreducible holomorphically symplectic manifold, dimR M = 4n and η ∈ Λ1,1(M, I) a
closed, semipositive form of rank 2n. Consider the product Twη(M) := C ×M , equipped with the almost complex structure
I acting on TtC ⊕ TmM as IC ⊕ It , where IC is the standard complex structure on C and It is the complex structure recovered
from the formΩ + tη using Theorems 3.10 and 3.5. The almost complexmanifold (Twη(M), I) is called a degenerate twistor
space ofM .

Theorem 3.18. The almost complex structure on a degenerate twistor space is always integrable.

Proof. We introduce a dummy variable w, and consider a product Twη(M) × C, equipped with the (2, 0)-form Ω := Ω +

tη + dt ∧ dw. Here, Ω is a holomorphic symplectic form onM lifted toM × C × C, and t and w are complex coordinates on
C×C. Clearly, Ω is a non-degenerate (2, 0)-form. From Lemma 3.16we obtain that dΩ = η∧dt ∈ Λ2,1(Twη(M)×C). Now,
Remark 3.2 implies that Ω defines an integrable almost complex structure on Twη(M)×C. However, on Twη(M)×{w} this
almost complex structure coincides with the one given by the degenerate twistor construction. �
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