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ABSTRACT. Klein foams are analogues of Riemann and Klein
surfaces with one-dimensional singularities. We prove that the
field of dianalytic functions on a Klein foam Ω coincides with
the field of dianalytic functions on a Klein surface KΩ. We con-
struct the moduli space of Klein foams, and we prove that the
set of classes of topologically equivalent Klein foams form an an-
alytic space homeomorphic to Rn/Mod, where Mod is a discrete
group.
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1. INTRODUCTION

Foams are surfaces with one-dimensional singularities. Topological foams are ex-
ploited in different fields of mathematical physics [6, 13, 22, 25] and topology
[11, 12, 16, 24, 26]. A topological foam is constructed from finitely many ordi-
nary surfaces with boundaries (“patches”) by gluing them along segments of their
boundaries. The glued boundaries of the surfaces form a “seamed graph”, which
is the singular part of the complex.

Here we consider Klein foams that are analogues of Riemann and Klein sur-
faces for foams. Thus we consider a foam with concordant complex structures on
its patches. “Concordant” means that there exists a dianalytic map from the foam
to the complex disk D. Maps of this type on a Klein foam Ω we call dianalytic
functions on Ω.

In Section 2 we prove that the field of dianalytic functions on a Klein foam Ω

coincides with the field of dianalytic functions on a Klein surface KΩ. Moreover,
there exists a dianalytic map ϕΩ : Ω → KΩ such that any dianalytic function on
Ω is of the form fϕΩ where f is a dianalytic function on KΩ.

We say that Klein foams Ω and Ω′ are topologically equivalent if there exist
homeomorphisms fΩ : Ω → Ω′ and fK : KΩ → KΩ′ such thatϕΩ′fΩ =ϕΩfK . In
Section 3 we prove that any classM of topological equivalence of Klein foams (i.e.,
the set of Klein foams with a fixed topological type) has a natural analytic structure.
It is connected and homeomorphic to Rn/Mod, where Mod is a discrete group.
This gives a topological description of the moduli space of Klein foams.

A motivation to study the moduli spaces of Klein foams is the string theory
and 2D gravity [6, 9, 15, 25]. In Subsection 2.3 we prove that our definition of
Klein foams is compatible with the cyclic foam topological field theory [17] which
is a rough topological approach to the corresponding version of the string theory.

2. FOAMS

2.1. Topological foams. We shall consider generalized graphs, that is, one-
dimensional spaces consisting of (finitely many) vertices and edges, where edges
are either segments (connecting different vertices) or (isolated) circles (without
vertices on them). Some pairs of vertices may be connected by several edges.

A topological foam Ω is a triple (S,∆,ϕ), where

• S = S(Ω) is a compact surface (2-manifold, possibly non-connected
and non-orientable) with boundary ∂S (which consists of pair-wise non-
intersecting circles);

• ∆ = ∆(Ω) is a generalized graph;
• ϕ = ϕΩ : ∂S → ∆ is the gluing map, that is, a map such that

(a) Imϕ = ∆;
(b) on each connected component of the boundary ∂S, ϕ is a homeo-

morphism on a circle in ∆;
(c) for an edge ℓ of ∆, any connected component of S contains at most

one connected component of ϕ−1(ℓ \ ∂ℓ).
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The result of the gluing (i.e., S ∪∆ with x and ϕ(x) identified for x ∈ ∂S)

will be denoted by Ω̌. Let Ωb be the set of vertices of the graph ∆. We say that a
foamΩ is normal if, for any vertex v of the graph ∆, its punctured neighbourhood

in Ω̌ is connected.
For a surface S with boundary, the double of S is an oriented surface Ŝ defined

in the following way. Let S̃ be the “orientation” 2-fold covering over S. (The
surface S̃ consists of pairs (x, δ), where x is a point of S and δ is a local orientation
of S at the point x. If the surface S is orientable, S̃ is the union of 2 copies of S
with different orientations. The surface S̃ is oriented in the natural way. If S is a
smooth surface, the surface S̃ is also smooth.) The surface S̃ possesses a natural

involution σ , S̃/σ = S. The double Ŝ of the surface S is the surface S̃ with
the points (x, δ) and (x,−δ) identified for x ∈ ∂S (−δ is the local orientation
opposite to the orientation δ).

A morphism f of topological foams Ω′ → Ω′′ (Ω′ = (S′,∆′,ϕ′), Ω′′ =

(S′′,∆′′,ϕ′′)) is a pair (fS , f∆) of (continuous) maps fS : Ŝ′ → Ŝ′′ and f∆ :
∆
′ → ∆

′′ such that fS is an orientation-preserving ramified covering commuting

with the natural involutions on Ŝ′ and Ŝ′′, ϕ′′ ◦ fS = f∆ ◦ϕ′, and f∆|∆′\Ω′b is a
local homeomorphism ∆′ \Ω′b on ∆′′ \Ω′′b .

2.2. Dianalytic foams. A Klein surface [5] (see also [18]) is a surface S
(possibly with boundary and/or non-orientable) with a class of equivalence of di-
analytic atlases. A dianalytic atlas consists of charts {(Uα,ψα) | α ∈ A}, where
Ω =

⋃
αUα, ψα : Uα → D ⊂ C is a homeomorphism on ψα(Uα) and ψαψ

−1
β

is a holomorphic or an anti-holomorphic map on ψα(Uα) ∩ ψβ(Uβ) for any
α,β ∈ A. (Two dianalytic atlases are called equivalent if their union is also a
dianalytic atlas.)

One can see that a Klein surface is a surface S with a complex analytic struc-

ture on the double Ŝ such that the natural involution on Ŝ is anti-holomorphic. A
morphism of Klein surfaces is an analytic map between their doubles which com-
mutes with the natural involutions. Moduli space of Klein surfaces were studied in
[19,20,23]. The category of compact Klein surfaces is isomorphic to the category
of real algebraic curves [5].

A normal topological foam Ω = (S,∆,ϕ), where S is a Klein surface, is
called dianalytic. A morphism f of dianalytic foams Ω′ → Ω′′ (Ω′ = (S′,∆′,ϕ′),
Ω′′ = (S′′,∆′′,ϕ′′)) is a morphism (fS , f∆) of the corresponding topological
foams such that fS is a morphism of Klein surfaces.

Let Ω0 be the dianalytic foam (D, ∂D, ID), where D is the unit disk in the
complex line and ID is the tautological map. A dianalytic function on a dianalytic
foam Ω is a morphism of Ω to Ω0.

Define now a Klein foam as a dianalytic foam Ω = (S,∆,ϕ) admitting an
everywhere locally non-constant dianalytic function f0. Any Klein surface K can
be considered as a Klein foam in a natural way.
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Theorem 2.1. For any Klein foam Ω, there exist a Klein surface K = KΩ and
a dianalytic morphism ϕΩ : Ω → K such that the correspondence f ֏ fϕΩ is an
isomorphism between the sets (fields) of dianalytic functions on K and onΩ respectively,
i.e., any dianalytic function f : Ω → Ω0 is the composition f(K)ϕΩ, where f(K) : K →
Ω0 is a dianalytic function, and vice versa, for any dianalytic function f(K) on K, the
composition f(K)ϕΩ is a dianalytic function on the foam Ω.

Proof. Let us call points q1 and q2 of the surface Ŝ pre-equivalent if there exist

paths γj(t) on Ŝ, j = 1,2, t ∈ [0,1], such that

• ϕ(γ1(0)) = ϕ(γ2(0)) is an inner point of an edge of the graph ∆ (and
therefore not a ramification point of the map (dianalytic function) f 0);

• f 0(γ1(t)) = f 0(γ2(t)) for t ∈ [0,1];
• γj(1) = qj for j = 1,2;
• f 0(γj(t)) is not a ramification point of the map f 0 for any t ∈ [0,1),
j = 1,2.

The values of a dianalytic function f on the foam Ω at pre-equivalent points
coincide. This follows from the uniqueness of the analytic continuation taking
into account the fact that f 0 can be considered as a local coordinate for all points
γj(t) with t ∈ [0,1) and the restrictions of f to neighborhoods of the points
γj(0) in ∂SΩ, j = 1,2, coincide as functions of f0.

Let us call points q′ and q′′ from Ŝ equivalent if there exists a sequence of

points qj ∈ Ŝ, j = 0,1, . . . , n, such that q0 = q′, qn = q′′, and the point qj−1

is pre-equivalent to the point qj for j = 1,2, . . . , n. Outside of (the preimage of )
the set of ramification points, the described equivalence relation identifies some

points in the preimages in Ŝ (with respect to the function f0) of points of D̂. If
two non-ramification points are identified, they have neighborhoods which are
identified with each other by this equivalence relation, and the identification is a
homeomorphism. This means that the factor KΩ by this equivalence relation in-
herits the structure of a (closed) complex analytic curve with an anti-holomorphic
involution and with a map to D̃. The factorization map ϕΩ is a (usual) covering
outside of the set of ramification points of the map f 0. A dianalytic function on
the foam Ω induces a dianalytic function on KΩ. This implies that it is induced
from a dianalytic function on KΩ.

For a dianalytic function f(K) on KΩ, the composition f(K)ϕΩ may fail to be
a dianalytic function on the foam Ω only if there exist two points q1 and q2 of
∂SΩ such that they map to the same vertex of the graph ∆ but are not equivalent.
In particular, this means that no point of ∂SΩ of a neighborhood of the point
q1 is equivalent to one of a neighborhood of the point q2, which contradicts the
requirement of normality of the foam Ω. This proves the statement. ❐

We call ϕΩ : Ω → ΩK the canonical morphism. An isomorphism f : Ω′ → Ω′′

induces an equivalence of the canonical morphisms ϕΩ′ : Ω′ → Ω
′
K and ϕΩ′′ :

Ω
′′ → Ω

′′
K .



Klein Forms 989

Corollary 2.2. Let f : Ω′ → Ω
′′ be an isomorphism of Klein foams. There exists

an isomorphism of Klein surfaces fK : Ω′K → Ω
′′
K such that fKϕΩ′ =ϕΩ′′f .

We say that Klein foams Ω′ = (S′,∆′,ϕ′) and Ω′′ = (S′′,∆′′,ϕ′′) have the
same topological type if there exist isomorphisms of topological foams f : Ω′ → Ω

′′

and fK : Ω′K → Ω
′′
K such that fKϕΩ′ =ϕΩ′′f .

2.3. Strongly oriented foams. Klein Topological Field Theories describe
a rough topological approach to the corresponding versions of string theory and
Hurwitz numbers [1–4, 8, 14]. From [17] it follows that one can extend Klein
Topological Field Theory to oriented foams. An oriented foam is a topological
foam (S,∆,ϕ) with a special coloring of S. A special coloring of S exists if and
only if

• vertices of any connected component of ∆ allow a cyclic order that agrees
with an orientation of ∂S by ϕ;

• ϕ maps different connected components of the boundary of any con-
nected component of S to different connected components of ∆.

A special coloring defines (via ϕ) orientations of all edges of ∆ compatible
with the order of vertices. An oriented foam (S,∆,ϕ) is strongly oriented if the
orientation of ∂S is induced by an orientation of S.

Lemma 2.3. Let Ω = (S,∆,ϕ) be a strongly oriented foam. Then there exists
a morphism (fS , f∆) to the disk (i.e., to the topological foam (D, ∂D, ID)) which is a
homeomorphism on any connected component of ∂S.

Proof. Since S is oriented, its double Ŝ consists of S and of its copy with the

other orientation (glued along the boundary ∂S). The double D̂ of the disk D

is the 2-sphere S2 (with the equator ∂D). To construct the map fS : Ŝ → S2,
one can construct a map f : S → S2 sending the boundary ∂S to ∂D which is
a local homeomorphism in a neighborhood of ∂S and a ramified covering inside

S. The map f with the canonical involutions on Ŝ and on D̂ define the map fS .
Let us fix orientation-preserving maps f ′ : ∂S → ∂D and f∆ : ∆ → ∂D (such
that f ′ = ϕf∆) compatible with the orientations of ∂S and of the edges of ∆.
Gluing a disk to each component of the boundary ∂S, one obtains an oriented
closed surface S′. Now existence of the map f with the described properties
follows from the fact that there exists a map from the surface S′ to the 2-sphere
S2 which is a ramified covering of high order: greater or equal to the number d
of components of the boundary ∂S. Moreover, one can choose this map so that
disk neighborhoods of d fixed points are sent to a fixed disk in S2 by prescribed
homeomorphisms. To obtain the desired map, one should use the map of the
added disks to the copy of D with the inverse orientation which is the radial
extension of the map f ′. ❐

Theorem 2.4. Any strongly oriented foam allows a dianalytic structure, turning
such a foam into a Klein foam.
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Proof. Consider a strongly oriented foam Ω = (S,∆,ϕ). From Lemma 2.3
it follows that there exists a topological morphism (fS , f∆) of Ω to the dianalytic
disk Ω0 = (D, ∂D, ID). Therefore there exists a (unique) dianalytic structure on S
such that fS is a dianalytic map [10]. ❐

3. MODULI SPACES

3.1. Moduli of Klein surfaces. In this and the next subsections we assume
all surfaces to be connected and to have finitely generated fundamental groups.
The fundamental group γ̌+ of an orientable surface K+ has a co-presentation of
the form

〈a1, b1, . . . , ag+ , bg+ , h1, . . . , hm, x1, . . . , xr , e1, . . . , ek, ci1, . . . , cibi ,

i = 1, . . . , k | c2
ij = 1,

∏
[aj , bj]

∏
xjhj

∏
ej = 1

〉
.

The fundamental group γ̌− of a non-orientable surface K− has a co-presentation
of the form

〈d1, . . . , dg− , h1, . . . , hm, x1, . . . , xr , e1, . . . , ek, ci1, . . . , cibi ,

i = 1, . . . , k | c2
ij = 1,

∏
d2
j

∏
hj
∏
xj
∏
ej = 1

〉
.

The collection ť = (ε ∈ {+,−}, gε,m, r , k, b1, . . . , bk) is the topological type
of the surface K. Here g is the (geometric) genus of K;m is the number of holes;
r is the number of interior punctures; k is the number of boundary components;
and bi, i = 1,2, . . . , k, is the number of punctures on the boundary component
with the number i.

Any Klein surface Ǩ is isomorphic to Ǩψ = Λ/ψ(γ̌), where γ̌ ∈ {γ̌+, γ̌−},
U = D \ ∂D and ψ : γ̌ → Aut(U) is a monomorphism to the group Aut(U) of
dianalytic automorphisms of U [7]. Moreover, the monomorphism ψ satisfies the
following conditions (see [21, Chapter 2.2]):

• ψ(cij) andψ(dj) are antiholomorphic, and images of all other generators
are holomorphic.

• The automorphismsψ(xi) are parabolic, and the automorphismsψ(ai),
ψ(bi), ψ(ci), ψ(hi), ψ(d

2
i ) are hyperbolic.

• The hyperbolic and the parabolic automorphisms together form a sequen-
tial set (in the sense of [21, Chapter 1.1]).

These conditions imply that the group ψ(γ̌) is discrete.
Monomorphisms ψ satisfying these conditions will be called admissible. An

admissible monomorphismψ always generates a discrete subgroup of Aut(U) and
thus a Klein surface Kψ. The Klein surfaces Kψ

′

and Kψ
′′

are isomorphic if and
only if the groups ψ′(γ̌) and ψ′′(γ̌) are conjugate in Aut(U), i.e., ψ′(γ̌) =
Aψ′′(γ̌)A−1 for an automorphism A ∈ Aut(U).

The group of homotopy classes of autohomeomorphisms of Kψ is naturally

isomorphic to the group Modť =
ÅMod(γ̌)/Aut0(γ̌), where ÅMod(γ̌) is a subgroup
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of Aut(γ̌) and Aut0(γ̌) ⊂ ÅMod(γ̌) is the subgroup of interior automorphisms
of γ̌.

Therefore the moduli space Mť of Klein surfaces of topological type ť is
Tť/Modť , where Tť is the set of conjugacy classes (with respect to Aut(U)) of
admissible monomorphisms, and Modť acts discretely. A description of geometric
properties of admissible monomorphisms in terms of coordinates on Aut(U) gives
a homeomorphism Tť ↔ R6gε+3m+3k+2r+b1+···+bk−6.

For compact Klein surfaces (r = b1 = · · · = bk = 0) and for oriented
surfaces without boundary (ε = +, k = 0), all these facts are proved in [19–21].
A proof for an arbitrary topological type is obtained by simple modifications of
[19–21]. Thus we have the following theorem.

Theorem 3.1. The space of Klein surfaces of any given topological type is con-
nected and homeomorphic to Rn/Mod, where Mod is a discrete group.

3.2. Spaces of morphisms of Klein surfaces. Two morphisms between
Klein surfaces f ′ : S′ → K′ and f ′′ : S′′ → K′′ are called isomorphic (respec-
tively, topologically equivalent), if there exist isomorphisms (respectively, homeo-
morphisms) fS : S′ → S′′ and fK : K′ → K′′ such that fSf ′ = f ′′fK . The space
of isomorphic classes of morphisms (with the natural topology) is called the moduli
space of morphisms. A class of topological equivalence of morphisms is called the
topological type of a morphism of the class.

Now let us describe a class of morphisms of degree d with target a compact
Klein surface of type t = (ε, g,0, k,0, . . . ,0). Let γ̌ be the fundamental group of

a Klein surface of type ť = (ε, g, r , k, b1, . . . , bk), and let γ̃ ⊂ γ̌ be a subgroup

of index d. Consider ψ ∈ Tť and Ǩψ = U/ψ(γ̌), S̃ψγ̃ = U/ψ(γ̃). The natural

embedding ψ(γ̃) ⊂ ψ(γ̌) induces a morphism f̌
ψ
γ̃ : Šψγ̃ → Ǩ

ψ of degree d. After

patching on Šψγ̃ and Ǩψ the punctures generated by parabolic shifts, we obtain a

morphism f
ψ
γ̃ : Sψγ̃ → K

ψ to a Klein surface of topological type t.
One can show that

• each non-constant morphism of Klein surfaces is isomorphic to a mor-
phism of the form f

ψ
γ̃ ;

• the morphisms fψγ̃ and f ψ̂γ̃ have the same topological type for anyψ, ψ̂ ∈

Tť ; moreover, they are isomorphic if and only if Aψ(z)A−1 = ψ̂(z) for
an automorphism A ∈ Aut(U) and any z ∈ γ̌;

• the morphisms fψγ̃ and fψγ̂ have the same topological type if and only if

γ̂ = α(γ̃), where α ∈ÅModť .

For orientable Riemann surfaces (ε = +, k = 0), all these facts are proved in
[21, Section 1.6]. A proof for an arbitrary topological type is obtained by simple
modifications of [21]. These arguments and Theorem 3.1 give the statement
below.
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Theorem 3.2. The space of morphisms of Klein surfaces of any given topological
type is connected and homeomorphic to Rn/Mod, where Mod is a discrete group.

3.3. Construction of Klein foams. Now we shall apply the previous section
to connected Klein foams. We shall assume that the type t of γ̌ is such that
k, b1, . . . , bk > 0.

Let γ̃1, . . . , γ̃n ⊂ γ̌ be subgroups of finite indices. Consider conjugate classes

Ci,j =
⋃
g∈γ̌ gci,jg

−1 and let Cℓi,j := Cij ∩ γ̃ℓ. The group of interior automor-

phisms of γ̃ℓ splits Cℓi,j into orbits Cℓ,1i,j , . . . , C
ℓ,mℓ

i,j . A set (Cℓ
1,m1

i,j , . . . , C
ℓs ,ms

i,j )

is called an edge of (γ̌; γ̃1, . . . , γ̃n) if ℓv ≠ ℓw for v ≠ w. A foam system is a
collection Γ = {γ̌; γ̃1, . . . , γ̃n;H}, where H is a set of mutually disjoint edges of

(γ̌; γ̃1, . . . , γ̃n) containing all Cℓi,j .

Let ψ ∈ Tť . From Subsection 3.2 it follows that the subgroups γ̃1, . . . , γ̃n

generate a morphism fψ : Sψ → Kψ, where Sψ = Sψγ̃1

∐
· · ·

∐
S
ψ
γ̃n . The para-

bolic points of γ̌ divide the boundary of S into segments bijectively corresponding

to the sets Cℓi,j ⊂ Ci,j . Any element from Ci,j is the reflection in a straight line ℓ in
the Poincaré model of Lobachevsky geometry on U . The group γ̌ acts transitively

on the set {ℓ} of these lines. The line corresponding to Cℓi,j ⊂ Ci,j forms (under

the natural projection) a segment on ∂Sℓ. Let (Cℓ
1,m1

i,j , . . . , C
ℓs ,ms

i,j ) ∈ H be an

edge of H. Let us glue the corresponding segments of ∂Sℓ
1
, . . . , ∂Sℓ

s
by the action

of γ̌ on {ℓ}. The continuation of the gluing to the closures of the segments gives

a graph ∆ and a map ϕ : ∂S → ∆. Let ΩψΓ = (S,∆,ϕ).

Lemma 3.3. The triple ΩψΓ is a Klein foam.

Proof. First let us prove that (S,∆,ϕ) is a topological foam. The first two
conditions and point (a) of the last condition follow directly from the construc-
tion. Points (b) and (c) follow from the definition of an edge of (γ̌; γ̃1, . . . , γ̃n)
(the requirement that ℓv ≠ ℓw for v ≠ w) and the fact that the restriction of the
natural projection to any line from {ℓ} is a homeomorphism. From Subsection
3.2, it follows that fψ induces a morphism of Klein foams f : S → Kψ. Moreover,
the Klein surface Kψ admits a morphism to the unit disk [5]. ❐

Now we shall construct a class of foam systems corresponding to any con-
nected Klein foam Ω = (S,∆,ϕ). Let us consider the Klein surface K = KΩ ∈ Mt
and the canonical morphism ϕΩ : Ω → K from Theorem 2.1. Let B ⊂ K be the

set of critical values of ϕ =ϕΩ and Ǩ = K \ B ∈ Mť . Let Š :=ϕ−1(Ǩ).

From Subsection 3.1 it follows that Ǩ = Λ/ψ(γ̌) for ψ ∈ Tť , where ť is the
type of γ̌. From Subsection 3.2 it follows that the restrictions of ϕ to connected

components of Š are isomorphic to morphisms generated by a family of subgroups
γ̃1, . . . , γ̃n ⊂ γ̌. The edges of ∆ generate the family of edges H of (γ̌, γ̃1, . . . , γ̃n)
and thus a foam system Γ = {γ̌; γ̃1, . . . , γ̃n;H}. From Subsection 3.3 it follows
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that the Klein foams Ωψ[Γ ] and Ω are isomorphic. Thus we have proved the follow-
ing result.

Lemma 3.4. For any Klein foam Ω, there exist a foam system Γ andψ ∈ Tť such
that Ω and ΩψΓ are isomorphic.

3.4. Moduli of Klein foams. Let Ω′ and Ω′′ be Klein foams with canonical
morphisms ϕΩ′ : Ω′ → Ω

′
K and ϕΩ′′ : Ω′′ → Ω

′′
K . We say that Ω′ and Ω′′ have

the same topological type if there exist an isomorphism (fS , f∆) of the topological
foams, fS : S̃′ → S̃′′, f∆ : ∆′ → ∆′′, and a homeomorphism fK : K̃′ → K̃′′ such
that ϕΩ′′fS = fKϕΩ′ .

The space of isomorphic classes of Klein foams (with the natural topology)
is called the moduli space of Klein foams. A class of topological equivalence of
morphisms is called the topological type of a Klein foam.

An element (α1, . . . , αn) ∈ ÅMod(γ̌)⊗n acts on the set {Γ} of foam systems

sending γ̃ℓ to αℓ(γ̃ℓ) and Cℓi,j to αi(Cℓi,j) (ℓ = 1, . . . , n). The orbit [Γ] of a foam

system Γ under the action of ÅMod(γ̌)⊗n is called the class of Γ . Subsections 3.1
and 3.2 imply the following statement.

Lemma 3.5. The Klein foams ΩψΓ and Ωψ̂Γ have the same topological type for
any ψ, ψ̂ ∈ Tť . Moreover, they are isomorphic if Aψ(z)A−1 = ψ̂(z) for an auto-
morphism A ∈ Aut(U) and any z ∈ γ̌. The morphisms fψγ̃ and fψγ̂ have the same

topological type if and only if γ̂ = α(γ̃), where α ∈ÅModť .

Thus the topological type of ΩψΓ is defined by [Γ]. Let

Mod[Γ ] := ÅMod(γ̌)⊗n/Aut0(γ̌).

The set of all Klein foams of topological type [Γ] is in one-to-one correspondence
with Tt/Mod[Γ ]. Therefore we have the following theorem.

Theorem 3.6. The space of Klein foams of a given topological type is connected
and homeomorphic to Rn/Mod, where Mod is a discrete group.
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