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a b s t r a c t 

The Minkowski weighted K-means (MWK-means) is a recently developed clustering algorithm capable 

of computing feature weights. The cluster-specific weights in MWK-means follow the intuitive idea that 

a feature with low variance should have a greater weight than a feature with high variance. The final 

clustering found by this algorithm depends on the selection of the Minkowski distance exponent. This 

paper explores the possibility of using the central Minkowski partition in the ensemble of all Minkowski 

partitions for selecting an optimal value of the Minkowski exponent. The central Minkowski partition ap- 

pears to be also a good consensus partition. Furthermore, we discovered some striking correlation results 

between the Minkowski profile, defined as a mapping of the Minkowski exponent values into the average 

similarity values of the optimal Minkowski partitions, and the Adjusted Rand Index vectors resulting from 

the comparison of the obtained partitions to the ground truth. Our findings were confirmed by a series 

of computational experiments involving synthetic Gaussian clusters and real-world data. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Clustering algorithms aim at revealing the class structure of

a dataset. Many of them do it by partitioning a given dataset

Y into K clusters, S = { S 1 , S 2 , . . . , S K } , so that each cluster S k ∈ S

contains similar entities. Clustering algorithms have been used in

many practical applications, including those in the fields of bank-

ing, bioinformatics, computer vision, marketing, security, and gen-

eral data mining [1–3] . 

The K-means algorithm [1,3,4] is arguably the most popular

clustering method nowadays. To test this claim, we used three

most popular search engines, i.e., Google, Bing and Yahoo, to assess

the numbers of web pages they return with respect to queries of

six popular clustering methods or approaches, including K-means

[4] , Hierarchical clustering [5] , Neighbor-joining [6] , Spectral clus-

tering [7] , Single linkage [8] , and Agglomerative clustering [5] . The

results reported in Table 1 do show the prevalence of K-means

over other clustering techniques. Implementations of K-means can

be easily found in various software packages frequently used in
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ata analysis, such as MATLAB [9] , R [10] , SPSS [11] , and SciPy [12] .

iven a dataset Y composed of N entities (i.e., objects) y i , each de-

cribed over the same V features (i.e., variables), K-means gener-

tes a pre-specified number K of disjoint clusters, so that S k ∩ S l =
 for k, l = 1 , 2 , . . . , K and k � = l , covering the entire dataset. The

raditional K-means algorithm runs update-centers/update-clusters

terations as described below. 

K-means algorithm 

1. Assign the values of K entities of Y , selected at random, to

the initial centers c 1 , c 2 , . . . , c K . Set S k ← ∅ . 
2. Assign each entity y i ∈ Y to the cluster S k whose center, c k ,

is the nearest to y i . If there are no changes in S , stop and

output clusters S and their centers C . 

3. Update each center c k with respect to the vector of

component-wise means of its cluster S k . Go to step 2. 

This method is known to alternatingly minimize the following

east-squares criterion: 

 (S, C) = 

K ∑ 

k =1 

∑ 

i ∈ S k 

V ∑ 

v =1 

(y i v − c k v ) 
2 , (1)
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Table 1 

Counts of relevant web pages returned by the most popular search 

engines with respect to queries of the named methods obtained 

on November 15, 2015 at Birkbeck University of London. 

Search engine Google Bing Yahoo 

K-means 2,070,0 0 0 481 ,0 0 0 537 ,0 0 0 

Hierarchical clustering 677 ,0 0 0 251 ,0 0 0 268 ,0 0 0 

Neighbor-joining 591 ,0 0 0 146 ,0 0 0 148 ,0 0 0 

Spectral clustering 202 ,0 0 0 71 ,500 78 ,100 

Single linkage 140 ,0 0 0 30 ,900 32 ,800 

Agglomerative clustering 130 ,0 0 0 33 ,100 33 ,0 0 0 
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here c k ∈ C is the center of cluster S k ∈ S , with respect to two

roups of variables, clusters S = { S 1 , S 2 , . . . , S K } and centroids C =
 c 1 , c 2 , . . . , c K } . 

Despite its popularity K-means has several important weak-

esses, among them: 

1. The number of clusters, K , must be known beforehand; 

2. This is a local search algorithm that usually gets trapped in

a local minimum; 

3. The resulting clustering, S , heavily depends on the initial

centers; 

4. All features equally contribute to the solution, regardless of

their individual degree of relevance. 

In this paper, we are mostly concerned with the last item of

his list. Until recently, the issue of taking into account the extent

f relevance of any specific feature was difficult to address because

he traditional K-means algorithm and its objective function ( Eq.

1) ) lack an explicit feature weighting step. This step has been in-

roduced in several works, thus transforming the two-step itera-

ions of K-means into three-step iterations [13–16] . The additional

hird step assigns weights to features in such a way that feature’s

eight gets greater when the feature better accords to the current

artition. As we have recently shown, the weights are most natu-

ally fit into the Minkowski distance framework: they are associ-

ted with feature scale factors in this perspective [16] . Our algo-

ithm, Minkowski weighted K-means (MWK-means) [16] , automat-

cally calculates cluster specific weights for each feature and ap-

lies the Minkowski distance to ensure these weights can be seen

s feature rescaling factors (more details are given in Section 2 ).

owever, the quality of cluster recovery of MWK-means is subject

o the selection of a suitable Minkowski distance exponent p . This

election depends on the data structure of Y , making it impossible

o have a single value of p that provides optimal clustering in all

ases. The issue of finding a proper value of p can be addressed in

he framework of semi-supervised clustering [16] , yet it is of inter-

st to try tackling it in the unsupervised clustering perspective. 

Here we propose an approach associated with the structure of

he Minkowski partition ensemble, that is, the set of partitions S p 
ound at different Minkowski exponent values p ≥ 1. This ensem-

le resembles partition ensembles used in consensus clustering, a

esearch direction which became popular in the past decade. It

nvolves a representative set of partitions found by various algo-

ithms or various combinations of parameters (partition ensemble)

nd a rule for finding an “average” partition according to the en-

emble (see, for example, [17–19] ). The average partition is sup-

osed to be close to the ground truth partition behind the dataset

rom which partitions in the ensemble are obtained. Yet, there are

roperties of the Minkowski partition ensemble that distinguish it

rom the others considered so far: 

1. Completeness. Usually, the elements of a partition ensemble

are obtained as results of different runs of the K-means clus-

tering algorithm at different initializations, sometimes with

additional randomization steps [18,20] . In such a process,
one is never able to know how well such a random sam-

ple reflects the landscape of possible partitions. In this re-

gard, the Minkowski partition set is complete by the virtue

of taking into account MWK-partitions at all possible p .

One even may speculate on the nature of Minkowski parti-

tions, as they correspond to the full spectrum of Minkowski

distances, from the city-block distance that sums all the

component-wise differences between entities at p = 1 to the

Tchebychev distance that takes into account only the maxi-

mum of the differences (at p tending to infinity). 

2. Refinement. Unlike in the conventional approaches, each

of MWK-means partitions results from multiple runs of K-

Means rather than from a single run. In practice, the optimal

S p partition is the best out of partitions found at a hundred

runs of MWK-means. Moreover, one should not forget that

the result is found at features weighted according to their

relevance to the partition. That means that the Minkowski

partition ensemble is a much more refined set of partitions. 

3. Natural diversity. There is a claim that a partition ensem-

ble to be successful in recovering the ground truth partition

should have a significant level of diversity [18] . This claim

generated a series of publications which established that the

claim is not quite sound, yet the extent of diversity can be

put under control [19] . In our view, the extent of diversity

of a partition ensemble should not be considered separately

from the structure of the dataset under consideration. For

example, if a dataset consists of a set of well-separated com-

pact clusters, then any run of K-means, with an appropriate

K , will result in the same partition so that the resulting par-

tition set will consist of many copies of the same partition

– the minimum diversity, yet perfectly reflecting the struc-

ture of the dataset. Therefore, the extent of diversity of an

admissible partition ensemble should depend on the clus-

ter structure of the dataset: the more confusing is the struc-

ture, the greater the diversity of the partition ensemble. The

Minkowski partition ensemble fully accords with the princi-

ple. 

These properties of the Minkowski partition ensemble lead us

o hypothesize that there exists a “central” partition such that it

ccords most with both the appropriate Minkowski exponent and

he ground truth partition. If true, this hypothesis would also mean

hat the central partition may well serve as a consensus partition

ithout further elaborations. The goal of this paper is to test this

ypothesis in different practical situations. We provide computa-

ional evidence that our hypothesis is correct for a large variety

f datasets, both synthetic and real. Moreover, we find an empiri-

al signal indicating whether the hypothesis is correct for a given

ataset. Also, we show that similar constructions for other parti-

ion ensembles cannot warrant that their central partitions have

nything to do with the ground truth. 

To implement our framework computationally, we define the

inkowski partition ensemble by using a discrete series of values

f p , from p = 1 to p = 5 with a step of 0.1, so that the ensemble

onsists of the selected MWK-means partitions S p corresponding

o p = 1 . 0 , 1 . 1 , 1 . 2 , . . . , 5 . 0 . The upper boundary value, p = 5 , ac-

ording to our experience is quite large, so that larger values of p

ring no different partitions. As a measure of similarity between

artitions we use the popular Adjusted Rand Index (ARI) [21] . This

ndex is usually chosen, over other indices such as Normalized Mu-

ual Information (NMI), by many authors because, first, its intuitive

larity and, second, its propensity for “picking up” right choices in

omputations, as mentioned for example in [18] . We use ARI to

efine what is referred to as Minkowski profile further on. 

The Minkowski profile is defined as a mapping of the

inkowski exponent values p = 1 . 0 , 1 . 1 , . . . , 5 . 0 into the average
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Fig. 1. Fragments of Minkowski plane circles at p = 1 . 0 , . . . , 5 . 0 . The blue line rep- 

resents the case p = 1 , green curve - p = 2 , red curve - p = 3 , purple curve - p = 4 , 

and black curve - p = 5 . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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similarity values of the corresponding MWK-means partition, S p , to

the other Minkowski partitions. Thus defined, the Minkowski pro-

file can be considered as a concept detailing the notion of diver-

sity of a partition ensemble used in [18–20] in two different for-

mulations. The diversity-one with respect to the ensemble is de-

fined as the average value of all the pairwise partition-to-partition

dissimilarity values; the dissimilarity being defined as unity mi-

nus the average ARI index value [18] . The diversity-two is defined

with respect to any “central” partition, S , as the average dissimilar-

ity with S . Thus, the values constituting the Minkowski profile are

the diversity-two characteristics of each specific partition S p taken

as S . On the other hand, the average value of the entire Minkowski

profile subtracted from 1 is the diversity-one characteristic of the

Minkowski partition ensemble. 

Our experiments with synthetic datasets entailing Gaussian

clusters of simple structure do show that the central Minkowski

partition indeed can be used as a statistical tool for finding both

an appropriate Minkowski exponent and a meaningful consensus

clustering for a given dataset. 

The remainder of the paper is organized as follows. Next section

describes all the details regarding the MWK-means algorithm as it

is implemented and applied in this study. Section 3 introduces the

concepts of the Minkowski partition ensemble and Minkowski pro-

file. The following section describes our experimental findings. Our

experiments on testing collinearity between the Minkowski pro-

file and the quality of cluster recovery are described there too.

Section 4 recalls the concept of consensus partition, defines the

central Minkowski partition, tests experimentally how well this

partition works as a consensus partition and points out to an

optimal value of the Minkowski exponent. The Conclusion sec-

tion reviews our findings and describes possible extensions of this

work. 

2. Minkowski weighted K-means 

The Minkowski weighted K-means (MWK-means) algorithm in-

volves both the Minkowski distance and cluster-based feature

weights [16] . These feature weights follow the intuitive idea that

a given feature v may have different degrees of relevance at dif-

ferent clusters S k ∈ S ( k = 1 , 2 , . . . , K). The more a feature is dis-

persed within a cluster, the lower its weight at this cluster is.

The Minkowski distance between an entity y i and a centroid c k 
is defined by d p (y i , c k ) = ( 

∑ V 
v =1 | y i v − c k v | p ) 1 /p , where p is the

Minkowski exponent. 

Any distance measure in the framework of the K-means gen-

eral scheme introduces some bias to the shapes of clusters to be

found. Assuming a two-dimensional space for an easier visualiza-

tion, the Euclidean distance used in (1) makes K-means biased to-

wards circular clusters. At values of p equal to one, two and tend-

ing to ∞ , the Minkowski distance is referred to as the Manhat-

tan, Euclidean and Tchebychev distances, respectively. For instance,

a value of p located between one and two leads to a bias towards

a shape between a rhombus and a circle. In general, we can set the

shape bias of the Minkowski distance towards any interpolation

between a rhombus (at p = 1 ) and a square (at p → ∞ ). In fact, the

Minkowski distance introduces a bias towards a shape similar to

that of a Lamé curve (also known as Superellipse), whose precise

shape depends on the selected value of p (see Fig. 1 ). In the MWK-

means algorithm, the Minkowski distance depends on the feature

scales. Assuming that the objective is to minimize the sum of dis-

tances between entities and their respective centroids, as typical

for K-means (1) , one can introduce a rescaling factor w kv for each

feature v at each cluster S k ∈ S . This rescaling factor within the

Minkowski K-means framework can be interpreted as the feature

weight, and the weighted Minkowski distance can be defined as
ollows: 

 p (y i , c k ) = 

( 

V ∑ 

v =1 

w 

p 

k v | y i v − c k v | p 
) 1 /p 

. (2)

rovided that cluster S k and its center c k have been pre-specified,

he optimal weight w kv of feature v within cluster S k is inversely

roportional to the dispersion D kv of v at S k . The dispersion D kv 

s defined by equation D k v = 

∑ 

i ∈ S k | y i v − c k v | p . Then, the optimal

eight w kv is given by: 

 k v = 

( ∑ 

u ∈ V 
[ D k v /D ku ] 

1 / (p−1) 

) −1 

. (3)

he MWK-means algorithm carries out a series of iterations, each

nvolving three steps specifying how each of the three items, the

entroids, the clusters, and the weights, are updated, provided that

wo of them are given (i.e., optimized at the previous steps). 

MWK-means 

1. Parameter setting . Choose the number of clusters, K , and the

Minkowski exponent, p . Set S ← ∅ , and w k v = 1 /V for k =
1 , 2 , . . . , K and v = 1 , 2 , . . . , V . 

2. Setting the centers . Assign the values of K entities from

Y , selected at random, to be the initial cluster centers

c 1 , c 2 , . . . , c K . 

3. Cluster update . Assign each entity y i ∈ Y to the cluster S k rep-

resented by the nearest c k as per (2) , generating the cluster-

ing S ′ = { S ′ 
1 
, S ′ 

2 
, . . . , S ′ 

K 
} . If S ′ = S, then go to Step 6 to end

the computation. 

4. Center update . Update each center c k ∈ C to the component-

wise Minkowski center of y i ∈ S k . 

5. Weight update . Update each weight w kv using Eq. (3) . Set S

← S ′ , then go to Step 3. 

6. Output . Output the clustering S = { S 1 , S 2 , . . . , S K } , centers C =
{ c 1 , c 2 , . . . , c K } , and feature weights w . 

The central value c k in Step 4 is given by the component-wise

edian, mean and mid-range of y i ∈ S k , at p = 1 , 2 and ∞ , respec-

ively. At other values of p , subject to p ≥ 1, γv (μ) = 

∑ 

i ∈ S k | y i v −| p is a U-shape curve with a minimum located in the interval
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 min i ( y iv ), max i ( y iv )] [16,22] . The center in this case is a minimizer

f γ v ( μ). In our previous work [16] , a gradient method for find-

ng this minimum has been applied. Here we use a much simpler

nd faster procedure involving no derivatives. We begin by set-

ing μk v = | S k | −1 
∑ 

i ∈ S k y i v , i.e., the mean value, and then iteratively

hange it using a pre-specified step size, say 0.001, i.e., adding or

ubtracting it depending on the side on which the value of γ v is

inimized. 

The MWK-means algorithm alternatingly minimizes the follow-

ng objective function: 

 p (S, C, w ) = 

K ∑ 

k =1 

∑ 

i ∈ S k 

V ∑ 

v =1 

w 

p 

k v | y i v − c k v | p , (4)

ubject to 
∑ V 

v =1 w k v = 1 and w kv ≥ 0 for k = 1 , 2 , . . . , K and v =
 , 2 , . . . , V, in the framework of a crisp clustering in which each

ntity y i is assigned to a single cluster S k . 

Note that the objective function (4) involves p th power of

inkowski distance rather than the distance itself. This choice is

nalogous to the use of the squared Euclidean distance, rather than

uclidean distance, in K-means. This objective function also sup-

orts cluster-specific feature weights. It shows indeed that the in-

erpretation of weights as the rescaling factors is meaningful be-

ause the same exponent p is applied to both the distance and

he weights. We have recently shown that using these factors to

escale datasets does improve the likelihood that cluster validity

ndices return the correct number of clusters [22] . The interpre-

ation of feature weights as feature re-scaling factors is not valid

n other feature weighting algorithms such as Weighted K-Means

23] , Attribute Weighting K-Means [24] , or Improved K-Prototypes

25] . 

Clearly, the final clustering given by MWK-means depends on

he initial centroids chosen in Step 2. When using K-means, this

ssue is often addressed by running the algorithm a hundred or

ore times [26] and by selecting the clustering S that provides the

est value of the objective function (1) . This strategy can still be

ollowed within MWK-means for a given value of p . However, it

annot be used for finding an optimal value of p within MWK-

eans because the values of the objective function (4) are not

omparable at different values of p . However, any cluster validity

ndex that does not depend on p can be used in this case to select

he best partitioning. 

. Minkowski partition ensemble, Minkowski profile, and their 

se 

Consider the set of partitions S p minimizing the objective func-

ion (4) at any given value of the exponent p ≥ 1. It is clear that

here can be only a finite number of different partitions S p be-

ause the number of objects is finite. We refer to this set of parti-

ions, S M 

= { S p } at various p ≥ 1, as the set of optimal Minkowski

artitions. Of course, finding the set of optimal Minkowski parti-

ions in its entirety is almost unfeasible because the task of mini-

ization of criterion (4) is computationally hard. In practice, there

re different options one might wish to explore. Here, we experi-

ented with three of these. For a considered value of p , we carried

ut MWK-means 100 times, each with a random start. We then

ook as S p the partition providing either (i) the minimum value of

he objective function W p ( Eq. (4) ), or (ii) the maximum value of

he Silhouette width (SW) [27] , or (iii) the maximum value of the

alinski–Harabasz index (CH) [28] . 

No sole cluster validity index is clearly superior to all the others

n all cases. However, the Silhouette width (SW) and the Calinski–

arabasz index (CH) tend to be among the top performers ac-

ording to several comprehensive simulation studies [29–31] . There

re other potentially valuable alternatives, based for example on
he stability-based approach, and we direct interested readers to

29,32,33] and references therein. 

The Silhouette width for a clustering is defined as follows: 

W = 

1 

N 

N ∑ 

i =1 

b(y i ) − a (y i ) 

max { a (y i ) , b(y i ) } , (5) 

here a ( y i ) is the average distance between y i ∈ S k and { y j : y j ∈
 k }, and b ( y i ) is the lowest average distance between y i and { y j :

 j ∈ S l }, where l � = k . The Calinski–Harabasz index is defined as

ollows: 

H = 

B 

W 

× (N − K) 

(K − 1) 
(6) 

here W is the overall within-cluster variance, B is the overall

etween-cluster variance, N is the number of entities, and K is the

umber of clusters. 

We think that there is no need in using values of p outside

f interval [1, 5] in our simulations, since the best partitions have

ever appeared at p greater than 5 in our previous computations

16,22,34] . In fact, the higher the value of p , the more uniform

he weights are, thus voiding any advantage provided by the use

f feature weights. Therefore, we consider a set S M 

= { S p } of 41

inkowski partitions S p found at p = 1 . 0 , 1 . 1 , . . . , 5 . 0 , each of them

ptimising one of the three above-discussed indices (SW, CH, and

 p ) over a series of 100 random starts. This set represents an em-

irical estimate of the set of all optimal Minkowski partitions and

onstitutes a version of the Minkowski partition ensemble. 

Let us now define the concept of Minkowski profile for a given

inkowski partition ensemble. As explained above, we use the Ad-

usted Rand Index (ARI) [21] to capture the extent of similarity be-

ween two partitions. This index is based on the proportion of en-

ity pairs that are consistent between the two partitions, i.e., be-

ong or not to the same cluster in both compared partitions. The

RI index is computed from the confusion table between two clus-

er partitions, S p = { S p1 , S p2 , . . . , S pm p } and S q = { S q 1 , S q 2 , . . . , S qm q } ,
here m p and m q are the numbers of clusters in S p and S q , respec-

ively. The confusion table has rows corresponding to classes of S p 
nd columns to classes of S q ; its entry ( k, l ) is the number of ob-

ects in the intersection of S pk in S p and S ql of S q , N kl = | S pk 

⋂ 

S ql | .
he confusion table is referred to as the contingency table in statis-

ics. Let N be the total number of entities, N k - the number of en-

ities in k th cluster of S p , and N l - the number of entities in l th

luster of S q . Then, ARI can be defined as follows: 

(S p , S q ) = 

∑ 

k,l 

(
N kl 

2 

)
− C p C q 

/ 

(
N 

2 

)
1 
2 
(C p + C q ) − C p C q 

/ 

(
N 

2 

) , (7)

here C p = 

∑ 

k 

(
N 

p 

k 

2 

)
and C q = 

∑ 

l 

(
N 

q 

l 

2 

)
. The values of ARI vary

etween −1 and 1, and ARI = 1 if and only if the two compared

artitions coincide, i.e., S p = S q . 

For each partition S p ∈ S M 

, we can define a characteristic of its

imilarity to all the partitions in S M 

, i.e., the average similarity: 

(S p ) = 

∑ 

q 

φ(S p , S q ) / | S M 

| . (8)

hen, the Minkowski profile φ( S M 

) is defined as a mapping p →
( S p ) of the set of all considered values of p , into the set of the

orresponding average similarity values φ( S p ), p = 1 . 0 , 1 . 1 , . . . , 5 . 0 . 

We can now define the central Minkowski partition as the par-

ition S p ∈ S M 

corresponding to that p at which the maximum of

he Minkowski profile is reached. This means that S p maximizes

he average similarity to S over all considered values of p . 
M 
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Table 2 

Real-world datasets from UCI repository used in our experi- 

ments. 

Dataset Entities ( N ) Features ( V ) Clusters ( K ) 

AustraCA 690 14 2 

Heart 270 13 2 

Hepatitis 155 19 2 

Iris 150 4 3 

Pima Indians 768 8 2 

Wine 178 13 3 
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Given a partition ensemble, the problem of finding its consen-

sus partition has attracted considerable attention (see, for example,

[2,17,18,35] and [36] for the latest references). Most algorithms use

the so-called consensus, or co-association, matrix between objects

for finding and extending common fragments. There are mathe-

matically deeper approaches using Bayesian or mixture of distri-

butions modeling. In this paper, we do not use any of them, be-

cause the concept of Minkowski partition ensemble assumes that

there are no meaningful partitions outside of it. Therefore, consen-

sus partition should be one of those constituting the Minkowski

partition ensemble. Indeed, we have tried building consensus par-

titions by using an algorithm from [2,37] , which is a version of the

approach described in [17] . This usually led to different partitions

indeed, but with quite a mediocre cluster recovery results. 

Thus, we propose the following routine to select an optimal

value of the Minkowski exponent p and determine a Minkowski

central partition to be used as a consensus partition: 

Choosing an optimal exponent p and central partition S p 

1. Computing the optimal Minkowski partitions . For each value of

p = 1 . 0 , 1 . 1 , . . . , 5 . 0 , run MWK-means 100 times saving only

the run that either (i) maximizes the value of the selected

cluster validity index (CH or SW), or (ii) returns the mini-

mum value of W p . This generates the Minkowski partition

ensemble of 41 clusterings. 

2. Computing the Minkowski profile . Calculate ARI between each

pair of Minkowski partitions and define the Minkowski pro-

file as the set of average ARI values between each of the par-

titions in the Minkowski profile and the rest. 

3. Computing the central Minkowski partition . Output the cen-

tral Minkowski partition as a clustering whose average ARI

is among the partitions of the Minkowski profile. If there are

several partitions of the Minkowski profile that provide the

highest value of ARI, select among them the partition that

corresponds to the minimum value of the Minkowski expo-

nent p (such a strategy provided the best results in our sim-

ulations). 

4. Setting an optimal Minkowski exponent and a consensus par-

tition . The central Minkowski partition allows one to deter-

mine both an optimal exponent p and a consensus partition.

For comparison, we also carry out experiments with the con-

ventional K-means algorithm. There is obviously no need to select

a distance exponent in K-means, but one still has to choose here

the best partition out of a set of 100 partitions obtained after 100

random starts. To do so, we carry out the above-described routine,

but instead of the 41 optimal MWK-means partitions (one for each

value of p ) we consider the 100 K-means partitions. We compute

the ARI between each pair of these 100 K-means partitions, define

the profile of the ensemble by computing for each of them the av-

erage ARI to the rest, and output the clustering that maximizes the

profile. As in [16] , in all of our experiments we first consider clus-

tering solutions that have the expected number of clusters. When

no such correct clusterings are found by using K-means or MWK-

means, we accept those partitions that have been found by these

partitioning algorithms regardless of the number of clusters. 

We run computational experiments with both real-world and

synthetic data. The real-world datasets are those six datasets from

the UCI repository that have been used in our previous studies

[16] , see Table 2 . 

Among these datasets, there are some with rather clear cluster

structure, such as Iris and Wine, as well as some complex datasets

for which no conventional classifiers have provided good accuracy

results so far, such as Hepatitis and Pima Indians. 

We also carry out simulations with synthetic data structures,

akin to those presented in our previous works (see for example
16,22] ). Our synthetic data are composed of spherical Gaussian

lusters so that the covariance matrices are diagonal, with the

ame diagonal value σ 2 generated randomly at each cluster, and

arying between 0.5 and 1.5. All centroid components are gener-

ted independently using the standard normal distribution. Clus-

er cardinalities are generated using a uniform distribution, with a

onstraint that each generated cluster comprises at least 20 enti-

ies. The following GMMs configurations, different in terms of the

umber of features and clusters, are tested in our study: 

• 10 0 0 entities over 8 features constituting 4 clusters (10 0 0x8-4);
• 10 0 0 entities over 10 features constituting 5 clusters (10 0 0x10-

5); 
• 10 0 0 entities over 12 features constituting 5 clusters (10 0 0x12-

5); 
• 10 0 0 entities over 20 features constituting 6 clusters (10 0 0x20-

6); 
• 10 0 0 entities over 30 features constituting 10 clusters

(10 0 0x30-10); 
• 10 0 0 entities over 40 features constituting 8 clusters (10 0 0x40-

8). 

It should be noted that not only the feature space dimensions

re relatively small at the first three sets of parameters, 8, 10, and

2, but also their relation to the number of clusters is not high

ither. The space dimension to the number of clusters ratios for

hese sets are: 8/4 = 2, 10/5 = 2, and 12/5 = 2.4, respectively. This con-

rasts with the higher ratios at our other parameter combinations:

0/6 = 3.33, 30/10 = 3, and 40/8 = 5. We will see that the cluster re-

overy results at the latter datasets are much better. For each of

hese configurations, we generate a hundred different datasets. All

esults presented further on are the averages taken over the 100

esults obtained for each of our configurations. 

We standardize each feature by subtracting its mean and divid-

ng it by its range, as shown below: 

 i v = 

y i v − ȳ v 

max (y v ) − min (y v ) 
. (9)

ften clustering experiments are carried with data standardized

sing the popular z -score normalization. We think that the above-

resented standardization could be a good alternative normaliza-

ion option [2] . Consider a dataset with two features: a unimodal

eature v 1 and a multimodal feature v 2 . The standard deviation of

 2 will be higher than that of v 1 , leading to lower z -score values

f v 2 in comparison to v 1 . This means that v 1 would have a higher

ontribution to clustering in spite of the fact that v 2 has a clearer

luster structure. 

Moreover, we carry out additional experiments with the stan-

ardized datasets after adding to them noise features. As in our

revious studies [16] , the values of the noise features are dis-

ributed uniformly in the unity range. For all datasets, the num-

er of noisy features inserted is half of the number of the original

eatures. 
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Fig. 2. Adjusted rand index (ARI) of MWK-means applied to the Australian credit 

approval dataset. The dashed line represents the ARI in relation to the ground 

truth. The solid line represents the Minkowski profile of this dataset. The optimal 

Minkowski partition at each value of p was selected using the Silhouette width. 

Table 3 

Correlations between the Minkowski (or K-means) profiles 

and the ARI vectors, resulting from the comparison of the 

obtained partitions to the ground truth, computed for six 

benchmark datasets from the UCI repository. In the case of 

K-means, we used a set of 100 partitions obtained from 100 

random starts of the algorithm; in the case of MWK-means, 

we considered a set of 41 optimal partitions (according to the 

Silhouette width (SW), the Calinski–Harabasz index (CH), and 

the Minkowski objective function W p ). 

KM MWK 

SW CH W p 

AustraCA 0 .862 0 .991 0 .991 −0 .830 

Heart 0 .911 0 .966 0 .899 0 .579 

Hepatitis 0 .886 0 .855 0 .626 0 .928 

Iris 0 .844 0 .984 −0 .905 0 .961 

Pima Indians 0 .998 0 .949 −0 .063 −0 .099 

Wine 0 .738 0 .594 0 .489 0 .957 
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Table 4 

Correlations between the Minkowski (or K-means) profiles and the ARI vectors, re- 

sulting from the comparison of the obtained partitions to the ground truth, com- 

puted for synthetic data. In the case of K-means, we considered a set of 100 parti- 

tions obtained from 100 random starts of the algorithm; in the case of MWK-means, 

we considered a set of 41 optimal partitions according to the SW, CH, and W p cri- 

teria. 

KM MWK 

SW CH W p 

No noise 10 0 0x8-4 0 .315/0.65 0 .898/0.19 0 .868/0.17 0 .938/0.12 

10 0 0x10-5 0 .465/0.48 0 .938/0.11 0 .929/0.10 0 .964/0.05 

10 0 0x12-5 0 .684/0.35 0 .957/0.07 0 .953/0.06 0 .978/0.02 

10 0 0x20-6 0 .799/0.32 0 .987/0.03 0 .985/0.03 0 .986/0.02 

10 0 0x30-10 0 .807/0.22 0 .994/0.02 0 .991/0.02 0 .990/0.02 

10 0 0x40-8 0 .852/0.23 0 .999/0.00 0 .997/0.01 0 .998/0.00 

With noise 10 0 0x8-4 −0 .088/0.41 −0 .281/0.55 −0 .438/0.41 0 .613/0.38 

10 0 0x10-5 −0 .044/0.40 0 .258/0.50 −0 .063/0.47 0 .827/0.19 

10 0 0x12-5 0 .077/0.48 0 .733/0.37 0 .475/0.46 0 .902/0.12 

10 0 0x20-6 0 .608/0.32 0 .942/0.06 0 .930/0.08 0 .930/0.12 

10 0 0x30-10 0 .616/0.23 0 .972/0.06 0 .929/0.07 0 .984/0.03 

10 0 0x40-8 0 .701/0.30 0 .958/0.04 0 .969/0.03 0 .968/0.04 
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. Experimental results 

.1. Relationship between the Minkowski profile and the similarity to 

round truth 

It appears that the Minkowski profile is closely related to the

re-specified cluster structure of a dataset when the MWK-means

artitioning algorithm is used. Specifically, on many real datasets

he Minkowski profile closely follows the cluster structure recov-

red by MWK-means. 

For instance, Fig. 2 presents the behaviour of the Minkowski

rofile and that of the ARI index resulting from the comparison

f 41 optimal partitions S p (at p = 1 . 0 , 1 . 1 , . . . , 5 . 0 , obtained using

WK-means) to the known ground truth partition for the Aus-

ralian Credit Approval dataset analyzed in many works on data

lustering, including [23] and [16] . The striking similarity of the

wo presented curves is reflected in a very high value of the linear

orrelation coefficient between them, 0.991. 

Table 3 reports the correlation results obtained for the six

enchmark datasets from the UCI repository listed above. This ta-

le allows us to compare the correlations obtained with traditional

-means and those obtained with our MWK-means algorithm us-

ng the Silhouette width (SW) [27] , the Calinski–Harabasz (CH)
28] ) index, and the Minkowski objective function W p ( Eq. (4) ).

or each value of p considered in this study, the MWK-means al-

orithm was carried out 100 times starting at random partitions.

hen, the partition maximizing the value of the selected cluster va-

idity index (SW or CH) or minimising the objective function ( W p ),

t a given value of p , was chosen for calculating the Minkowski

rofile. The column KM in Table 3 presents the results found by

unning the conventional K-means algorithm 100 times, also with

andom initializations (see Section 3 ). Afterwards, we computed

he correlation between the MWK-means (or K-means) profile and

he ARI vector resulting from the comparison of the 100 obtained

artitions to the ground truth partition. Observing the results pre-

ented in Table 3 , one can notice that both the traditional K-means

nd MWK-means used along with the SW cluster validity index

rovide, in most of the cases, a high correlation between the pro-

le vector and the vector of ARIs resulting from the comparison

f the obtained partitions to the ground truth. However, this is

ot the case of the MWK-means results found using CH and W p .

ith the latter partitions, even negative correlation results were

btained for some datasets. 

Table 4 reports the average correlation values, obtained for

ach of the six parameter configurations listed above, between

he Minkowski (or K-means) profiles and the ARI vectors result-

ng from the comparison of the obtained partitions to the ground

ruth. The obtained standard deviations are also indicated here. 

The correlation values presented in Table 4 suggest that the

est correlation results have been obtained using MWK-means and

he minimum of W p ( Eq. (4) ). This trend is particularly notice-

ble for GMMs with noisy features. One can also observe that the

orrelations obtained with MWK-means and SW generally follow

hose obtained with MWK-means and W p at datasets of larger di-

ensions. In the GMMs with and without noise, the W p crite-

ion seems to work better than CH and SW at low-dimensional

atasets. Another conclusion which can be drawn from these re-

ults is that the second triplet of parameters, 10 0 0x12-5, clearly

eads to the increase in the obtained correlations. In general,

able 4 shows quite high correlation values, especially under the

W and W p scenarios, for both K-means and MWK-means. How-

ver, both algorithms fail at small space dimensions under the

oise conditions, except for the W p scenario of MWK-means. At

arger space dimensions, the MWK-means results for noisy data

how remarkably high correlations under all the three scenarios. 

Moreover, we carried out experiments with the Rand, Mirkin,

ubert, and Jaccard, partition similarity indices (for details see
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Table 5 

Correlations between the Minkowski profiles and the vectors ob- 

tained using Jaccard, Hubert, Mirkin and Rand indices, resulting from 

the comparison of the obtained partitions to the ground truth, com- 

puted for synthetic data. The optimal partitions were generated us- 

ing MWK-means and W p . We considered 41 optimal partitions (those 

corresponding to the minimum value of W p , one for each of the 41 

values of p , were selected). 

Jaccard Hubert/Mirkin/Rand 

No noise 10 0 0x8-4 0 .920/0.12 0 .931/0.13 

10 0 0x10-5 0 .959/0.05 0 .958/0.06 

10 0 0x12-5 0 .976/0.03 0 .977/0.03 

10 0 0x20-6 0 .981/0.03 0 .984/0.03 

10 0 0x30-10 0 .985/0.02 0 .989/0.02 

10 0 0x40-8 0 .996/0.01 0 .997/0.01 

With noise 10 0 0x8-4 0 .529/0.38 0 .559/0.40 

10 0 0x10-5 0 .793/0.19 0 .774/0.29 

10 0 0x12-5 0 .890/0.12 0 .873/0.23 

10 0 0x20-6 0 .915/0.11 0 .930/0.14 

10 0 0x30-10 0 .981/0.02 0 .982/0.03 

10 0 0x40-8 0 .949/0.05 0 .970/0.04 
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Fig. 3. ARI, Rand, Mirkin’s, Jaccard, and Hubert’s indices of MWK-means clusterings 

for a randomly chosen dataset under the configuration 10 0 0x8-4. The dashed lines 

represent the partition similarity indices in relation to the ground truth. The solid 

lines represent the Minkowski profiles. The correlation between the values of the 

two lines is of: 0.9951 (ARI), 0.9946 (Rand), 0.9946 (Mirkin’s), 0.9982 (Jaccard), and 

0.9946 (Hubert’s). Here we used the minimum of the Minkowski objective function, 

W p , to select an optimal partition for each value of p . 
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[21] and references therein), which were used instead of ARI

within MWK-means. In these experiments the optimal Minkowski

partition at each value of p was selected using W p . The former

three indices are linearly related, which implies that they lead to

the same correlation values (see Table 5 ). The use of the W p cri-

terion leads to the high correlation values for all of the consid-

ered partition similarity indices. Fig. 3 shows the Minkowski profile

(solid line) of each index as well as the index value when com-

paring the partition corresponding to the minimum of W p to the

ground truth (dashed line). This figure presents the results of a

randomly chosen dataset under the configuration 10 0 0x8-4. 

Overall, these results do show a remarkable affinity be-

tween the two series of values associated with elements of the

Minkowski partition ensemble chosen under the W p scenario: (1)

the average similarities to the ensemble and (2) the similarity to

the ground truth. A similar affinity can be seen at K-means parti-

tion ensembles when they are representative of the dataset struc-

ture; the effects of noise, however, destroy the balance and K-
eans partition ensembles fail in this regard under the noise. In

ontrast, the Minkowski partition ensembles remain representa-

ive, especially when the number of clusters is not that high in

omparison to the feature space dimension. Therefore, the central

inkowski partition indeed is indicative of both an optimal value

f the exponent p and the consensus partition. 

.2. The central Minkowski partition at the UCI repository data 

Good affinity between the similarity of a Minkowski MWK-

artition to the ground truth and to the Minkowski ensemble

s not necessarily an indicator that the central partition is close

nough to the ground truth partition. This is illustrated by the re-

ults in Table 6 reporting the average ARI values for the six UCI

epository datasets with and without noise features. For example,

he results obtained using the W p criterion are rather mediocre

ere, except those found for the Iris and Wine datasets. The ap-

lication of our central consensus strategy to traditional K-means

hen the data were not affected by noise allowed us to generate

qual or higher ARI values for five of the six real datasets. Further-

ore, in the framework of the MWK-means analysis, the consen-

us strategy produced competitive or better results in five of the

ix possible cases when SW was used, and was generally equiva-

ent to the traditional approach when CH was used. When 50% of

oise features were added to each dataset, our consensus method

sing the SW and CH indices generally yielded more stable re-

ults than the traditional K-means and MWK-means approaches.

he most evident cases of the improvement provided by the con-

ensus MWK-means over the traditional MWK-means include the

ustraCC, Hepatitis and PimaIndians datasets when the SW clus-

er validity index was used. The use of the W p criterion did not

rovide any visible improvement in this case. 

.3. Central Minkowski partition at the synthetic data 

The tables presented in this section ( Tables 7 , 8 , 9 , and 10 ) are

imilar to Table 6 . They report the ARI values for the generated

lusterings in relation to the known ground truth labels. The ta-

les are composed of two main columns. Under “CVI-based”, we

rovide the ARI values for a given partitioning algorithm (K-means

r MWK-means) by simply applying the selected clustering valid-

ty index to all of the obtained partitions, and choosing the parti-

ion that maximizes the selected CVI. We carried out K-means 100

imes per dataset, and MWK-means 100 times for each value of p

er dataset. The column “Central” presents the ARI results obtained

y applying our central Minkowski partition consensus rule. 

Tables 7, 8 , and 9 , report the results of experiments with MWK-

eans when using respectively CH, SW, and W p to choose the op-

imal Minkowski partition for a given value of p . 

The experiments conducted without adding noise features

emonstrates that the results generated by the consensus and tra-

itional MWK-means approaches, based on CH and SW, are gen-

rally similar ( Tables 7 and 8 ). For instance, with the SW in-

ex, the traditional method provides slightly better results in the

ase of lower numbers of clusters and features, while our cen-

ral consensus method slightly outperforms the original MWK-

eans algorithm in the case of higher number of clusters and

eatures. However, when 50% of noise features are added to the

ynthetic datasets our central consensus strategy, applied in the

ramework of MWK-means, clearly outperforms the original MWK-

eans strategy in the case of both CH and SW cluster validity in-

ices. Also, the SW index provides better performances than CH

n the context of both original and central consensus clustering

trategies. The average optimal value of p usually varies between

 and 3 in the case of both CH and SW. The results obtained when

he minimum of the Minkowski objective function, W p , was used
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Table 6 

Results of the experiments with real-world datasets without noise features and with 50% added noise features. The table presents 

the measures of cluster recovery in terms of Adjusted Rand Index against the known ground truth. The ARI measurements under 

’CVI-based’ are those for which the resulting clustering was selected based solely on the cluster validity index, where W accounts 

for the K-means least-squares criterion ( Eq. (1) ), SW for the Silhouette width, and CH for the Calinski–Harabasz index. The ARI 

measurements under ’Central’ are those obtained using our central Minkowski (or K-means central) consensus rule. 

CVI-based Central 

KM MWK KM MWK 

W SW CH SW CH SW CH W p 

No noise AustraCA 0 .504 0 .499 0 .499 0 .001 0 .504 0 .499 0 .504 0 .504 −0 .007 

Heart 0 .385 0 .423 0 .404 0 .404 0 .404 0 .423 0 .433 0 .376 0 .181 

Hepatitis 0 .160 0 .190 0 .141 0 .396 0 .122 0 .268 0 .396 0 .122 0 .355 

Iris 0 .716 0 .716 0 .716 0 .716 0 .716 0 .716 0 .745 0 .745 0 .886 

Pima Indians 0 .102 0 .011 0 .102 0 .008 0 .096 0 .104 0 .100 0 .100 0 .069 

Wine 0 .868 0 .868 0 .868 0 .850 0 .867 0 .915 0 .835 0 .837 0 .787 

With noise AustraCA 0 .504 0 .499 0 .499 0 .001 0 .504 0 .499 0 .504 0 .504 −0 .007 

Heart 0 .394 0 .423 0 .404 0 .404 0 .376 0 .423 0 .394 0 .367 0 .026 

Hepatitis 0 .150 0 .243 0 .122 0 .036 0 .122 0 .293 0 .407 0 .122 0 .417 

Iris 0 .529 0 .730 0 .730 0 .445 0 .730 0 .716 0 .445 0 .730 0 .716 

Pima Indians 0 .0 0 0 0 .011 0 .103 0 .002 0 .104 0 .103 0 .099 0 .100 0 .036 

Wine 0 .884 0 .869 0 .847 0 .867 0 .819 0 .882 0 .867 0 .867 0 .788 

Table 7 

Results of the experiments with MWK-means on synthetic datasets without noise 

features and with 50% of added noise features. The Calinski–Harabasz (CH) index 

was used here as CVI. The table presents the measures of cluster recovery in terms 

of Adjusted Rand Index against the known ground truth and the related average 

values of the exponent p . The standard deviations of both ARI and p are indicated 

after a slash. 

CVI-based Central 

ARI p ARI p 

No Noise 10 0 0x8-4 0 .607/0.20 2 .306/0.21 0 .606/0.20 2 .856/0.34 

10 0 0x10-5 0 .660/0.18 2 .212/0.17 0 .664/0.18 2 .804/0.39 

10 0 0x12-5 0 .776/0.16 2 .162/0.16 0 .776/0.16 2 .904/0.26 

10 0 0x20-6 0 .926/0.11 2 .050/0.12 0 .934/0.08 2 .798/0.34 

10 0 0x30-10 0 .990/0.01 2 .024/0.14 0 .986/0.02 2 .468/0.47 

10 0 0x40-8 0 .995/0.02 2 .006/0.06 0 .994/0.02 1 .838/0.77 

With noise 10 0 0x8-4 0 .072/0.15 2 .524/0.45 0 .105/0.17 3 .294/0.57 

10 0 0x10-5 0 .114/0.15 2 .712/0.45 0 .183/0.17 2 .940/0.71 

10 0 0x12-5 0 .288/0.26 2 .740/0.52 0 .434/0.25 2 .392/0.53 

10 0 0x20-6 0 .729/0.19 2 .226/0.33 0 .914/0.12 2 .122/0.57 

10 0 0x30-10 0 .801/0.10 2 .270/0.29 0 .903/0.12 2 .054/0.54 

10 0 0x40-8 0 .993/0.01 1 .930/0.18 0 .981/0.03 2 .222/0.53 
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Table 8 

Results of the experiments with MWK-means on synthetic datasets without noise 

features and with 50% of added noise features. The Silhouette width (SW) was used 

here as CVI. The table presents the measures of cluster recovery in terms of Ad- 

justed Rand Index against the known ground truth and the related average values 

of the exponent p . The standard deviations of both ARI and p are indicated after a 

slash. 

CVI-based Central 

ARI p ARI p 

No noise 10 0 0x8-4 0 .675/0.19 2 .558/0.67 0 .665/0.19 2 .870/0.39 

10 0 0x10-5 0 .712/0.16 2 .564/0.65 0 .706/0.17 2 .936/0.30 

10 0 0x12-5 0 .833/0.11 2 .404/0.59 0 .814/0.14 2 .836/0.30 

10 0 0x20-6 0 .930/0.07 2 .608/0.73 0 .933/0.08 2 .822/0.30 

10 0 0x30-10 0 .974/0.02 2 .638/0.75 0 .979/0.02 2 .538/0.42 

10 0 0x40-8 0 .988/0.02 3 .382/1.06 0 .996/0.01 2 .014/0.80 

With noise 10 0 0x8-4 0 .117/0.20 3 .314/0.88 0 .152/0.21 3 .064/0.48 

10 0 0x10-5 0 .246/0.25 3 .026/0.72 0 .331/0.25 2 .688/0.56 

10 0 0x12-5 0 .530/0.35 2 .528/0.72 0 .606/0.29 2 .298/0.47 

10 0 0x20-6 0 .865/0.14 1 .882/0.42 0 .893/0.13 2 .358/0.36 

10 0 0x30-10 0 .939/0.08 2 .378/0.53 0 .962/0.08 2 .356/0.47 

10 0 0x40-8 0 .983/0.03 1 .870/0.50 0 .970/0.04 2 .198/0.59 

Table 9 

Results of the experiments with MWK-means on synthetic datasets without 

noise features and with 50% of added noise features. The minimum of the 

Minkowski objective function W p was used here for selecting an optimal par- 

tition for each considered value of p . The table presents the measures of clus- 

ter recovery in terms of Adjusted Rand Index against the known ground truth 

and the related average values of the exponent p . The standard deviations of 

both ARI and p are indicated after a slash. Unlike the previous tables, here 

we do not report results under ’CVI-based’ because the criterion output is 

not comparable at different values of p . We report solely the results obtained 

using our central Minkowski consensus rule. 

No noise With noise 

ARI p ARI p 

10 0 0x8-4 0 .604/0.20 3 .208/0.43 0 .518/0.25 2 .650/0.52 

10 0 0x10-5 0 .635/0.17 3 .146/0.45 0 .610/0.23 2 .398/0.44 

10 0 0x12-5 0 .743/0.16 3 .083/0.35 0 .738/0.16 2 .462/0.40 

10 0 0x20-6 0 .882/0.14 2 .924/0.43 0 .880/0.11 2 .548/0.37 

10 0 0x30-10 0 .944/0.09 2 .522/0.49 0 .940/0.08 2 .416/0.50 

10 0 0x40-8 0 .970/0.08 2 .128/0.74 0 .969/0.04 2 .258/0.59 

b  

t  

d  

c  

o  

r  
o select optimal partitions show that the W p criterion clearly out-

erforms the SW and CH-based central consensus strategies when

pplied to noisy data, but slightly underperforms when the data do

ot include noise features ( Table 9 ). Moreover, we conducted simi-

ar experiments with the traditional K-means algorithm ( Table 10 ).

he results presented in this table suggest that our central con-

ensus rule does not bring any visible advantage in the case of

raditional K-means. Here, the classical K-means algorithm is gen-

rally more accurate than our consensus strategy, especially when

he SW index is used. 

The results presented in Tables 7, 8, 9 , and 10 , as well as the

verall simulation graphs in Figs. 4 and 5 suggest that the MWK-

eans algorithm generally outperforms classical K-means, and it

ends to do so with a higher discrimination when the consensus

lustering based on our central consensus rule is used. Figs. 4 and

 summarize the results of our simulations obtained for synthetic

ata. The presented curves are the averages taken over the corre-

ation ( Table 4 ) and ARI ( Tables 7, 8, 9 , and 10 ) values obtained

or original and noisy datasets. Fig. 4 shows that the use of the

 p function allows one to obtain very high correlations ( Fig. 4 a)

nd good ARI performances ( Fig. 4 b) even for low-dimensional

ata. Moreover, very high (i.e., close to 1) correlations between the

inkowski profile and the ARI vectors, resulting from the compar-

son of the optimal Minkowski partitions to the ground truth, can
e obtained by using the central consensus strategy with any of

he three considered optimization criteria (i.e., CH, SW, or W p ) for

atasets with large numbers of features ( ≥ 20 in our case) and

lusters ( ≥ 6 in our case), even in the presence of noise. In terms

f ARI ( Fig. 5 ), the proposed central consensus MWK-means algo-

ithm outperforms conventional MWK-means with respect to both
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Table 10 

Results of the experiments with K-means on synthetic datasets without noise 

and with 50% of added noise features. The Silhouette width (SW) and the 

Calinski–Harabasz (CH) index were used here as CVI. The table presents the 

measures of cluster recovery in terms of Adjusted Rand Index against the 

known ground truth and the related standard deviations. The results reported 

under ’CVI-based’ are those for which the resulting clustering was selected 

based solely on CVI. The results reported under ‘Central’ are those obtained 

using our K-means central consensus rule. 

CVI-based Central 

SW CH 

No noise 10 0 0x8-4 0 .649/0.19 0 .596/0.20 0 .583/0.20 

10 0 0x10-5 0 .685/0.18 0 .650/0.19 0 .619/0.19 

10 0 0x12-5 0 .817/0.13 0 .769/0.16 0 .768/0.16 

10 0 0x20-6 0 .933/0.09 0 .913/0.12 0 .889/0.15 

10 0 0x30-10 0 .964/0.07 0 .956/0.08 0 .932/0.11 

10 0 0x40-8 0 .992/0.01 0 .980/0.07 0 .942/0.12 

With noise 10 0 0x8-4 0 .053/0.13 0 .053/0.12 0 .058/0.13 

10 0 0x10-5 0 .078/0.11 0 .069/0.10 0 .064/0.10 

10 0 0x12-5 0 .198/0.25 0 .152/0.19 0 .155/0.20 

10 0 0x20-6 0 .445/0.25 0 .424/0.22 0 .413/0.22 

10 0 0x30-10 0 .810/0.12 0 .730/0.11 0 .746/0.11 

10 0 0x40-8 0 .859/0.18 0 .789/0.19 0 .802/0.22 

Fig. 4. Average correlation (a) and ARI (b) results obtained by the K-means and 

MWK-means algorithms for our synthetic data composed of spherical Gaussian 

clusters. The averages were taken over the results generated for both original 

and noisy datasets. Our central consensus strategy is represented by open circles 

(SW-based MWK-means consensus strategy), open triangles (CH-based MWK-means 

consensus strategy), open rhombuses ( W p -based MWK-means consensus strategy), 

and open squares (K-means central consensus strategy). 

 

 

 

Fig. 5. Average ARI results obtained using SW (a) and CH (b) by the K-means 

and MWK-means algorithms for our synthetic data composed of spherical Gaus- 

sian clusters. The averages were taken over the results generated for both original 

and noisy datasets. Our central consensus strategy is represented by open circles 

(SW-based MWK-means consensus strategy), open triangles (CH-based MWK-means 

consensus strategy), and open squares (K-means central consensus strategy). The 

CVI-based strategies of MWK-means and K-means are represented by gray circles 

(SW-based MWK-means strategy), gray triangles (CH-based MWK-means strategy), 

and gray squares (traditional K-means). 
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cluster validity indices (CH and SW) used in this study. However,

it is not the case of traditional K-means. 

5. Conclusion 

In this paper, we presented a new way of generating a partition

ensemble by employing the framework of Minkowski weighted
-Means clustering. In contrast to conventional approaches, the

inkowski partition ensemble satisfies the properties of Complete-

ess, Refinement and Natural diversity discussed in the Introduc-

ion section. This allows us to shift the focus from diversity to rep-

esentativeness: a good partition ensemble should follow the data

tructure rather than just being simply diverse. The concepts of the

inkowski profile and the central Minkowski partition are intro-

uced to point to a suitable value of the Minkowski exponent p

nd to a good consensus partition. 

In our simulations (see Table 4 ), we were able to obtain strik-

ngly high correlations between the Minkowski profile and the ARI

ector resulting from the comparison of the obtained partitions to

he ground truth. For instance, the average correlation for the 100

atasets under the 10 0 0x40-8 configuration was 0.998, when using

he W p criterion ( Eq. (4) ) to select the optimal Minkowski partition

or a given value of p . When adding noise features to the same

atasets the correlation was still high, with a value of 0.968. This

eans that the Minkowski profile can be used for predicting the

esemblance of the p -specific partitions to the ground truth and,

hus for selecting the optimal value of the Minkowski exponent, p ,

n the framework of the MWK-means analysis. The resulting cen-

ral Minkowski partition is defined through a central consensus

ule. Furthermore, we showed that the high correlation property

lso holds for the conventional K-means algorithm, although to a

esser extent, i.e., only for large ratios of the space dimension over

he number of clusters. 
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The results of our simulations, conducted with the Silhou-

tte and Calinski–Harabasz cluster validity indices as well as the

inkowski objective function W p , original and consensus MWK-

eans and K-means algorithms, and datasets of different sizes

ith and without noise features, suggest the central Minkowski

artition can potentially provide a good guidance regarding the re-

overy of an optimal Minkowski exponent and the ground truth

lusters, especially in the case when noise features are present in

he data, which is typical for most of the real-world data. 

Kuncheva and Vetrov [35] looked at the relationship between

tability and accuracy with respect to the number of clusters, when

nvestigating whether stability can be used as a CVI. These lat-

er authors proposed a combined stability index, based on the ARI

omputation, and defined as the sum of the pairwise individual

nd ensemble stabilities. This index was shown to correlate well

nough with the ensemble accuracy [35] . It would be interesting

o see in the future whether our Minkowski profile and central

inkowski partition can be used for the same purposes. Thus, the

aximum of the Minkowski profile computed over a given interval

f values of p and a given interval of numbers of clusters, K , could

e viewed as both the ensemble validity estimate and the indica-

or of the true number of clusters. On the other hand, the middle

f the longest constant interval of values of p (i.e., most stable in-

erval; see for example the interval [3.7,4.2] in Fig. 2 ) could be also

sed to determine the number of clusters in a dataset. 

Of course we feel that the empirical regularity discovered in

his paper should be converted into a theoretical one by intro-

ucing an adequate mathematical model to both explain the phe-

omenon and to determine conditions at which it holds. 
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