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Abstract

We introduce a category of rigid geometries on singular spaces which
are leaf spaces of foliations and are considered as leaf manifolds. We
single out a special category F0 of leaf manifolds containing the orbifold
category as a full subcategory. Objects of F0 may have non-Hausdorff
topology unlike the orbifolds. The topology of some objects of F0 does
not satisfy the separation axiom T0. It is shown that for every N ∈
Ob(F0) a rigid geometry ζ on N admits a desingularization. Moreover,
for every such N we prove the existence and the uniqueness of a finite
dimensional Lie group structure on the automorphism group Aut(ζ) of
the rigid geometry ζ on N .
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1 Introduction and the Main results

Singular spaces and differential geometry on them are used in many branches
of mathematics and physics (see for example [4], [20], [9]). Orbifold, forming
the full subcategory of studied in this paper category of leaf manifolds of folia-
tions, used in string theory and in theory of deformation quantization. Famous
results of Thurston on the classification of closed 3-manifolds use the classifica-
tion of 2-dimensional orbifolds. Orbifolds were being used by physicists in the
study of conformal field theory, an overview of this aspect of orbifold history
can be found in [1].
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Different approaches to investigation of additional structures on singular
spaces of leaves of foliations are known [10]. Grotendieck presented an ap-
proach founded on consideration of the leaf space M/F of a foliation (M,F )
as a topos Sh(M/F ) formed by all sheaves of M which are invariant under
holonomy diffeomorphisms of (M,F ). Haefliger [11] constructed and used a
classifying space BΓn for foliations of codimension n. Connes introduced a
concept of C∗-algebra of complex valued functions with compact supports on
the holonomy groupoid of a foliation (M,F ) [7]. This C∗-algebra may be con-
sidered as a desingularization of the leaf space M/F. Losik developed of some
ideas of the ”formal differential geometry” of Gel’fand [14] and applied them to
the introduction new characteristic classes on singular leaf manifolds of folia-
tions [13], [15]. At present the usage of holonomy groupoids and, in particular,
of étale groupoids as models of leaf spaces of foliations takes central place [8].

As it was observed by Losik [15], a singular leaf space with a poor topology
may have a rich differential geometry. Our work confirms this assertion.

We investigate rigid geometrical structures on singular spaces which are
leaf spaces of some class of smooth foliations of an arbitrary codimension n on
(m+ n)-dimensional manifolds, where n > 0, m > 0.

The rigid geometrical structures in sense of [22] include large classes of ge-
ometries such as Cartan, parabolic, conformal, projective, pseudo-Riemannian,
Lorentzian, Riemannian, Weyl and affine connection geometries, rigid geome-
tries in the sense of [2] and also G-structures of finite type.

In this work we introduce a concept of rigid geometries on singular spaces
which are leaf spaces of foliations and investigate their automorphism groups.

Following Losik [13], we define a smooth structure on the leaf space M/F
of a foliation (M,F ) by an atlas (Section 4.1). This smooth structure is called
induced by (M,F ). Smooth leaf spaces are called by us leaf manifolds. The
codimension of a foliation is called the dimension of the induced leaf manifold.
Leaf manifolds form a category F.

Further we assume that the foliations under consideration admit Ehres-
mann connections in the sense of Blumenthal and Hebda [5], unless otherwise
specified. An Ehresmann connection for a foliation (M,F ) of codimension n is
an n-dimensional distribution M transverse to (M,F ) which has the property
of vertical-horizontal homotopy (we recall the exact definition in Section 3.1).
An Ehresmann connection has the global differentially topological character.

Definition 1 For a given leaf manifold N , a smooth foliation (M,F ) admit-
ting an Ehresmann connection is called associated with N if the leaf space
M/F with the induced smooth structure becomes an object of the category F

which is isomorphic to N in F.

A rigid geometry on a manifold T (disconnected in general) is a pair ξ =
(P (T,H), β) consisting of an H-bundle P (T,H) over T , where P is equipped
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with a non-degenerate Rk-valued 1-form β agreed with the action of the group
H on P . We say that N ∈ Ob(F) has a rigid geometry ζ modelled on ξ if there
exists an associated foliation (M,F ) admitting ξ as a transverse structure.
Note that for a given leaf manifold N , there are a lot of associated foliations
of different dimensions. We show that the definition of ζ is correct, i.e. it does
not depend on the choice of foliation (M,F ) modelled on ξ which is associated
with N and we prove the following theorem.

Theorem 1 Let N be a leaf manifold and (M,F ) be an associated foliation.
Assume that (M,F ) is a foliation which has a transverse rigid geometry ξ =
(P (T,H), ω) and admits an Ehresmann connection. Then the rigid geometry
ζ = (RF(N , H), α) on N and a structural Lie algebra g0 = g0(ζ) are defined,
where RF is the leaf manifold of the lift foliation (R,F) for (M,F ) with the
induced locally free action of the Lie group H on RF such that RF/H ∼= N ,
α is the induced non-degenerate R

k-valued 1-form on RF , and the Lie algebra
g0 coincides with the structural Lie algebra of (M,F ).

The category of rigid geometries on leaf manifolds from F is denoted by
RF. The group of all automorphisms of ξ ∈ F is denoted by Aut(ξ) and called
by the automorphism group of ξ.

Let RF0 be the full subcategory ofRF objects of which have zero structural
Lie algebra. Let K : RF → F be the covariant functor which forgets a rigid
geometry. Put F0 = K(RF0) and note that F0 is a full subcategory of F.

Emphasize that any n-dimensional orbifold belongs to Ob(F0), and F0 is
a great expansion of the orbifold category. In particular, every leaf manifold
N ∈ Ob(F) admitting a rigid geometry and satisfying the separation axiom
T0, belongs to Ob(F0). Moreover, there are N ∈ Ob(F0) which do not satisfy
the separation axiom T0.

““““““““‘
We prove the following two theorems.

Theorem 2 Let ζ ∈ Ob(RF0) be a rigid geometry on n-dimensional leaf man-
ifold N ∈ Ob(F0). Let (M,F ) be an associated foliation, (R,F) be its lifted
foliation with the projection π : R →M of the H-bundle and ω be the induced
R

k-valued 1-form on R. Then the rigid geometry ζ = (RF (N , H), α) on N
has the following properties:

(i) 1) the leaf manifold RF
∼= W is a smooth manifold with a smooth locally

free action of the structural Lie group H such that N is the orbit space
W/H, 2) the canonical projections πb : R → R/F ∼= W , πF : W →
W/H ∼= N and r :M → M/F ∼= W/H satisfy the equality πF ◦πb = r◦π,
3) α is Rk-valued non-degenerate 1-form on W such that π∗

bα = ω, where
π∗
b is the codifferential of πb;
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(ii) the automorphism group Aut(ζ) of ζ admits a structure of a finite di-
mension Lie group, and its Lie group structure is defined uniquely;

(iii) the dimension of Aut(ζ) satisfies the inequality

dimAut(ζ) ≤ dimW = k,

and k = n + s, where s is the dimension of the Lie group H.

Thus a rigid geometry on every N ∈ Ob(F0) admits desingularization indi-
cated in Statement (i) of Theorem 2.

Using Theorem 2 we prove the following.

Theorem 3 Let N be a leaf manifold. Suppose that the underlying topological
space of N satisfies the separation axiom T0 and N admits a rigid geometry
ζ. Then:

1) the pair (N , ζ) satisfies Theorem 2;
2) there exists an open dense subset N0 of N such that N0 with induced

smooth structure is isomorphic in the category F to an n-dimensional manifold,
which is not necessarily connected and not necessarily Hausdorff.

It is well known that for any smooth orbifold N there exists a Rieman-
nian foliation (M,F ) with an Ehresmann connection for which it is the leaf
space (see, for example [24]). This fact implies that N is a leaf manifold hav-
ing (M,F ) as the associated foliation, and (M,F ) is a proper foliation with
only closed leaves. Therefore for any rigid geometry ζ on an orbifold N it is
necessarily g0 = 0, hence orbifolds form a full subcategory of F0.

The application Theorem 2 gives the following two statements.

Theorem 4 Let N be an n-dimensional orbifold equipped with a rigid geom-
etry ζ = (RF (N , H), α). Then the automorphism group Aut(ζ) of ζ admits a
structure of a finite dimension Lie group, and its Lie group structure is defined
uniquely, the dimension of Aut(ζ) satisfies the inequality

dimAut(ζ) ≤ dimW = n+ s,

where s is the dimension of the structural Lie group H of ζ.

Corollary 1 ([3, Theorem 1]) Let Aut(ζ) be the automorphism group of a
G-structure ζ of finite type and order m on a smooth n-dimensional orbifold
N . Then the group Aut(ζ) admits a unique topology and a unique smooth
structure that makes it into a Lie group, and the dimension of Aut(ζ) satisfies
the inequality

dimAut(ζ) ≤ dimW = n+ dim g + dim g1 + ...+ dim gm−1,

where gi is the i-th prolongation of the Lie algebra g of the group G.
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The classical theorems of Myers and Steenrod, Nomizu, Hano and Morimoto,
Ehresmann on the existence of a Lie group structure in the full automorphism
groups of Riemannian, affine connection geometries and of a finite type struc-
ture on manifolds, respectively, follow from Theorem 4.

Assumptions Throughout this paper we assume for simplicity that all man-
ifolds and maps are smooth of the class Cr, r ≥ 1, and r is large enough which
is necessary for a suitable rigid geometry. All neighborhoods are assumed to be
open and all manifolds are assumed to be Hausdorff unless otherwise specified.

Notations Let X(T ) denote the module of smooth vector fields over the ring
of smooth functions on a manifold T. If M is a smooth distribution on M
and f : K → M is a submersion, then let f ∗M be the distribution on the
manifold K such that (f ∗M)z = {X ∈ TzK | f∗z(X) ∈ Mf(z)}, where z ∈ K.
Let XM(M) = {X ∈ X(M) | Xu ∈ Mu ∀u ∈ M}. Let idM be the identity
mapping of a manifold M . Denote by Fol the foliation category in which
morphisms are smooth maps transforming leaves to leaves.

The symbol ∼= will denote the isomorphism of objects in the corresponding
category.

Acknowledgements. I express my gratitude to Anton Galaev who drew my
attention to the works of M. V. Losik.

The publication was prepared within the framework of the Academic Fund
Program at the National Research University Higher School of Economics
(HSE) in 2016–2018 (grant No 16-01-0010) and by the Russian Academic Ex-
cellence Project ”5-100”.

2 Rigid geometries

2.1 Rigid structures

A manifold that admits an e-structure is called parallelizable. In other words,
a parallelizable manifold is a pair (P, β), where P is a k-dimensional smooth
manifold and β is a smooth non-degenerate R

k-valued 1-form β on P, i.e.,
βu : TuP → R

k is an isomorphism of the vector spaces for each u ∈ P.
Denote by P (T,H) a principal H-bundle with the projection p : P → T .

Suppose that the action of H on P is a right action and Ra is the diffeomor-
phism of P corresponding to an element a ∈ H.

Two principal bundles P (T,H) and P̃ (T̃ , H̃) are called isomorphic if H =
H̃ and there exists a diffeomorphism Γ: P → P̃ such that Γ ◦ Ra = R̃a ◦ Γ
∀a ∈ H, where R̃a is the transformation of P̃ defined by an element a ∈ H.

Definition 2 Let P (T,H) be a principal H-bundle and (P, β) be a paralleliz-
able manifold satisfying the following condition:
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(S) there is an inclusion h ⊂ R
k of the vector space of the Lie algebra h of

the Lie group H into the vector space R
k such that β(A∗) = A ∀A ∈ h,

where A∗ is the fundamental vector field on P corresponding to A.

Such ξ = (P (T,H), β) is called a rigid structure on the manifold T. A pair
(T, ξ) is called a rigid geometry. The Lie group H is called the structural Lie
group of ξ.

Definition 3 Let ξ = (P (T,H), β) and ξ′ = (P ′(T ′, H), β ′) be two rigid struc-
tures with the projections p : P → T and p′ : P ′ → T ′. An isomorphism
Γ: P → P ′ of the H-bundles P (T,H) and P ′(T ′, H) satisfying the equality
Γ∗β ′ = β is called an isomorphism of the rigid structures ξ and ξ′.

Such isomorphism Γ defines a map γ : T → T ′ satisfying the equality p′◦Γ =
γ ◦ p, and γ is a diffeomorphism of T onto T ′. The projection γ is called an
isomorphism of the rigid geometries (T, ξ) and (T ′, ξ′).

2.2 Induced rigid geometries

Let ξ = (P (T,H), β) be a rigid structure on a manifold T with the projection
p : P → T. Let V be an arbitrary open subset of the manifold T, let PV :=
p−1(V ) and βV := β|PV

. Then ξV := (PV (V,H), βV ) is also a rigid structure.

Definition 4 The pair (V, ξV ) defined above is called the induced rigid geom-
etry on the open subset V of T.

2.3 Effectiveness of rigid geometries

Let Aut(ξ) be the automorphism group of a rigid structure ξ = (P (T,H), β). It
is a Lie group as a closed subgroup of the Lie automorphism group Aut(P, β) of
the parallelizable manifold (P, β). Denote by Aut(T, ξ) the group of all auto-
morphisms of the geometry (T, ξ), i.e., Aut(T, ξ) := {γ ∈ Diff(T ) | ∃Γ ∈
Aut(ξ) : p ◦ Γ = γ ◦ p}. Consider the group epimorphism χ : Aut(ξ) →
Aut(T, ξ) : Γ 7→ γ, where γ is the projection of Γ with respect to p : P → T.

Definition 5 Let ξ = (P (T,H), β) be a rigid structure on a manifold T and let
p : P → T be the projection. The group Gauge(ξ) := {Γ ∈ Aut(ξ) | p ◦ Γ = p}
is called the group of gauge transformations of the rigid structure ξ.

Remark that Gauge(ξ) is a closed normal Lie subgroup of the Lie group
Aut(ξ) as the kernel of the group epimorphism χ : Aut(ξ) → Aut(T, ξ).

Definition 6 A rigid structure ξ = (P (T,H), ω) is called effective if for any
open connected subset V in T the induced rigid structure ξV = (PV (V,H), βV )
has the trivial group of gauge transformations, i.e., Gauge(ξV ) = {idPV

}. A
rigid geometry (T, ξ) is said to be effective if ξ is an effective rigid structure.
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We want to emphasize that effective Cartan geometries ([19], [6]), G-
structures of finite type and rigid structures in the sense of [2] are examples of
effective rigid geometries.

2.4 Pseudogroup of local automorphisms

Let (T, ξ) be a rigid geometry, and the topological space of T may be discon-
nected. For arbitrary open subsets V, V ′ ⊂ T an isomorphism V → V ′ of the
induced rigid geometries (V, ξV ) and (V ′, ξV ′) is called a local automorphism
of (T, ξ). The family H of all local automorphisms of a rigid geometry (T, ξ)
forms a pseudogroup of local automorphisms. Denote it by H = H(T, ξ). Re-
call that a pseudogroup H of local diffeomorphisms of manifold T is called
quasi-analytic if the existence of an open subset V ⊂ T and an element γ ∈ H
such that γ|V = idV implies that γ|D(γ) = idD(γ) in the entire (connected)
domain D(γ) on which γ is defined.

The following statement is important in the future.

Proposition 1 A pseudogroup H = H(T, ξ) of all local automorphisms of an
effective rigid geometry (T, ξ) is quasi-analytic.

Proof: Let γ ∈ H be defined on an open connected subset D(γ) of T .
Assume that there exists an open subset V ⊂ D(γ) such that γ|V = idV .
Since γ is the projection of an local automorphism Γ : PD(γ) → PD(γ) of the
rigid geometry ξ, it is necessary Γ ∈ Gauge(ξV ). According to Definition 6 of
effectiveness of the rigid geometry ξ we have ΓPV

= idPV
. As PV ⊂ PD(γ) and

D(γ) is connected, then each connected component P c
D(γ) of PD(γ) contains

some connected component P c
V of PV . Note that Γ preserves P c

D(γ). It is
well known that every automorphism of a connected parallelizable manifold is
uniquely determined by its value at a single point. Since Γ(w) = w for w ∈ P c

V ,
then Γ = idP c

D(γ)
, where P c

D(γ) is an arbitrary connected component of PD(γ).

Hence Γ = idPD(γ)
. This implies γ = idD(γ). ⋄

3 Foliations with transverse rigid geometries.

Foliated bundles

3.1 Ehresmann connections for foliations

The notion of an Ehresmann connection for foliations was introduced by Blu-
menthal and Hebda [5]. We use the terminology from [21]. Let (M,F ) be a
smooth foliation of codimension n ≥ 1 and M be an n-dimensional transversal
distribution on M . All maps and curves considered here are assumed to be
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piecewise smooth. The curves in the leaves of the foliation are called vertical;
the distribution M and its integral curves are called horizontal.

A map H : I1 × I2 → M, where I1 = I2 = [0, 1], is called a vertical-
horizontal homotopy if for each fixed t ∈ I2, the curve H|I1×{t} is horizontal,
and for each fixed s ∈ I1, the curve H|{s}×I2 is vertical. The pair of curves
(H|I1×{0}, H|{0}×I2) is called the base of H .

A pair of curves (σ, h) with a common starting point σ(0) = h(0), where
σ : I1 → M is a horizontal curve, and h : I2 →M is a vertical curve, is called
admissible. If for each admissible pair of curves (σ, h) there exists a vertical-
horizontal homotopy with the base (σ, h), then the distribution M is called an
Ehresmann connection for the foliation (M,F ). Note that there exists at most
one vertical-horizontal homotopy with a given base.

3.2 Foliations with transverse rigid geometries

Let (T, ξ) be a rigid geometry on an n-dimensional manifold T, and the topo-
logical space of T may be disconnected. A foliation (M,F ) of codimension n
on an (m+ n)-dimensional manifold M has a transverse rigid geometry (T, ξ)
if (M,F ) is defined by a cocycle η = {Ui, fi, {γij}}i,j∈J modelled on (T, ξ), i.e.,

1) {Ui | i ∈ J} is an open covering of M ;

2) fi : Ui → T are submersions with connected fibres;

3) γij ◦ fj = fi on Ui ∩ Uj , where

γij : (fj(Ui ∩ Uj), ξfj(Ui∩Uj)) → (fi(Ui ∩ Uj), ξfi(Ui∩Uj))

is a local automorphism of (T, ξ).

Without loss of generality, we will suppose that T = ∪i∈Jfi(Ui) and the
family {(Ui, fi)}i∈J is maximal as it is generally used in the manifold theory.

For short (M,F ) is referred to as a foliation with TRG (i.e. with a trans-
verse rigid geometry).

Recall that the pseudogroup generated by local diffeomorphisms γij, i, j ∈
J , is referred to as the holonomy pseudogroup of (M,F ). It is denoted by
H = H(M,F ).

Definition 7 The cocycle η modelled on (T, ξ) is said to be an (T, ξ)-cocycle.
It is said also that (M,F ) is modelled on the rigid geometry (T, ξ).

Note that an e-foliation (or a transversally parallelizable foliation) is a
foliation admitting a transverse rigid geometry with the trivial structure Lie
group H , i.e. H = {e}.
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3.3 The lifted foliation

We use the construction of the lifted foliation (R,F) for a foliation (M,F )
with TRG from [22]. It generalizes a similar construction for an effective
Cartan foliation [21] and for a Riemannian foliation [16]. For a given foliation
(M,F ) with TRG one may construct a principle H-bundle R(M,H) (called a
foliated bundle) with the projection π : R →M , an H-invariant transversally
parallelizable foliation (R,F) such that π is a morphism of (R,F) onto (M,F )
in the category of foliations Fol. Moreover, there exists a R

k-valued 1-form ω
on R having the following properties:

(i) ω(A∗) = A for any A ∈ h, where A∗ is the fundamental vector field
corresponding to A;

(ii) for any u ∈ R, the map ωu : TuR → R
k is surjective with the kernel

kerω = TF , where TF is the tangent distribution to the foliation (R,F);
(iii) the Lie derivative LXω is zero for any vector field X tangent to the

leaves of (R,F).
The foliation (R,F) is called the lifted foliation.
The restriction π|L : L → L of π to a leaf L of (R,F) is a regular covering

map onto the corresponding leaf L of (M,F ), and the group of deck transfor-
mation of π|L is isomorphic to the germ holonomy group of L which is usually
used in the foliation theory.

If R is disconnected, then we consider a connected component of R and
denote it also R. Without loss of generality we assume that the same Lie
group H acts on R and P .

Let (M,F ) be defined by a (T, ξ)-cocycle η = {Ui, fi, {γij}}i,j∈J . Effective-
ness of ξ guarantees the existence of a unique isomorphism Γij of the induced
rigid structures ξfj(Ui∩Uj) and ξfi(Ui∩Uj), whose projection coincides with γij.
Hence, in the case Ui ∩ Uj ∩ Uk 6= ∅, the equality γij ◦ γjk = γik implies the
equality Γij ◦ Γjk = Γik. The following two equalities are direct corollaries of
the previous equality and the effectiveness of η: Γii = idPi

and Γij = (Γji)
−1.

Remark that the holonomy pseudogroup of (R,F) is generated by Γij ,
i, j ∈ J .

3.4 The structural Lie algebra of an e-foliation with an

Ehresmann connection

At first we prove the following theorem.

Theorem 5 Let (M,F ) be an e-foliation with an Ehresmann connection on
a connected manifold M . Then the closures of its leaves are fibers of a locally
trivial fibration πb :M →W over the manifoldW . On every fiber L, L ∈ F , of
this fibration the induced foliation (L, F |L) is a Lie foliation with dense leaves.
The structural Lie algebra g0 of the Lie foliation (L, F |L) does not depend on
the choice of L ∈ F and g0 is called the structural Lie algebra of (M,F ).
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Proof: Since an e-foliation (M,F ) is a Riemannian one and it admits an
Ehresmann connection, according to [23, Proposition 2] the holonomy group
H = H(M,F ) is complete. Therefore we may apply the results of Salem [18].
According to [18], the closure L of a leaf L is a smooth manifold and the
induced foliation (L, F |L) is a Lie foliation with dense leaves. Let M be an
Ehresmann connection for (M,F ), then N := M ∩ L is an Ehresmann con-
nection for (L, F |L). By [23, Proposition 2], the pseudogroup of (L, F |L) is
complete. Therefore the structural Lie algebra g0 = g0(L, F |L) of the Lie foli-
ation (L, F |L) is defined [18]. Since the foliation (M,F ) admits an Ehresmann
connection, the automorphism group of (M,F ) in the foliation category Fol
acts transitively on the set of its leaves. This means that for every leaves L
and L′ there is an automorpism f : M → M of (M,F ) such that f(L) = L′.
The diffeomorphism f has the property f(L) = L′. Therefore, f |L is an iso-
morphism of the Lie foliations (L, FL) and (L′, FL′) in Fol. It is well known
that the structural Lie algebra of a Lie foliation with dense leaves and with the
complete holonomy pseudogroup is an invariant in the category Fol [12], [18].
Therefore g0(L, FL) = g0(L′, FL′) and the definition g0(M,F ) := g0(L, FL) is
correct.

Observe that the foliation (M,F ) formed by closures of leaves of (M,F ) is
a regular Riemannian foliation with an induced Ehresmann connection, and all
its leaves are closed. By analogy with proof of [16, Theorem 4.2’] we show that
a leaf L ∈ F has a saturated neighborhood U such that (U , FU) is e-foliation.
This implies that leaves of (M,F ) are fibers of a locally trivial fibration which
is denoted by πb :M →W . ⋄

For a complete e-foliations a similar theorem is proved in [16, Theorem 4.2’].

3.5 The structural Lie algebra of a foliation with TRG

admitting an Ehresmann connection

We use notations introdused in Section 3.3. Let (M,F ) be a foliation with
TRG having an Ehresmann conection M. Let (R,F) be the lifted e-foliation
and π : R → M be the projection of H-bundle R(M,H). Observe that the

distribution M̃ = π∗M is an Ehresmann connection for the foliation (R,F).
Applying Theorem 5 to e-foliation (R,F) admitting an Ehresmann connection
we obtain the following statement.

Theorem 6 Let (M,F ) be a foliation with TRG admitting an Ehresmann
connection and let (R,F) be its lifted e-foliation. Then:

(i) the closures of the leaves of the foliation F are fibers of a certain locally
trivial fibration πb : R →W ;
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(ii) the foliation (L,F|L) induced on the closure L is a Lie foliation with
dense leaves with the structure Lie algebra g0, that is the same for any
L ∈ F .

According to Theorem 6 the following definition is correct.

Definition 8 The structural Lie algebra g0 of the Lie foliation (L,F|L) is
called the structural Lie algebra of the foliation (M,F ) with TRG admitting
an Ehresmann connection and is denoted by g0 = g0(M,F ).

Remark 1 If (M,F ) is a Riemannian foliation on a compact manifold, this
notion coincides with the notion of a structural Lie algebra in the sense of
Molino [16].

Definition 9 The fibration πb : R →W satisfying Theorem 5 is called a basic
fibration for (M,F ).

Remark 2 Under stronger conditions of completeness of (M,F ) a similar
theorem is obtained in [22, Theorem 2]. The advantage of Theorem 6 in com-
paring with [22, Theorem 2] is also that the condition of the existence of an
Ehresmann connection for (M,F ) is defined on M in contrast to the complete-
ness of (M,F ) with TRG which is defined on the space of the H-bundle over
M .

3.6 Foliations with the zero structural Lie algebra

The following proposition is proved using Theorem 6 by an analogy with [22,
Proposition 7].

Proposition 2 Let (M,F ) be a foliation with TRG admitting an Ehresmann
connection. Suppose that g0(M,F ) = 0. Let πb : R →W be the basic fibration.
Then:

(i) the map ΦW : W ×H →W : (w, a) 7→ πb(Ra(u)) ∀(w, a) ∈ W ×H,
∀u ∈ π−1

b (w) defines a smooth locally free action of the Lie group H on
the basic manifold W ;

(ii) there is a homeomorphism s : M/F →W/H between the leaf space M/F
and the orbit space W/H satisfying the equality q ◦ πb = s ◦ r ◦ π, where
q : W → W/H and r : M → M/F are the quotient maps;

(iii) the equality π∗
bω

W = ω defines an R
k-valued non-degenerate 1-form ωW

on W such that ωW (A∗
W ) = A, where A∗

W is the fundamental vector field
on W defined by an element A ∈ h ⊂ R

k.
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4 Rigid geometries on leaf manifolds

We want to emphasize that Sections 4.1 and 4.2 (M,F ) is any smooth foliation.
We do not assume the existence of an Ehresmann connection for (M,F ).

4.1 Generalized manifolds of leaf spaces of foliations

Consider a smooth foliation (M,F ) of codimension n on (n+m)-dimensional
manifold M . Denote by r : M → M/F the quotient map onto the leaf
space. Refferring to [13] let us consider the category Rn with objects open
submanifolds of R

n, where morphisms Hom(U, V ) are diffeomorphisms f :
U → V onto f(U) ⊂ V .

At every point x ∈M there exists a chart (V, ϕ) of M adapted to (M,F ).
This means that ϕ(V ) = W × U ⊂ R

m+n ∼= R
m × R

n, where W and U are
open subsets in R

m and R
n respectively and ϕ(x) = (y, z) ∈ W × U . Denote

by pr : Rm ×R
n → R

n the canonical projection. The fibers of the submersion
pr ◦ ϕ : V → U belong to leaves of the foliation (M,F ).

Let r : M → M/F be the projection onto the leaf space M/F of (M,F ).
For a fixed y ∈ W denote by j : U →W × U the embedding such that j(u) =
(y, u) ∈ W ×U ∀u ∈ U. The pair (U, k), where k := r|U ◦ϕ−1 ◦ j : U →M/F ,
is called a Rn-chart (or chart) on M/F .

Definition 10 Two charts (U ′, k′) and (U ′′, k′′) on M/F for which k′(U ′) ∩
k′′(U ′′) 6= ∅, are called compatible if for each point z ∈ k′(U ′) ∩ k′′(U ′′) there
exists a chart (U, k), z ∈ k(U), with two morphisms h′ : U → U ′ and h′′ :
U → U ′′ in the category Rn satisfying the following conditions k′ ◦ h′ = k and
k′′ ◦ h′′ = k.

Definition 11 A smooth atlas onM/F is a family of charts A = {(Ui, ki) | i ∈
J} satisfying the following two conditions:

1) the set {ki(Ui) | i ∈ J} is a covering of M/F , i.e. ∪i∈Jki(Ui) =M/F ;
2) every two charts from A are compatible.
A smooth atlas A is maximal if it is maximal relatively inclusion.

Definition 12 A pair (M/F,A), where A is a maximal atlas on M/F is
referred to as a leaf manifold. This leaf manifold is called induced by the
foliation (M,F ) and it is denoted by N . The number n is called the dimension
of N .

Any atlas A defines the maximal atlas Â as the set of charts which are
compatible with all charts from A, hence A defines a smooth structure on
M/F .
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Definition 13 Let (N1,A1) and (N2,A2) be two n-dimensional leaf manifolds.
A morphism of N1 to N2 is a map h : N1 → N2 such that for each chart
(U, k) ∈ A1 the pair (U, h ◦ k) is a chart from A2.

Denote by F the category of leaf manifolds of a fixed dimension n.

Definition 14 A foliation (M ′, F ′) is referred to as associated with a leaf
manifold N if (M ′, F ′) induces a leaf manifold N ′ on the leaf space M ′/F ′,
and N ′ is isomorphic to N in the category F.

Remark 3 We emphasize that Definition 12 is equivalent to the definition a
smooth structure on a leaf space in the sense of [14]. It is known [14, Theo-
rem 2] that for every foliation there exists a smooth atlas on the leaf space.

Remark 4 On a leaf manifold N the tangent bundle TN , differentials and
codifferentials of smooth maps, vector-valued forms are defined [13], [15].

4.2 The pseudogroup approach to leaf manifolds

Let (N ,A) be a leaf manifold and (M,F ) be an associated foliation. Then
the topological space of N is the leaf space M/F . Denote by H = H(M,F )
the holonomy pseudogroup of (M,F ). If the foliation (M,F ) is given by an
T -cocycle {Ui, fi, {γij}}i,j∈J , then H is generated by local diffeomorphisms γij,
and T = ∪i∈Jfi(Ui). Let T/H be the quotient space. with the quotient map
q : T → T/H. It is easy to show that q : T → T/H is continuous and open
map. There exists a homeomorphism θ :M/F → T/H defined by the equality
θ([L]) := [H.v], where [L] is a leaf L = L(x) considered as a point of M/F
and [H.v] ∈ T/H is the orbit H.v of a point v = fi(x) for some submersion
fi from the T -cocycle. Let us identify through θ the topological spaces M/F
and T/H.

Consider a chart (V, ψ) of the manifold T . Then U = ψ(V ) is an open
subset in R

n. It is easy to see that the set B formed by the charts (U, k) where
U = ψ(V ) and k = q ◦ ψ−1 : U → M/F is an atlas on M/F , and B is
compatible with the atlas A of N induced by the foliation (M,F ).

Now let us show that the atlas B = {(Ui, ki) | i ∈ J} defines a pseudogroup

H̃ of local diffeomorpphisms of the n-dimensional manifold T̃ =
∐

i∈J Ui. Let
(Ui, ki) and (Uj , kj) be two charts from A and z ∈ ki(Ui)∩kj(Uj). According to
the compatibility of these charts there exist a chart (U, k) such that z ∈ k(U)
and two morphisms hi : U → Ui, hj : U → Uj in the category Rn satisfying
the equalities ki ◦ hi = k and kj ◦ hj = k. Note that hi(U) and hj(U) are open

subsets of T̃ . Therefore the map γ̃ij := hi ◦h
−1
j |hj(U) : hj(U) → hi(U) is a local

diffeomorphism of T̃ . The set {γ̃ij | i, j ∈ J} generates a pseudogroup H̃ of

local diffeomorphisms of T̃ . This pseudogroup is equivalent to the holonomy
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pseudogroup of any foliation associated with the leaf manifold N in the terms
of the work [18]. Since the holonomy pseudogroup of a foliation is defined up
to an equivalence, we have the following statement.

Proposition 3 Any leaf manifold N with an associated foliation (M,F ) may
be defined by the indicated above atlas B defined by the holonomy pseudogroup
H(M,F ) of (M,F ).

Every two foliations (M,F ) and (M ′, F ′) associated with N have the same
holonomy pseudogroup.

Thus without loss of generality we consider the pseudogroup on T̃ defined
by the atlas B as the holonomy pseudogroup of an associated foliation (M,F )

and use notations T̃ = T , H̃ = H = H(N ) = H(M,F ).
In the case when the smoothness is C∞, we may define the algebra of

C∞-smooth functions C∞(N ) on N as the algebra of H-invariant C∞-smooth
functions on T. The Lie algebra of C∞-smooth vector fields X(N ) on N is
defined as the Lie algebra of all derivations of the algebra of functions C∞(N ).

4.3 Rigid geometries on leaf manifolds and their struc-

tural Lie algebras

The proof of Theorem 1 Consider any n-dimensional leaf manifold N .
Let (M,F ) be an associated foliation, then M/F is the topological space of
N . Assume that (M,F ) admits a transverse rigid geometry ξ = (P (T,H), β).
This is equivalent to the existence of a lifted foliation (R,F), where R(M,H)
is a principal H-bundle with the projection π : R → M , and the R

k-valued
1-form ω on R satisfying the conditions (i) − (iii) from Section 3.3. Denote
by RF the leaf manifold induced by (R,F).

A leaf L considered as a point of the leaf space is denoted by [L]. Let
r : M → N and rF : R → RF be the projections onto the leaf manifolds N
and RF respectively. Since π : R →M is a morphism in the foliation category,
the following map πF : RF → N : [L] 7→ [π(L)],L ∈ F , is defined and satisfies
the equality πF ◦ rF = r ◦ π.

Due to H-invariance of (R,F), the map

Φ : RF ×H → RF : [L] 7→ [Ra(L)], L ∈ F , a ∈ H,

defines a right action of the Lie group H on RF . The isotropy subgroup H[L] =
{a ∈ H |Ra(L) = L} is a discrete subgroup of H as the deck transformation
group of the regular covering πL : L → L. Therefore the action Φ ofH onRF is
locally free, i.e. all isotropy groups are discrete subgroups of the Lie group H .
The orbit space RF/H is homeomorphic to N . Let us identify N with RF/H .
We use the notation RF(N , H) for the quotient map πF : RF → N ∼= RF/H.
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Let (M,F ) and (M ′, F ′) be two associated foliations with the same leaf
manifold N . According to Proposition 3 they have the common holonomy
pseudogroup H = {γij | i, j ∈ J} of local automorphisms of the rigid geometry
ξ = (P (T,H), β). Due to the efficiency of the rigid geometry ξ for each γij
there exists a unique local automorphism Γij of ξ lying over γij relative to the
projection p : P → T. Emphasize that S = {Γij | i, j ∈ J} is the pseudogroup
of the both lifted foliations (R,F) for (M,F ) and (R′,F ′) for (M ′, F ′). So we
will use the following notation S = S(N , ξ). Since RF = P/S is defined by S,
the leaf manifold RF is not depend on the choice of an associated foliation.

Every Γij acts freely on P as a local automorphism of the parallelizable
manifold (P, β). The free action of the pseudogroup S = {Γij | i, j ∈ J} on P
implies the free action on TP of the pseudogroup S∗ := {Γij∗ | i, j ∈ J} formed
by differentials of local transformations belonging to S, and TRF = TP/S∗.
Therefore the tangent space TzRF is a vector space, and the dimension of
TzRF is equal to k = dim(P ) at any point z ∈ RF . As Γ∗

ijβ = β, i, j ∈ J, a
non-degenerate Rk-valued 1-form α is defined on RF and satisfies the equality
µ∗α = β, where µ : P → P/S = RF is the quotient map. We emphasize that
α coincides with the 1-form defined by the following equality π∗

Fα = ω, where
ω is the basic R

k-valuated 1-form on R satisfying the conditions (i)− (iii) in
Section 3.3.

Since (R,F) is a Riemannian foliation with the Ehresmann connection

M̃ = π∗M where M is an Ehresmann connection for (M,F ), according to [23,
Proposition 2] the holonomy pseudogroup S of (R,F) is complete. By [18,
Theorem 3.1] the structural Lie algebra g0(S) is defined, and this Lie algebra
is isomorphic to the structural Lie algebra g0(R,F) of (R,F). According to
Definition 8 g0(M,F ) := g0(R,F). As S = S(N , ξ), then g0 = g0(S) is not
depend on the choice of an associated foliation (M,F ). �

Definition 15 The pair ζ = (RF (N , H), α) defined in the proof of Theorem
1 is called the rigid geometry on the leaf manifold N modelled on the trans-
verse rigid geometry ξ = (P (N,H), β) of an associated foliation (M,F ). The
structural Lie algebra g0 of (M,F ) is called by the structural Lie algebra of the
rigid geometry ζ on N and is denoted by g0 = g0(ζ).

According to the proof of Theorem 1 Definition 15 is correct, i.e. g0 does not
depend on the choice of the associated foliation (M,F ).

We want to emphasize that the rigid geometry ζ = (RF (N , H), α) and the
structural Lie algebra g0 depend only on the pseudogroup H of local automor-
phisms of the transverse geometry (T, ξ) on which (M,F ) is modelled.
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5 Automorphisms of rigid geometries on leaf

manifolds

5.1 The category of rigid geometries on leaf manifolds

Definition 16 Let ζ = (RF (N , H), α) and ζ ′ = (R′
F ′(N ′, H ′), α′) be two rigid

geometries on n-dimensional leaf manifolds N and N ′ respectively. A map
Γ : RF → R′

F ′ is called a morphism ζ → ζ ′ if H = H ′ and Γ satisfies the
following two conditions:

1) Γ∗α′ = α, 2) Γ ◦R′
a = Ra ◦ Γ ∀a ∈ H.

Thus rigid geometries on leaf manifolds form the category RF. Let RF0 be
the full subcategory of RF objects of which have zero structural Lie algebra.

Every Γ ∈Mor(ζ, ζ ′) defines the projection γ : N → N ′ such that π′
F ′◦Γ =

γ ◦ πF , where πF : RF → N ∼= RF/H and π′
F ′ : R′

F ′ → N ′ ∼= R′
F ′/H are

the quotient maps. There is a covariant functor K : RF → F forgetting rigid
geometries. Hence K(ζ) = N for each ζ ∈ Ob(RF) and K(Γ) = γ for every
Γ ∈Mor(ζ, ζ ′). Let F0 := K(RF0).

5.2 Proof of Theorem 2.

Consider a rigid geometry ζ = (RF(N , H), α) ∈ RF0 on n-dimensional leaf
manifold N , then g0(ζ) = 0. In accordance with Proposition 2 in this case
the leaves of the lifted foliation (R,F) are fibers of the locally trivial basic
fibration πb : R → W , and the leaf space R/F is W . Therefore there exists an
isomorphism f : RF →W in the category F0 of the leaf manifold RF onto the
manifoldW of dimension dim(W ) = n+s, where n = dim(N ) and s = dim(H).
Moreover, f ∗ωW = α, hence f is an isomorphism of parallelelizable manifolds
(RF , α) and (W,ωW ). Let us identify (RF , α) with (W,ωW ) through f , then
RF = W and α = ωW . Therefore the statement (i) of Theorem 3 follows from
Propositions 2.

As it is well known, the automorphism group A(W,α) = {h ∈
Diff(W ) | f ∗α = α} of the parallelisable manifold (W,α) admits a Lie group
structure, and its dimension is not grater than dim(W ). According to Defini-
tion 16, the group Aut(ζ) of all automorhisms of ζ in the category F is equal
to

Aut(ζ) = {h ∈ Diff(W ) | h∗α = α, RW
a ◦ h = h ◦RW

a ∀a ∈ H}.

Hence, Aut(ζ) = {h ∈ A(W,α) |RW
a ◦ h = h ◦ RW

a , a ∈ H}. This implies that
Aut(ζ) is a closed subgroup of the Lie group A(W,α). It means that Aut(ξ)
admits a Lie group structure, and its dimension is not grater than dim(W ).
Since Aut(ζ) is a transformation group, Aut(ζ) is equipped with the compact-
open topology and a Lie group structure on Aut(ζ) is unique [17, Theorem VI].
Thus statements (ii) and (iii) of Theorem 2 are proved. �
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5.3 Proof of Theorem 3.

A smooth foliation (M,F ) is called proper if each its leaf is an embedded
submanifold in M . A subset M0 of M is said to be saturated if it is a union
of leaves of (M,F ).

Recall that a topological space satisfies the separation axiom T0 if for any
different points a and b there exists a neighborhood at least one of them con-
tains no other point. As it is known [25, Lemma 4.1], a foliation is proper
if and only if its leaf space satisfies the separation axiom T0. Assume that
a leaf manifold N satisfies the separation axiom T0. Hence according to the
mentioned above lemma every associated foliation (M,F ) is proper. Assume
that (M,F ) is a foliation with transversal rigid geometry ξ. According to
Theorem 1 the induced rigid geometry ζ on N is defined. Consider the lifted
foliation (R,F) for (M,F ). By the assumption (M,F ) admits an Ehresmann
connection M. Preserving the notations used above we denote by π : R →M
the projection of the H-bundle R(M,H). Then M̃ = π∗M is an Ehresmann
connection for (R,F).

It is known that any foliation has a leaf with the trivial germ holonomy
group. Thus there is a proper leaf with the trivial germ holonomy group of
the foliation (M,F ). This implies the existence of a proper leaf of the e-
foliation (R,F) admitting an Ehresmann connection. Therefore (R,F) is also
a proper foliation. Since the closure L of a leaf L ∈ F is a minimal set, in the
case when L 6= L, the closure L contains only non-proper leaves. Hence it is
necessary L = L. This implies that the structural Lie algebra g0 = g0(ζ) is zero.
Therefore the rigid geometry (N , ζ) satisfies Theorem 2 and the statement 1)
of Theorem 3 is proved.

Similarly to [25, Theorem 1.1] for proper Cartan foliations admitting Ehres-
mann conections, we prove the following statement.

Theorem 7 Let (M,F ) be an arbitrary proper foliation of codimension n with
transverse rigid geometry ξ = (P (T,H), β) admitting an Ehresmann connec-
tion.

Then there exists a not necessarily connected, saturated, dense open subset
M0 of M such that the induced foliation (M0, F |M0) is formed by the fibers of
a locally trivial fibration p :M0 → B with the standard fiber L0 over a smooth
n-dimensional (not necessarily Hausdorff) manifold B.

Now the statement 2) of Theorem 3 follows from Theorem 7. �
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183–194.

[12] A. Haefliger. Pseudogroups of local isometries. Differential Geometry, Pro-
ceedings Vth International Colloquium on Differential Geometry, Santiago
de Compostela 1984, L. A. Cordero (Ed.), Pitman, London, 1985.

[13] M. V. Losik, Categorical differential geometry, Cahiers de topol.et geom.
diff. cat. 35, no 4 (1994), 274–290.

[14] M. V. Losik, On some generalization of a manifold and its characteristic
classes. Funktional Anal. i Prilozhen. 24, no 1 (1990), 26–32.

[15] M. V. Losik, Orbit spaces and leaf spaces of foliations as generalized man-
ifolds. ArXiv: Math. 1501. 04993v2 (1 Aug 2017).

[16] P. Molino, Riemannian foliations. Progress in Mathematics, 73.
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[20] J. Śniatycki, Differential Geometry of Singular Spaces and
Reduction of Symmetry, Cambridge University Press. 2013.
https://doi.org/10.1017/CBO97811391369.

[21] N. I. Zhukova, Minimal sets of Cartan foliations, Proc. Steklov Inst. Math.
256 (2007), 105–135.

[22] N. I. Zhukova, Complete foliations with transverse rigid geometries and
their basic automorphisms, Bulletin of Peoples’ Friendship University of
Russia, Ser. Math. Information Sci. Phys. no. 2 (2009), 14–35.

[23] N. I. Zhukova., Global attractors of complete conformal foliations. Sbornik:
Mathematics. 203, no. 3 (2012), 380–405.

[24] N. I. Zhukova, Local and global stability of compact leaves and foliations,
Journal of Mathematical Physics, Analysis, Geometry. 9, no. 3 (2014),
400–420.

[25] N. I. Zhukova, Typical properties of leaves of Cartan foliations with Ehres-
mann connection, Journal of Mathematical Sciences, New York. 219, no. 1
(2016), 112–124.

19


	1 Introduction and the Main results
	2 Rigid geometries
	2.1 Rigid structures
	2.2 Induced rigid geometries
	2.3 Effectiveness of rigid geometries
	2.4 Pseudogroup of local automorphisms

	3 Foliations with transverse rigid geometries. Foliated bundles
	3.1 Ehresmann connections for foliations
	3.2 Foliations with transverse rigid geometries
	3.3 The lifted foliation
	3.4 The structural Lie algebra of an e-foliation with an Ehresmann connection
	3.5 The structural Lie algebra of a foliation with TRG admitting an Ehresmann connection
	3.6 Foliations with the zero structural Lie algebra

	4 Rigid geometries on leaf manifolds 
	4.1 Generalized manifolds of leaf spaces of foliations
	4.2 The pseudogroup approach to leaf manifolds
	4.3 Rigid geometries on leaf manifolds and their structural Lie algebras

	5 Automorphisms of rigid geometries on leaf manifolds
	5.1 The category of rigid geometries on leaf manifolds
	5.2 Proof of Theorem ??.
	5.3 Proof of Theorem ??.


