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Abstract We study the computational complexity of the dominating set problem for
hereditary graph classes, i.e., classes of simple unlabeled graphs closed under deletion
of vertices. Every hereditary class can be defined by a set of its forbidden induced
subgraphs. There are numerous open cases for the complexity of the problem even
for hereditary classes with small forbidden structures. We completely determine the
complexity of the problem for classes defined by forbidding a five-vertex path and any
set of fragments with at most five vertices. Additionally, we also prove polynomial-
time solvability of the problem for some two classes of a similar type. The notion of a
boundary class is a helpful tool for analyzing the computational complexity of graph
problems in the family of hereditary classes. Three boundary classes were known for
the dominating set problem prior to this paper. We present a new boundary class for
it.

Keywords Dominating set ·Computational complexity ·Polynomial-time algorithm ·
Boundary class

1 Introduction

We consider only simple unlabeled graphs in the paper. For a graph G, a subset
D ⊆ V (G) is said to be a dominating set if each element of V (G) \ D has a neighbor
in D. We also say that V ′ ⊆ V (G) dominates V ′′ ⊆ V (G) if each element of V ′′ has
a neighbor in V ′. The size of a minimum dominating set of G is called the domination
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number of G denoted by γ (G). The dominating set problem is to recognize whether
γ (G) ≥ k or not for given a simple graph G and natural k. It is NP-complete for the
class of all graphs and remains intractable under its substantial restrictions (Bertossi
1984; Clark et al. 1990; Garey and Johnson 1979; Yannakakis and Gavril 1980).

A graph H is called an induced subgraph of G if H is obtained from G by deletion
of vertices. If H is obtained from G by deletion of vertices and edges, then H is
said to be a subgraph of G. A class is a set of graphs closed under isomorphism. A
class of graphs is called hereditary if it is closed under deletion of vertices. A strongly
hereditary class is a hereditary class that is additionally closed under deletion of edges.
It is well known that any hereditary (and only hereditary) class X can be defined by
a set of its forbidden induced subgraphs Y . We write X = Free(Y) in this case, and
graphs in X are said to be Y-free. If Y = {G}, then we write “G-free” instead of
“{G}-free”. There is a unique minimal under inclusion set Y such that X = Free(Y)

denoted by Forb(X ). If Forb(X ) is finite, then X is said to be finitely defined.
There are several papers devoted to obtaining a complete complexity dichotomy

within some subfamilies of the hereditary graph classes family (AbouEisha et al. 2014;
Alekseev 2003; Broersma et al. 2012; Golovach and Paulusma 2014; Golovach et al.
2015, 2013; Korobitsyn 1992; Kral’ et al. 2001; Kratsch and Schweitzer 2012; Lozin
2008; Lozin and Malyshev 2015; Malyshev 2013, 2014a, b; Schweitzer 2014). There
are two natural restrictions to classify. The first of them is bounding the number of
elements in Y , the second one is bounding the sizes of these elements.

An independent set in a graph is a subset of its pairwise nonadjacent vertices. The
size of amaximum independent set of a graphG is denoted byα(G). A clique in a graph
is a subset of its pairwise adjacent vertices. The size of a maximum clique of a graphG
is denoted by ω(G). A vertex cover of a graph is a subset of its vertices such that any
edge is incident to a vertex of the set. The size of a minimum vertex cover of a graph
G is denoted by β(G). The independent set, vertex cover, and clique problems are to
verify for a given graph G and a natural number k whether α(G) ≥ k, β(G) ≤ k, and
ω(G) ≥ k, respectively. These three problems are related, since for any graph G we
haveα(G)+β(G) = |V (G)| andα(G) = ω(G), whereG is the complement ofG. So,
all three problems are polynomially equivalent. There is known a complete complexity
dichotomy for the independent set problem and the family of hereditary classes defined
by forbidden induced subgraphs with at most five vertices followed from the papers of
Alekseev (1983, 1999), Lozin and Mosca (2004), Lokshtantov et al. (2014). Namely,
the problem is polynomial for Free({G1, . . . ,Gk}) with max |V (Gi )| ≤ 5 if one of
the graphs G1, . . . ,Gk is the disjoint sum of paths, and it is NP-complete for all other
classes in the subfamily. Thus, there exists a dichotomy within the those subfamily
for all three problems.

The vertex k-colorability problem is to recognize whether the set of vertices of a
given graph can be partitioned into at most k independent sets. The edge k-colorability
problem for a graph is the vertex k-colorability problem for its line graph. The chro-
matic number problem for a given graph and a number k is to recognize whether the
set of its vertices can be partitioned into at most k independent sets. The chromatic
number problem is polynomial for Free({G}) if G is an induced subgraph of a four-
vertex path or a three-vertex path plus a vertex, and the problem is NP-complete for
all other G (Kral’ et al. 2001). The vertex 3-colorability problem is polynomial-time
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solvable for a class in {Free({G}) : |V (G)| ≤ 6} if G is the disjoint union of simple
paths and NP-complete in all other choices of G (Broersma et al. 2012). A similar
result is known for the vertex 4-colorability problem and the five-vertex barrier for
G (Golovach et al. 2013). The complexity of the vertex 3-colorability problem for
all pairs of forbidden induced subgraphs with at most five vertices was discovered by
Malyshev (2013). A similar result was obtained for the edge 3-colorability problem
in (Malyshev 2014a). For all but three cases, the complexity of the chromatic number
problem was discovered for hereditary classes having forbidden induced structures
with at most four vertices by Lozin and Malyshev (2015).

A complete complexity dichotomy for the dominating set problem is known within
the family of hereditary graph classes defined by a single forbidden induced subgraph
(Korobitsyn 1992). Namely, the problem is polynomial-time solvable for Free({G}) if
G is a path with at most four vertices plus an arbitrary number of isolated vertices, and
it is NP-complete for all other choices of G. But, there are numerous “blind-spots”
for the complexity of the problem even for classes defined by two small forbidden
induced subgraphs (Information system on graph classes and their inclusions 2015a).
A dichotomy for the dominating set problemwithin the subfamily of hereditary classes
defined by forbidding a five-vertex path and any set of fragments with at most five
vertices is the main result of this paper.

The notion of a boundary graph class is a helpful tool for analyzing the computa-
tional complexity of graph problemswithin the family of finitely defined graph classes.
Namely, a graph problem is NP-complete for a finitely defined class if and only if it
includes a boundary class for the problem, unless P = N P . There are known three
boundary classes for the dominating set problem. We present a fourth class for it in
the paper.

2 Notation

We use the standard notation Pn,Cn, On, Kn for the simple path, the chordless cycle,
the empty and complete graphwith n vertices, respectively. A graph Kp,q is a complete
bipartite graph with p vertices in the first part and q in the second. A graph f ork is
obtained from a K1,3 by subdividing an arbitrary its edge. A graph orb is obtained
from a K4 by adding a new vertex and an edge connecting the added vertex to one
vertex of a K4. Similarly, a graph sinker is obtained by adding a vertex and two edges
incident to the new vertex and two vertices of K4. A graph bull is obtained from a
P5 by connecting the second and fourth its vertices by an edge. A graph cricket is
obtained from a K3 by adding two vertices and two edges incident to the new vertices
and the same vertex of a K3. Graphs dart and ki te are obtained from a K4 minus an
edge by adding a vertex and an edge incident to the new vertex and to a degree three
or a degree two vertex, respectively. A graph gem is obtained from a P4 by adding a
new vertex and four edges incident to the new vertex and all vertices of P4. A graph
hammer is obtained from a f ork by adding a new edge incident to two leaves adjacent
to the degree three vertex.

For a graph G, a subset V ′ ⊆ V (G), and a vertex x ∈ V (G) \ V ′, NV ′(x) is the
set V ′ ∩ N (x). Notice that writing NV ′(x) we mean x /∈ V ′ without specifying of
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that. Two vertices x ∈ V (G) \ V ′ and y ∈ V (G) \ V ′ are said to be V ′-equivalent if
NV ′(x) = NV ′(y). A formula N (x) denotes the neighborhood of a vertex x, N [x] �
N (x) ∪ {x} is the closed neighborhood of x .

A sum G1 + G2 is the disjoint union of G1 and G2 with non-intersected sets of
vertices. A graph kG is the disjoint union of k copies of G. For a graph G, a vertex
x ∈ V (G) and an edge e ∈ E(G), the formulae G \ {x} and G \ {e} denote the
subgraphs of G obtained by deleting x or e, respectively.

3 Boundary graph classes for the dominating set problem

The notion of a boundary graph class is a helpful tool for analyzing the computa-
tional complexity of graph problems within the family of hereditary graph classes.
This notion was originally introduced by Alekseev for the independent set problem
(Alekseev 2003). It was applied for the dominating set problem later (Alekseev et al.
2004). A study of boundary graph classes for some graph problems was proceeded in
the paper of Alekseev et al. (2007), where the notion was stated in its most general
form. Let us give necessary definitions.

Let � be an NP-complete graph problem. The term “graph problem” is not defined
here, and it is understood intuitively as a question on some input graph. A hereditary
graph class X is called �-easy if � can be solved in polynomial time for its graphs.
If the problem � is NP-complete for graphs in a hereditary class, then this class is
called �-hard. A class of graphs is said to be �-limit if this class is the intersection
of an infinite monotonically decreasing sequence of �-hard classes. In other words,
X is �-limit if there is an infinite sequence X1 ⊇ X2 ⊇ . . . of �-hard classes such

that X =
∞⋂
k=1

Xk . Each �-hard class is �-limit. A minimal under inclusion �-limit

class is called �-boundary.
The following theorem certifies the significance of the boundary class notion (Alek-

seev et al. 2007).

Theorem 1 A finitely defined class X is �-hard if and only if it contains some �-
boundary class.

So, by the theorem, the notion of a boundary class expresses the computational
complexity of � in “topological” terms by the inclusion relation. Theorem 1 can
be reformulated by an incidence table if Forb(X ) = {G1,G2, . . . ,Gk} is known.
Rows of the table correspond toG1,G2, . . . ,Gk , columns to�-boundary classes. We
write one in (i, j)-cell if Gi belongs to j th �-boundary class and zero otherwise. The
problem � is polynomial for X if and only if each column of the table is nonzero,
otherwise P = N P . One more interesting result is a dichotomy claiming that any
finitely defined class is either �-easy or �-hard, unless P = N P .

Three boundary graph classes are known for the dominating set problem (Alekseev
et al. 2004). One of them is S, which consists of all forests with at most three leaves
in each connected component. The next one is T consisting of line graphs of graphs
in S. The third class is Q, whose graphs are obtained by acting some mapping on
elements of S. For a graph G = (V, E), a graph Q(G) has vertex set V ∪ E and edge
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set {(vi , v j ) : vi , v j ∈ V }∪ {(v, e) : v ∈ V, e ∈ E, v is incident to e}. The classQ is
the set {G : ∃H ∈ S,G = Q(H)} plus the set of all induced subgraphs of its graphs.

4 Polynomial-time solvability of the dominating set problem for some
graph classes

4.1 The class Free({P5, dar t})

Lemma 1 Every connected {P5, dart}-free graph is either gem-free or its domination
number is at most four.

Proof Let G be a connected graph that contains a gem as an induced subgraph. We
consider an induced gem dominating a maximum possible number of vertices. Its
vertices are denoted by x1, x2, x3, x4, y, where (x1, x2, x3, x4) is an induced path of
the copy.Wewill show that {x1, x2, x3, x4} is a dominating set ofG, and this fact yields

the lemma.Assume, there is a vertex z1 ∈
4⋃

i=1
N (xi ) having a neighbor z2 /∈

4⋃

i=1
N (xi ).

As G is {P5, dart}-free, any neighbor of y must belong to
4⋃

i=1
N (xi ) and N (x1) ⊆

4⋃

i=2
N (xi ), N (x4) ⊆

3⋃

i=1
N (xi ). For the same reason, z1 has two or three neighbors in

{x1, x2, x3, x4}. If there are three such neighbors, then (z1, x1) and (z1, x4) are edges
of G (as G is dart-free). To avoid an induced P5, z1 must be adjacent to y. Hence, G
contains a dart as an induced subgraph. If N (z1) ∩ {x1, x2, x3, x4} = {x ′, x ′′}, then
z1 also must be adjacent to y. If (x ′, x ′′) /∈ E(G) or {x ′, x ′′} = {x2, x3}, then G has
an induced dart . If {x ′, x ′′} = {x1, x2} or {x ′, x ′′} = {x3, x4}, then y, z1, x2, x3, x4 or
y, x1, x2, x3, z1 induce a gem, and they dominate more vertices than y, x1, x2, x3, x4.
We have a contradiction with the choice above. �

Theorem 2 The dominating set problem is polynomial in the class Free({P5, dart}).
Proof By Lemma 1, the dominating set problem for Free({P5, dart}) can be poly-
nomially reduced to the same problem for Free({P5, gem}). The last class is easy for
the problem (Brandstädt et al. 2005). Hence, the theorem holds. �


4.2 The classes Free({P5, orb}), Free({P5, sinker}),
Free({P5, ki te}), Free({P5, cr i cket}), Free({P5, f ork})

It iswell-known that each connected P5-free graphhas a dominating P3 or a dominating
clique (Bacsó and Tuza 1990).

Lemma 2 The domination number of any connected {P5, orb}-free graph is at most
three.

Proof Let G ∈ Free({P5, orb}) be a connected graph. If it has a dominating P3,
then γ (G) ≤ 3. Hence, we may assume that G has a dominating clique Q. Let
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{x1, x2, . . . , xk} ⊆ Q be a minimal dominating set of G. For every i , there is a vertex

yi ∈ V (G)\Q such that yi ∈ N (xi )\
n⋃

j=1, j �=i
N (x j ) (due to theminimality). Therefore

k ≤ 3, as y1, x1, x2, x3, x4 induce an orb otherwise. So, γ (G) ≤ 3. �

The dominating set problem for P5-free graphs can be polynomially reduced to the

same problem for connected P5-free graphs having dominating cliques with at least
four vertices. Moreover, for a P5-free graph, a dominating clique can be computed in
polynomial time if one exists (Bacsó and Tuza 1990). In the next lemmas, we assume
that G is a P5-free graph with known such a clique, which is denoted by Q. We also
assume that Q is maximal under inclusion, as each clique can be fulfilled to a maximal
one in polynomial time.

Two vertices x /∈ Q and y /∈ Q are said to be non-congruent if NQ(x) �= NQ(y)
and max(|NQ(x)|, |NQ(y)|) ≤ |Q| − 2. A maximum set of pairwise non-congruent
vertices is denoted by Φ. A formula Q1 denotes {x ∈ Q : ∃y /∈ Q[(x, y) ∈
E(G), |NQ(y)| = 1]}, N ′(x) � {y : (y, x) ∈ E(G), |NQ(y)| = 1} for x ∈ Q1.

Lemma 3 For every connected {P5, sinker}-free graph G we have γ (G) ≤ 4 or
γ (G) = |Φ| = |Q1|.
Proof Since G is sinker -free, any element of V (G) \ Q has |Q| − 1 or 1 neighbors
in Q. Hence, γ (G) ≤ 2 if Q1 is empty. Suppose that Q1 is not empty, and let
Q1 = {x1, x2, . . . , xk}. Clearly, |Q1| = |Φ|. At first, we will show if there are two
adjacent vertices yi ∈ N ′(xi ) and y j ∈ N ′(x j ), then {xi , x j , yi , y j } is a dominating
set and γ (G) ≤ 4. Indeed, if there is a non-dominated vertex z′ /∈ Q, then it must
have only one neighbor z ∈ Q \ {xi , x j }, since G is sinker -free. But yi , y j , x j , z, z′
induce a P5, which contradicts the condition.

Let γ (G) ≥ 5, y′ and y′′ be arbitrary elements of Φ. We will prove that there
is no a vertex simultaneously adjacent to y′ and y′′. If z is such a vertex, then the
vertex z cannot have only one neighbor in Q, since it would mean γ (G) ≤ 4 yielding
a contradiction with the assumption. Then y′ or y′′, z, and three elements of NQ(z)
induce a sinker otherwise. Thus, z does not exist. This fact implies that Φ has some
k elements such that any two of them cannot be simultaneously dominated. Hence,
γ (G) ≥ k. The set Q1 is a dominating set. So, γ (G) = k. �

Lemma 4 For every connected {P5, ki te}-free graphG wehave γ (G) ≤ 4 or γ (G) =
|Q1|.
Proof Firstly, we will show that if min |NQ(x)| > 1, then γ (G) ≤ 3. Let x∗ be a
vertex such that there is no a vertex x satisfying the inclusion NQ(x) ⊂ NQ(x∗), y1
and y2 be arbitrary distinct neighbors of x∗ belonging to Q. There is no a vertex of G
that is not dominated by an element of {x∗, y1, y2}. Indeed, if z′ is such a vertex, then
(z′, x∗) /∈ E(G), (z′, y1) /∈ E(G), (z′, y2) /∈ E(G), and there is a vertex z ∈ Q such
that (z′, z) ∈ E(G) and (x∗, z) /∈ E(G). The vertex z exists in accordance with the
choice of x∗. The graph G contains a ki te induced by x∗, y1, y2, z, z′.

Secondly, if there are adjacent vertices y′ ∈ N ′(x ′) and y′′ ∈ N ′(x ′′) for x ′ �= x ′′,
then {x ′, x ′′, y′, y′′} is a dominating set ofG. It can be proved in a similar way to those
in the previous lemma.
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Suppose that Q1 �= ∅ and there are no adjacent vertices y′ ∈ N ′(x ′) and y′′ ∈
N ′(x ′′) for any distinct vertices x ′ and x ′′. It is easy to check if z is a vertex with
|NQ(z)| > 1, then, for any x ∈ Q1 and y ∈ N ′(x), the vertex z is dominated by x
or y, since G is ki te-free. Hence, γ (G) ≤ 4 if |Q1| ≤ 2. Suppose |Q1| ≥ 3. If z is
adjacent to y′ ∈ N ′(x ′) and y′′ ∈ N ′(x ′′), then (z, x ′) ∈ E(G) or (z, x ′′) ∈ E(G),
sinceG is ki te-free.Without loss of generality, (z, x ′) ∈ E(G). The vertex z is adjacent
to each vertex y ∈ N ′(x) for any x /∈ {x ′, x ′′}, otherwise y′′, z, x ′, x, y induce a P5
or y, x, x ′, z, y′ induce a ki te. Therefore, {x ′, y′, z} is a dominating set. So, we can
suppose that any two elements of

⋃

x∈Q1

{yx }, where yx /∈ Q is an arbitrary neighbor of

x ∈ Q1 with |NQ(yx )| = 1, do not have a common neighbor. Hence, γ (G) ≥ |Q1|.
Since Q1 is a dominating set of G, then γ (G) = |Q1|. �

Lemma 5 For every connected {P5, cricket}-free graph G we have γ (G) ≤ 7 or
γ (G) = |Φ|.
Proof We will show that if there are adjacent non-congruent vertices x and y, then
γ (G) ≤ 7. Since x and y are non-congruent, there is a vertex v ∈ Q such that v ∈
N (x)\N (y) or v ∈ N (y)\N (x). There is no an element of V (G)\Q having a neighbor
in Q\(NQ(x)∪NQ(y)) and non-adjacent to x, y, v simultaneously, sinceG is P5-free.
Recall thatmax(|NQ(x)|, |NQ(y)|) ≤ |Q|−2. Let z be an element of V (G)\Q having
a neighbor z′ ∈ NQ(x)∪NQ(y), x ′, x ′′ ∈ Q\N (x) and y′, y′′ ∈ Q\N (y). At least one
of the vertices x, y, x ′, x ′′, y′, y′′ is adjacent to z, since x, z, z′, y′, y′′ or y, z, z′, x ′, x ′′
induce a cricket otherwise. Hence, {x, y, x ′, x ′′, y′, y′′, v} is a dominating set of G
and γ (G) ≤ 7.

Suppose that G has no adjacent non-congruent vertices. If there are non-congruent
vertices x and y having a common neighbor in Q, then γ (G) ≤ 5. The set NQ(x) ∪
NQ(y) must contain at least |Q| − 1 elements, otherwise G is not cricket-free. Let
V ′ be a set containing exactly two elements of Q \ N (x), exactly two elements of
Q \ N (y), and an element of Q \ (NQ(x) ∪ NQ(y)) if one exists. The set V ′ must
be dominating, otherwise there is a vertex z having a neighbor z′ ∈ NQ(x) ∪ NQ(y)
such that z, z′, x or y, and some two elements of V ′ induce a cricket .

Suppose that there are no adjacent non-congruent vertices and non-congruent ver-
tices having a common neighbor in Q, and the domination number of G is at least
eight. Each element a ∈ Φ has a neighbor ba ∈ Q. The union

⋃

a∈Φ

{ba} plus at most two

vertices of Q (they need to dominate possible elements of V (G) \ Q having |Q| − 1
neighbors in Q) is a dominating set ofG. Hence, |Φ|+2 ≥ γ (G) ≥ 8, i.e., |Φ| ≥ 6. If
z is a vertex adjacent to two non-congruent vertices x and y, then |NQ(z)| = |Q| − 1.
Since |Φ| ≥ 6, the set NQ(z) contains vertices z1 and z2 that are not adjacent to x
and y simultaneously. The vertices z, z1, z2, x, y induce a cricket . So, no one vertex
can be adjacent to two non-congruent vertices. Hence, γ (G) ≥ |Φ| = φ(G). The set⋃

a∈Φ

{ba} is a dominating set of G . Hence, γ (G) = |Φ|. �


Lemma 6 Let Q′ = {x1, x2, . . . , xl} ⊆ Q be an arbitrary minimal under inclusion
dominating set of a connected {P5, f ork}-free graph G. If γ (G) ≥ 5, then γ (G) = l.
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Proof Clearly, Q′ is a dominating set of G. Hence, γ (G) ≤ l and l ≥ 5. Let

Vi � N (xi ) \
l⋃

j=1, j �=i
N (x j ). For each i , the set Vi is not empty, due to the mini-

mality of Q′. We will show that Vi is a clique for every i . Indeed, if Vi contains two
nonadjacent vertices y1i and y2i , then any vertex y j ∈ Vj must be adjacent to y1i or y

2
i ,

otherwise y1i , y
2
i , xi , x j , y j induce a f ork. If (y1i , y j ) and (y2i , y j ) are edges of G,

then y1i , y
2
i , y j , x j , xk induce a f ork. If (y1i , y j ) ∈ E(G), (y2i , y j ) /∈ E(G) or vice

versa, then y2i , xk, xi , y
1
i , y j or y

1
i , xk, xi , y

2
i , y j induce a f ork.

Secondly, let us show that the subgraph induced by V̂ �
l⋃

j=1
Vj is complete or

the disjoint union of the cliques V1, V2, . . . , Vl . To this end, it is sufficient to prove if
y′ ∈ Vi and y′′ ∈ Vj are adjacent, then y′ is adjacent to all elements of V̂ \ {y′}. If
y′ is adjacent to a vertex ys ∈ Vs , then it is adjacent to all elements of Vs , otherwise
some element of Vs, ys, y′, xi and xk(k /∈ {i, j, s}) induce a P5. Hence, if y′ is not
adjacent to a vertex ys′ ∈ Vs′ , then s′ �= i and s′ �= j . If (y′′, ys′) /∈ E(G), then
y′′, y′, xi , xs′ , ys′ induce a P5, otherwise y′, y′′, ys′ , xs′ , xk(k /∈ {i, j, s′}) induce a P5.

If V̂ is a clique, then {x1, x2, y1, y2} is a dominating set of G, where y1 ∈ V1 and
y2 ∈ V2. Indeed, if there is a vertex y nonadjacent to any element of {x1, x2, y1, y2},
then y, any element of NQ′(y), x1, y1 and y2 induce a P5. Hence, V̂ cannot be a clique,
since γ (G) ≥ 5. Thus, this set induces the disjoint union of cliques.

Suppose that z is a vertex that is adjacent to yi ∈ Vi and y j ∈ Vj simultaneously.
Clearly, z /∈ V̂ ∪ Q′. We will show that z is adjacent to all elements of V̂ . Let
z ∈ Q \ Q′. Indeed, z is adjacent to all elements of Vi ∪ Vj , otherwise an element of
Vi ∪Vj , yi , y j , z and xk induce a f ork. If there is a vertex ys ∈ Vs, s /∈ {i, j} such that
(ys, z) /∈ E(G), then yi , y j , z, xs and ys induce a f ork. Let z ∈ V (G)\ (Q∪ V̂ ) now.
Then z must be adjacent to at least two elements of Q′. Let NQ′(z) �= {xi , x j }. Then,
to avoid an induced f ork, Q′ \{xi , x j } ⊆ NQ′(z). Hence, to avoid an induced f ork, z
is adjacent to each element of V̂ \ (Vi ∪ Vj ). One of the vertices Q does not belong to
NQ(z). Arbitrary elements of Vi ′ and Vj ′ , z, xk and an element of Q \ NQ(z) induce
a f ork, where i ′, j ′, k are distinct, {i ′, j ′} ∩ {i, j} = ∅ and k �= i, k �= j . Hence,
NQ′(z) = {xi , x j }. To avoid an induced P5, the vertex z must be adjacent to to each
element of V̂ \ (Vi ∪ Vj ). Moreover, to avoid an induced f ork, z must be adjacent to
all elements of Vi ∪ Vj .

Let y be a vertex in V (G) \ (Q ∪ V̂ ) having neighbors in at most one of the
sets V1, V2, . . . , Vl . The vertex y must have at least two neighbors in Q′, as y ∈ V̂
otherwise. It must be adjacent to at least l − 1 elements of Q′, otherwise there are
vertices xi ∈ NQ′(y), x j ∈ Q′ \ NQ′(y), yi ∈ Vi , y j ∈ Vj such that (yi , y) /∈ E(G)

and (y j , y) /∈ E(G), and the vertices y, yi , xi , x j , y j induce a f ork.
If there is a vertex v that has neighbors in at least two of the sets V1, V2, . . . , Vl ,

then, by both previous paragraphs, {v, x1, x2} is a dominating set of G. Hence, there
is no such a vertex, as γ (G) ≥ 5. Therefore, γ (G) ≥ l. So, γ (G) = l, as Q′ is a
dominating set. �
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Theorem 3 The dominating set problem can be solved in polynomial time for
each of the graph classes Free({P5, orb}), Free({P5, sinker}), Free({P5, ki te}),
Free({P5, cricket}), Free({P5, f ork})
Proof By Lemmas 2–6, the dominating set problem can be polynomially reduced to
computing one of the sets Φ, Q1, and Q′. It can be done in polynomial time. Hence,
the problem is polynomial for each of the classes. �


4.3 The class Free{P5, K1,4}

Let G be a connected {P5, K1,4}-free graph containing a K1,3 induced by vertices
x0, x1, x2, x3, where (x0, x1), (x0, x2), (x0, x3) are edges of G. We associate the fol-

lowing notations with G : C1 � {x1, x2, x3},C2 �
3⋃

i=1
N (xi ) \ N [x0], A1 is a

subset of N (x0) \ C1 containing vertices that have at least one neighbor outside
N [x0] ∪ C2, A2 consists of all neighbors of all elements in A1 that do not belong
to N [x0] ∪ C2, B � N (x0) \ (A1 ∪ C1). Clearly, C1,C2, A1, A2, B are pairwise
non-intersected, and no one element of A2 is adjacent to an element of C1 ∪ B.

Lemma 7 The set V (G) coincides with {x0} ∪ C1 ∪ C2 ∪ A1 ∪ A2 ∪ B.

Proof Suppose that there is a vertex x ∈ A2 ∪ C2 having a neighbor y /∈ C1 ∪ C2 ∪
A1 ∪ A2 ∪ B. The vertex x has a neighbor z ∈ A1 ∪C1 ∪ B, which cannot be adjacent
to all elements of C1, as G is K1,4-free. But, an element of C1, x0, z, x, y induce a P5.
We have a contradiction with the assumption. �

Lemma 8 If x ∈ A2, y ∈ C2 ∪ A2, and they are not A1-equivalent, then x and y are
not adjacent.

Proof Suppose that (x, y) ∈ E(G). If y ∈ A2, then there is a vertex z ∈ NA1(x) ⊗
NA1(y). The vertex z cannot be adjacent to all vertices x1, x2, x3, sinceG is K1,4-free.
Hence, one of the vertices x1, x2, x3, the vertices x0, z, x and y induce a P5. If y ∈ C2,
then there are vertices x ′ ∈ NC1(y) and x ′′ ∈ C1 \ NC1(y), since G is K1,4-free. The
vertices x, y, x ′, x0, x ′′ induce a P5. We have a contradiction with the assumption. �

Lemma 9 For each vertex v ∈ A1, there are no vertices u1, u2, u3 ∈ A2 adjacent to
v such that any two of them are not A1-equivalent.

Proof Assume the opposite. By the previous lemma, {u1, u2, u3} is independent.
Hence, v, x0, u1, u2, u3 induce a K1,4. We have a contradiction. �


Let D be a minimum dominating set of G and D′ be a minimal under inclusion
subset of D dominating X , where X � {x0} ∪ C1 ∪ C2 ∪ B. By the minimality of
D′, D′ ∩ A2 = ∅. Let D′

1 � D′ ∩ X and D′
2 � D′ \ D′

1 = D′ ∩ A1. Let D′′ � D \ D′.

Lemma 10 The set D′ contains at most 21 elements.
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Proof The set {x0, x1, x2, x3} dominates X , and D′′ ∪ D′
2 ∪ {x0, x1, x2, x3} is a domi-

nating set of G. Since D is minimum, |D′
1| ≤ 4. Let D∗ be a minimal under inclusion

subset of D′
2 that dominates

⋃

v∈D′
2

NA2(v). By the minimality, for each x ∈ D∗ and

y ∈ D∗ we have NA2(x) � NA2(y) and NA2(y) � NA2(x). To avoid an induced P5,
the set D∗ must be a clique. Since D′′ ∪ D∗ ∪ {x0, x1, x2, x3} is a dominating set of
G and D is minimum, |D∗| ≥ |D′

2| − 4.
Since D′ is minimal under inclusion, there is a set N (D∗) such that N (D∗) ⊆

X, |N (D∗)| = |D∗|, and any element of N (D∗) is dominated by only one element
of D∗. If |D∗| ≤ 2, then |D′| = |D′

1| + |D′
2| ≤ 4 + |D∗| + 4 ≤ 10. Let |D∗| ≥ 3.

The set N (D∗) must be independent, as two adjacent vertices u1, u2 ∈ N (D∗), the
neighbor v1 ∈ D∗ of u1, a vertex v2 ∈ D∗ \ (ND∗(u1) ∪ ND∗(u2)) and its neighbor
in A2 induce a P5. Since G is K1,4-free, |B ∩ N (D∗)| ≤ 3 and |C2 ∩ N (D∗)| ≤ 6.
Hence, |D′| = |D′

1| + |D′
2| ≤ 4+ |D∗| + 4 = 8+ |{x0} ∩ N (D∗)| + |C1 ∩ N (D∗)| +

|C2 ∩ N (D∗)| + |B ∩ N (D∗)| ≤ 8 + 1 + 3 + 6 + 3 ≤ 21. �

The set D′′ ∩ X has at most one element, otherwise elements of D′′ ∩ X can

be removed from D′′ and x0 can be added to obtain a smaller dominating set than
D. Let D′′ ∩ A2 contain two elements x and y. If NA1(x) ∩ NA1(y) �= ∅, then
(D \ {x, y}) ∪ {x0, z} is a minimum dominating set of G, where z is an arbitrary
element of NA1(x) ∩ NA1(y). If NA1(x) ∩ NA1(y) = ∅, then, to avoid an induced
P5, z1 and z2 must dominate NA1(y) and NA1(x) respectively, where z1 ∈ NA1(x)
and z2 ∈ NA1(y) are arbitrary vertices.

Let A′
1 � A1 \ D′, A′

2 be a part of A2 non-dominated by D′ ∪ D′′ ∩ A2. Let G ′
be the subgraph of G induced by A′

1 ∪ A′
2 and G ′′ be the graph obtained from G ′ by

adding edges to make A′
1 to be a clique. If there is a dominating set of G ′′ included in

A′
1 with at most two elements, then γ (G) ≤ |D′| + |D′′ ∩ (X ∪ A2)| + |{x0}| + 2 ≤

21 + 2 + 1 + 2 ≤ 26. We assume that any such a set has at least three vertices.

Lemma 11 There exists a minimum dominating set of G containing x0 or any domi-
nating set of G ′′ included in A′

1 is a dominating set of G ′.

Proof Suppose that there is a dominating set D+ = {v1, . . . , vk} ⊆ A′
1 of G ′′ with

a minimum possible number of elements that is not a dominating set of G ′. Hence,
there is a vertex v ∈ A′

1 such that (v, vi ) /∈ E(G ′) for each i . Due to the minimality

of D+, the graph G ′′ has a vertex ui ∈ NA′
2
(vi ) \

k⋃

j=1, j �=i
NA′

2
(vi ) for each i . Hence,

to avoid an induced P5, the set D+ is a clique of G. Taking into account that k ≥ 3,
it is easy to verify that v cannot be adjacent to an element of {u1, . . . , uk}, otherwise
G is not P5-free. Since v ∈ A′

1, there is a vertex v′ ∈ NA2(v) \ {u1, . . . , uk} in G. To
avoid an induced P5 and by Lemma 8, v′ must be adjacent to all elements of D+ and
non-adjacent to u1. To avoid an induced K1,4, NC1(v1), . . . , NC1(vk) must have one
element. Clearly, NC1(v) �= ∅. Moreover, NC1(vi ) = NC1(v) for each i , otherwise G
is not P5-free. Let NC1(v) = {x3}.

The vertices x1 and x2 cannot have neighbors in C2, otherwise such a neighbor
must be adjacent to v1 and non-adjacent to v′, v1, x0, the neighbor, v′, v1 induce a
K1,4. There are vertices u∗ ∈ D′ and u∗∗ ∈ D′ dominating x1 and x2, respectively
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(perhaps, u∗ = u∗∗). Hence, u∗ and u∗∗ belong to {x0, x1, x2} ∪ (A1 \ A′
1) ∪ B.

If u∗ or u∗∗ has no neighbors outside N [x0], then one of them can be changed to
x0 to keep the minimality of D. Similarly, one may assume that there is a neighbor
u′ ∈ (A2 \ A′

2) ∪ C2 of u∗. Since G is {P5, K1,4}-free, {v′, u1, u′} is independent
and (u′, v1) /∈ E(G), (u′, v) /∈ E(G). Similarly, u∗ must be adjacent to at least one
element in each of the sets {v, v′} and {v1, u1}, and it cannot be adjacent to all elements
of each of the sets {v, v1}, {v′, u1}, and {v, u1}. Therefore, u∗ is adjacent to v1 and
v′. Hence, (u∗, x2) /∈ E(G) and u∗ �= u∗∗. The vertices u∗ and x3 must be adjacent,
otherwise x1, u∗, v1, x3, v induce a P5. The vertices x3 and u′ must be adjacent, since
u∗, x1, x3, v′, u′ induce a K1,4 otherwise.

One may assume that NA2(u
∗) � NA2(u

∗∗) and NA2(u
∗∗) � NA2(u

∗), otherwise
one of the vertices u∗ and u∗∗ can be changed to x0. Let u′ ∈ NA2\A′

2
(u∗) \ NA2(u

∗∗)
and u′′ ∈ NA2\A′

2
(u∗∗) \ NA2(u

∗) now. Therefore, {v′, v1, u′, u′′} is independent, u∗∗
is adjacent to v1 and v′, and u′′ is adjacent to x3. But, the vertices x3, v, v1, u′, u′′
induce a K1,4 in G. We have a contradiction. Hence, D+ is a dominating set
of G ′. �


Let A′′
2 be a maximal under inclusion subset of A′

2 that does not contain a pair
of A′

1-equivalent vertices. By Lemma 8, A′′
2 is independent. Moreover, by Lemma 9,

each element of A′
1 is adjacent to at most two elements of A′′

2. Delete from G ′′ all
vertices in A′

1 that have no a neighbor in A′′
2, and add a new vertex adjacent to all

vertices of A′
1 having only one neighbor in A′′

2 if they exist. We denote the resultant
graph by G ′′′. Clearly, D+ is a minimum dominating set of G ′′ and G ′′′. Hence,
γ (G ′′′) = γ (G ′′) = |D+|.

The set V (G ′′′) can be uniquely split into two parts A+ and B+, where A+ is a
clique and B+ is independent. Each element of A+ has two neighbors in B+. We
construct a graph H as follows. Its vertices are elements of B+, and two vertices are
adjacent if and only if G ′′′ has their common neighbor in A+. An edge cover of a
graph is a set of edges such that every vertex of the graph is incident to at least one
edge of the set. Any dominating set of G ′′′ included in A+ is an edge cover of H , and
any edge cover of H corresponds to a dominating set of G ′′′ included in A+. Hence,
γ (G ′′′) is equal to the size of a minimum edge cover of H . A minimum edge cover of
a graph can be found in polynomial time. Hence, some minimum dominating sets of
G ′′ and G ′′′ can be found in polynomial time.

Theorem 4 The dominating set problem can be solved in polynomial time for graphs
in Free({P5, K1,4}).
Proof For a connected graph G ∈ Free({P5, K1,4}), one can verify whether γ (G) ≤
26 or not and find γ (G) if the answer is “yes”. If G is K1,3-free, then one can apply
the previous theorem. Otherwise, we enumerate all subsets of V (G) with at most 23
elements and consider among them only dominating X . For every such a subset V ′,
we construct the corresponding graphs G ′ (notice, A′

1 � A1 \ V ′, A′
2 be a part of A2

non-dominated by V ′) and G ′′,G ′′′ and determine a minimum dominating set D+ of
G ′′′ included in A+. If V ′ ∪ D+ is a dominating set of G, then calculate |V ′| + |D+|.
Minimal of these sums is γ (G), by Lemmas 10 and 11. �
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5 Main result

Lemma 12 The dominating set problem for Free({G + O1}) can be polynomially
reduced to the same problem for Free({G}).
Proof Let H ∈ Free({G + O1}) be a graph containing G as an induced subgraph.
This subgraph G must dominate all vertices of H , i.e., γ (H) ≤ |V (G)|. Hence, any
{G + O1}-free graph is either G-free or its domination number is at most |V (G)|. An
induced copy of G can be found in H in polynomial time if one exists. So, there is a
polynomial-time reduction. �


The following theorem is the main result of this paper.

Theorem 5 Let Y be an arbitrary set of graphs having at most five vertices. The
dominating set problem for X = Free({P5} ∪ Y) is NP-complete if Y ∩ Q = ∅. If
Y ∩ Q �= ∅, then the problem can be solved in polynomial time for X .

Proof Recall that Q is a boundary class for the dominating set problem. Hence,
if X includes Q (equivalently, Y ∩ Q = ∅), then the problem is NP-complete
for X . Let Y ∩ Q �= ∅ and G be a graph in Q containing at most five ver-
tices. The graph G cannot contain C4,C5, 2K2, and K2 + O3, K3 + O2. Taking
into account a list of all five-vertex graphs (Information system on graph classes
and their inclusions 2015b), it is easy to check that G is an induced subgraph of
one of the graphs P4 + O5, K5 + O5, orb + O5, sinker + O5, ki te + O5, dart +
O5, cricket + O5, f ork + O5, K1,4 + O5, gem + O5, bull + O5. The classes
Free({P5, gem}), Free({P4}), Free({P5, bull}), Free({P5, K5}) are easy for the
problem (Brandstädt et al. 2005; Courcelle et al. 2000;Kratsch 2000; Zverovich 2003).
Hence, by Lemma 12 and Theorems 2–4, the dominating set problem is polynomial-
time solvable for X . �


6 The classes Free({ f ork, bull}) and Free({ f ork, hammer})
Lemma 13 If x and y are adjacent and N (x) \ {y} = N (y) \ {x}, then γ (G) =
γ (G \ {x}).
Proof Let H � G \ {x}. Since each dominating set of H must have an element of
N [y], each dominating set of H is a dominating set of G. Hence, γ (G) ≤ γ (H). A
minimum dominating set D of G must have an element of N [x], and it cannot contain
x and y simultaneously. Moreover, if x ∈ D, then D \ {x} ∪ {y} is also a minimum
dominating set of G. Therefore, there is a minimum dominating set of G that is a
dominating set of H . Hence, γ (H) ≤ γ (G). So, γ (G) = γ (H). �


Three vertices of a graph forman asteroidal triple if every twoof themare connected
by a path avoiding the neighborhood of the third. A graph is called AT-free if it does
not contain asteroidal triples.

Lemma 14 The dominating set problem for { f ork, bull}-free graphs can be polyno-
mially reduced to the same problem for AT − f ree graphs.
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Proof Every graph in Free({ f ork, bull,C6,C7, . . .}) is AT-free (Information system
on graph classes and their inclusions 2015c). Let G be a connected { f ork, bull}-free
graph that contains an induced cycle Cn , where n ≥ 6. Suppose that V (G) �= V (Cn).
Any vertex outsideCn having a neighbor on it has three neighbors onCn or all elements
of V (Cn) are adjacent to the vertex, as G is { f ork, bull}-free. Moreover, these three
neighbors must be consecutive if n ≥ 6 or pairwise non-adjacent if n = 6. Similarly,
there are no vertices x1, x2, x3 outside Cn such that x1 and x2 have no neighbors on
Cn, x3 has them, (x1, x2) and (x2, x3) are edges of G, (x1, x3) /∈ E(G). Moreover, if
a vertex x has three neighbors on Cn , then any element of N (x) belongs to the cycle
or has a neighbor on it.

Each vertex x adjacent to all vertices of Cn must be adjacent to all elements of
{x : x /∈ V (Cn), |NV (Cn)| = 3}, since G is bull-free. Let V ′ be a maximal under
inclusion set of vertices adjacent to all vertices of Cn such that for any its members
x and y the sets {z : z ∈ N (x) \ V (Cn), NV (Cn)(z) = ∅} and {z : z ∈ N (y) \
V (Cn), NV (Cn)(z) = ∅} are nonempty and non-included to each other. Clearly, V ′
is independent (since G is bull-free), and it contains at most two elements, as G is
f ork-free. If V ′ �= ∅, then V ′ and any vertex of Cn constitute a dominating set of G.
If V ′ = ∅ and there exist vertices adjacent to all vertices of Cn , then any vertex of
such type and any vertex of the cycle dominate all vertices of G. Moreover, if n = 6
and there are no vertices adjacent all elements of V (C6), then V (C6) is dominating
set of G.

Suppose that n > 6 and there are no vertices adjacent to all vertices of Cn . Let x /∈
V (Cn) have neighbors y1, y2, y3 on Cn listed in the clockwise order. Let y0 ∈ V (Cn)

be the right neighbor of y1 and y4 ∈ V (Cn) be the left neighbor of y3. We will show
that N (x) \ {y2} = N (y2) \ {x}. If y ∈ N (y2) \ {x, y1, y3}, then it must be adjacent
to three consecutive vertices of Cn . Hence, NV (Cn)(y) = {y4, y3, y2} or NV (Cn)(y) =
{y3, y2, y1} or NV (Cn)(y) = {y2, y1, y0}. In all three cases y must be adjacent to x
to avoid an induced f ork or bull. If y ∈ N (x) \ N [y2], then {y3, y4} ∩ N (y) �= ∅
and {y1, y0} ∩ N (y) �= ∅, to avoid an induced bull. The vertex y must be adjacent to
three consecutive vertices of Cn . These three conditions are inconsistent, as n > 6.
We have a contradiction. So, N (x) \ {y2} = N (y2) \ {x} and the vertex x can been
removed preserving the domination number ofG by the previous lemma. This finishes
the lemma. �


Lemma 15 The dominating set problem for { f ork, hammer}-free graphs can be
polynomially reduced to the same problem for {P5, f ork, hammer}-free graphs.

Proof Let G be a connected { f ork, hammer}-free graph containing an induced P5,
and H be a graph obtained from G by deleting any vertex x∗ of P5. We may assume
that γ (G) ≥ 10. Hence, γ (H) ≥ 9. Let V1 be the set of vertices having a neighbor
in V0 � V (P5) and a neighbor outside

⋃

x∈V0
N (x). Clearly, any element of V1 must be

adjacent to all vertices of P5, as G is { f ork, hammer}-free. Let V2 �
⋃

x∈V0
N (x) \

(V0 ∪ V1) and V3 � V (G) \ (V1 ∪ V2 ∪ V0). Similarly, each element of V1 must
be adjacent to every element of V2 that does not adjacent to all vertices of P5 and
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V3 = ⋃

x∈V1
N (x) \ (V1 ∪ V2 ∪ V0). Moreover, any two elements of z1, z2 ∈ V3 with

NV1(z1) � NV1(z2) and NV1(z2) � NV1(z1) must be nonadjacent.
Let DG and DH be minimum dominating sets of G and H , respectively. Clearly,

DG ∩ V3 and DH ∩ V3 are independent sets of H . Moreover, NV1(x1) � NV1(x2) and
NV1(x2) � NV1(x1) for any x1, x2 ∈ DG ∩ V3 and x1, x2 ∈ DH ∩ V3. Hence, some
|DG ∩ V3| elements of V1 plus DG ∩ V1 dominates V3. Obviously, DG ∩ (V2 ∪ V0)
has at most six vertices, as |DG ∩ V2| − 1 elements of DG ∩ V2 can be changed to
some elements of V1 ∪ V0 to keep the minimality of DG . The last both facts are true
for H . If DH ∩ V1 is empty, then some |DH ∩ V3| vertices of V1 dominates V3. As
|DH ∩ V3| ≥ 3, then they must constitute a clique, and this clique must dominate
V1 ∪ V3, since G is hammer -free. Therefore, there is a minimum dominating set of
H containing elements of V1. This result holds for G.

Let D′
G and D′

H be dominating sets of G and H containing elements in V1. If
x∗ /∈ D′

G , then D′
G is a dominating set of H . Otherwise, (D′

G \ {x∗}) ∪ {y∗} is a
dominating set of H ,where y∗ is an arbitrary element ofV0\{x∗}.As D′

H∩V1 �= ∅, D′
H

is a dominating set of G. Hence, γ (G) = γ (H). So, we have a polynomial-time
reduction to {P5, f ork, hammer}-free graphs by deleting vertices in induced copies
of P5. �

Theorem 6 Thedominating set problem is polynomial-time solvable for { f ork, bull}-
free and { f ork, hammer}-free graphs.
Proof A proof follows from Lemmas 14–15, Theorem 3, and the fact that AT-free
graphs constitute an easy case for the dominating set problem (Kratsch 2000). �


7 One more boundary class for the dominating set problem

Recall that there are known only three boundary classes for the dominating set problem
(Alekseev et al. 2004). They are S, T , and Q. The fourth boundary class will be
presented in this section by revisiting a construction from the paper of Alekseev et al.
(2004).

Let G = (V, E) be a subcubic graph, i.e., graph having degrees of vertices at
most three. Let V ′ be the set of degree three vertices of G and V ′′ � V (G) \ V ′.
Assume that G has no adjacent degree three vertices and V ′ is not a vertex
cover of G. Hence, any vertex cover of G must contain at least one element of
V ′′. We define a graph G∗ � Q∗(G) as follows. The set V (G∗) coincides with
V ′′ ∪ E . A vertex x ∈ V ′ is incident to edges e1(x), e2(x), e3(x) in the graph
G. The set E(G∗) coincides with {(vi , v j ) : vi , v j ∈ V ′′} ∪ {(v, e) : v ∈
V ′′, e ∈ E, v is incident to e} ∪ ⋃

x∈V ′
{(e1(x), e2(x)), (e1(x), e3(x)), (e2(x), e3(x))}.

Let Gi (x) � G \ ei (x) and G∗
i (x) � G∗ \ ei (x).

Lemma 16 We have β(G) = γ (G∗) and β(Gi (x)) = γ (G∗
i (x)).

Proof If VC is a minimum vertex cover of G, then (VC ∩ V ′′) ∪ ⋃

x∈V ′∩VC
{e1(x)}

is a dominating set of G. Otherwise, if D is a minimum dominating set of G∗, then
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(D ∩ V ′′) ∪ ⋃

x :{e1(x),e2(x),e3(x)}∩D �=∅
{x} is a vertex cover of G. Hence, β(G) = γ (G∗).

Similarly, β(Gi (x)) = γ (G∗
i (x)). �


Let X0 be the set of all subcubic graphs, X ⊆ X0, Q∗(X ) � {Q∗(G) : G ∈
X is a graph, whose set of degree three vertices is independent and is not a vertex
cover}. The hereditary closure of a graph class X denoted by [X ] is the set of all
induced subgraphs of all graphs in X . Let Xi be the set of all graphs obtained from
elements of X0 by 2i-ary subdivision of each edge.

Lemma 17 The class [Q∗(X1)] is finitely defined.
Proof By H1 we denote the complement of the graph obtained from C6 by adding
an edge between two vertices lying at distance two. By H2 we denote the graph
obtained from two complete graphs with vertices v1, v2, v3, v4 and u1, u2, u3, u4
respectively by adding the edges (v1, u1), (v2, u2), (v3, u3), (v4, u4). Let H3 be the
graph obtained by coinciding a vertex of C4 with an end vertex of P3. Let H4 be the
graph obtained by coinciding an edge of C4 with an edge of C4. A graph H5 can be
obtained from a sinker by adding a new vertex and an edge incident to the new ver-
tex and the degree two vertex of sinker . It is easy to see that all graphs 2P3, 2K4, K4+
P3, K1,4, K2,3,C5, K2 + O3, K3 + O2,C4 + O1, P2 + P3, H1, H2, H3, H4, H5
belong to Forb([Q∗(X1)]).

Assume that Forb([Q∗(X1)]) is infinite. Since there is a finite set of connected
{2P3, K1,4, K6}-free graphs (as they have bounded degrees of vertices and a bounded
diameter), the set Forb([Q∗(X1)]) ∩ Free({K6}) is finite. Let G be an element of
Forb([Q∗(X1)]) having a maximum clique Q′ with at least six vertices. Clearly, G
is {2K4, K4+P3, K2,3,C5, K2 + O3, K3 + O2,C4 + O1, P2 + P3, H1, H2, H3, H4,

H5}-free.
Any element of V (G) \ Q′ is adjacent to at most two vertices of Q′, since G must

be K2 + O3-free. The clique Q′ cannot have a vertex having two adjacent neighbors
outside Q′, since the vertex, those two neighbors and some two elements of Q′ induce
C4 + O1. Similarly, each vertex of Q′ cannot have three neighbors outside Q′, since
G is K1,4-free and |Q′| ≥ 6. If x and y are adjacent elements of V (G) \ Q′ both
having neighbors in Q′, then |NQ′(x)| = |NQ′(y)| = 1, since G is {P2 + P3}-free. If
x and y are non-adjacent elements of V (G)\Q′ both having two neighbors in Q′, then
NQ′(x) �= NQ′(y), sinceG is {K3 + O2}-free. The subgraph ofG induced by elements
of V (G) \ Q′ having a neighbor in Q′ must be {P3, K4}-free, as G is {H1, H2, K2,3}-
free. Since G is {H3, H4}-free, V (G) \ Q′ has no four vertices x1, x2, x3, x4 such that
each of them has a neighbor in Q′, (x1, x2) ∈ E(G), (x3, x4) ∈ E(G), x1 and x3 have
a common neighbor in Q′. Let x be an arbitrary vertex non-dominated by Q′. Since G
is {2K4, P3 + K4,C5, H5}-free, x belongs to a connected component of G inducing a
clique with at most three vertices or its neighborhood forms a clique with at most two
vertices having a vertex dominated by Q′, and any such a vertex of the neighborhood
has only one neighbor in Q′. Moreover, as |Q′| ≥ 6 and G is P3 + K4-free, if y /∈ Q′
is a neighbor of x with nonempty NQ′(y), then there is no a neighbor z of y such
that z /∈ Q′ ∪ N (x) and NQ′(z) �= ∅. Hence, G must belong to [Q∗(X1)]. We have a
contradiction with the assumption. So, [Q∗(X1)] is finitely defined. �
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A class Q∗ is the set [Q∗(S)].

Theorem 7 The class Q∗ is boundary for the dominating set problem.

Proof Clearly, the graph Q∗(G) can be constructed in polynomial time for each graph
G ∈ X0. On the other hand, for any graph H ∈ Q(X0) its inverse image (i.e., a graph
G ∈ X0 such that H = Q∗(G)) can be constructed in polynomial time. Indeed, one
may consider only the connected case, i.e., when H is connected. Determine in H a
maximal under inclusion clique with at most five vertices if one exists. This clique
must correspond to V ′′(H), and the ends of its “hairs” correspond to E(H). The case
of the absence a five-clique is trivial, as |V ′′(H)| ≤ 4 and |E(H)| ≤ 12.

The classX0 is a hard case for the vertex cover problem (Garey and Johnson 1979).
A double subdivision of any edge of each graph increases its vertex cover number by
one (Alekseev et al. 2007). Hence, for each i , the vertex cover problem is NP-complete
forXi . Themapping Q∗(·) defined above can be applied to anymember ofXi for i > 0.
Hence, by Lemma 16, the vertex cover problem for Xi is polynomially equivalent to
the dominating set problem for Q∗(Xi ). Therefore, the last problem is NP-complete
for Q∗(Xi ). Moreover, by Lemma 16, for any strongly hereditary class X ⊆ X0, the
dominating set problem for [Q∗(X )] is polynomially equivalent to the vertex cover

problem for X . Since [X1] ⊃ [X2] ⊃ . . . ,
∞⋂
i=1

[Xi ] = S and
∞⋂
i=1

[Q∗(Xi )] = Q∗, then

Q∗ is a limit class for the dominating set problem.
Suppose that there is a limit class Y ⊂ Q∗ for the dominating set problem. Then

there exists a graph G ∈ S such that Y ⊆ Q∗ ∩ Free({Q∗(G)}). By Lemma 17,
any monotonically decreasing sequence {Yi } of hard classes for the dominating set
problem converging to Y must contain a member Yi∗ ⊆ [Q∗(X1)]∩ Free({Q∗(G)}).
Clearly, [Q∗(X1)] ∩ Free({Q∗(G)}) ⊆ [Q∗(X0)] ∩ Free({Q∗(G)}) ⊆ [Q∗(X0 ∩
Frees({G}))], where Frees(G) is the set of all graphs that do not contain G as a sub-
graph not necessarily induced. The classX0∩Frees({G}) is strongly hereditary, asX0
holds this property. Hence, the dominating set problem for Yi∗ can be polynomially
reduced to the vertex cover and the independent set problems for X0 ∩ Frees({G}).
The independent set problem can be solved in polynomial time for any strongly hered-
itary graph class that does not include S (Alekseev 2003). Hence, the dominating set
problem for Yi∗ is also polynomial-time solvable. We have a contradiction, unless
P = N P . So, Q∗ must be minimal limit, i.e., boundary.

A possible application of Theorem 7 is to proveNP-completeness of the dominating
set problem for some graph classes that Theorem 1 and S, T ,Q do not give. For
example, Free({2P3, K1,4}) includes no one of S, T ,Q, but it includes Q∗. Hence,
by Theorem 1, it is hard for the problem. �
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