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The generic feature of non-conformal fields in Poincaré patch of de Sitter space is the presence of large
IR loop corrections even for massive fields. Moreover, in global de Sitter there are loop IR divergences
for the massive fields. Naive analytic continuation from de Sitter to Anti-de-Sitter might lead one to
conclude that something similar should happen in the latter space as well. However, we show that there
are no large IR effects in the one-loop two-point functions in the Poincaré patch of Anti-de-Sitter space
even for the zero mass minimally coupled scalar fields. As well there are neither large IR effects nor IR
divergences in global Anti-de-Sitter space even for the zero mass.
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1. Introduction

There are large IR loop effects in de Sitter (dS) space. E.g.
consider two-point Keldysh function in say massive, minimally
coupled, scalar field theory, G K (η1, �x1;η2, �x2) ≡ 1

2 〈{φ(η1, �x1),

φ(η2, �x2)}〉, where {·,·} means anti-commutator. Here the coordi-
nates on the d-dimensional dS space of unit curvature are defined
as ds2 = (dη2 − d�x2)/η2, the limit η → +∞ of the conformal time
η corresponds to the past, while η → 0 corresponds to the future
in the expanding Poincaré patch of dS. Poincaré patch covers half
of dS space.

Due to spatial homogeneity of dS space it is convenient to con-
sider the spacial Fourier transform of this function: G K (η1, η2; �p) =∫

dd−1x ei�p�xG K (η1, �x;η2,0). The IR contributions to the exact
Keldysh propagator, in the limit p

√
η1η2 → 0 and η1/η2 = const,

can be represented as follows [1,2]:

G K (η1, η2; �p)

= (η1η2)
d−3

2

{
1

2

[
h(pη1)h

∗(pη2) + h∗(pη1)h(pη2)
]

× [
1 + 2np(η)

] + h(pη1)h(pη2)κp(η)

+ h∗(pη1)h
∗(pη2)κ

∗
p(η)

}
(1)

for the scalars with m > (d − 1)/2. The calculation should be
done in the non-stationary Keldish–Schwinger diagrammatic tech-
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nic. Here η = √
η1η2 is the average conformal time, h(pη) is a so-

lution of the Bessel equation with the index μ2
dS = m2 − ( d−1

2 )2

and m is the mass of the particle. The choice of h(pη) defines
the background state. E.g. the Bunch and Davies [3] state corre-
sponds to the Hankel function in place of h(pη). If one starts
from the vacuum state, then at tree level np = 〈a+

p ap〉 = 0 and
κp = 〈apa−p〉 = 0.

Due to the particle creation np and κp are not zero at the loop
level. E.g. for Bunch–Davies initial state in the scalar field the-
ory with the λφ3 self interaction one obtains that at one-loop
level np(η) ∝ λ2 log(pη/μdS ) and κp(η) ∝ λ2 log(pη/μdS ) [1,2,4].
For the α-vacua the situation is similar with the only difference
that for the vacuum defined by the standard Bessel functions
(out-Jost harmonics) np(η) ∝ λ2 log(pη/μdS ), while κp(η) is sup-
pressed [2].

Similar IR contributions (with different powers of the coupling
constants and of the log(pη)) do appear in different types of cor-
relation functions and for the scalar fields with the other types
of self interactions and masses. The same is true for the other
non-conformal theories in dS space. This is the generic behavior
in the Poincaré patch of dS [5–9].

The situation becomes even more interesting in the global dS
space. There the loop contributions are explicitly IR divergent
[10,1] even for the massive fields. This fact makes dS space similar
to the QED in strong background electric fields [11]. The presence
of the IR cut-off in the correlation functions puts an obstruction
for the dS isometry invariance of the correlation functions of QFT
in global dS. That could lead to the dynamical quantum secular
screening of the cosmological constant.

The immediate question is whether such an IR behavior is
the specific feature of the quantum fields in dS space or there
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is a similar behavior of the fields on the other symmetric curved
space – on Anti-de-Sitter (AdS) space? Indeed the naive analytic
continuation from dS to AdS might lead one to conclude that sim-
ilar IR effects should appear in AdS as well. In this Letter we show
that such an expectation is wrong.

Covering space of AdS has preferred reference frame which
corresponds to inertial observers, covers entire space-time and is
static. Hence, QFT in such a background has unique AdS invari-
ant vacuum state. In this respect it is similar to the Minkowski
space and is different from the dS space. As the result one can
expect that IR effects in EAdS should not be too strong. Further-
more, one can study QFT dynamics on the covering of AdS space
via straightforward analytic continuation of the Feyman diagram-
matic expressions from Euclidian AdS (EAdS) space.

We show that there are no large IR effects in the one-loop two-
point functions in the Poincaré patch of (E)AdS space even for zero
mass scalar fields. As well there are neither large IR effects nor
IR divergencies in global (E)AdS space. The methods we use in
this Letter are similar to those, which were used in [12] for the
sphere.

2. General discussion of scalar fields in EAdS

The d-dimensional EAdS space is the hyperboloid X2 ≡ X2
0 −

X2
i = 1 in the flat (d + 1)-dimensional Minkowski space ds2

d+1 =
dX2

0 − dX2
i . We set its curvature to 1 throughout this Letter.

Poincaré patch covers only half of EAdS. In fact, the induced co-
ordinates on this patch are defined as

X0 = 1

2

(
z + 1

z

)
+ x2

a

2z
, Xd = 1

2

(
z − 1

z

)
+ x2

a

2z
,

Xa = xa

z
, a = 1, . . . ,d − 1, (2)

and for this choice of coordinates X0 − Xd � 0, because z > 0. Then
the induced metric and Laplacian on such a d-dimensional space is
as follows

ds2 = dz2 + dx2
a

z2
, and

� = z2∂2
z + (2 − d)z∂z + z2�d−1, (3)

where �d−1 is the flat (d − 1)-dimensional Laplacian.
Global coordinates on the d-dimensional EAdS are induced via

X0 = coshρ and Xi = ωi sinhρ , i = 1, . . . ,d, where ω2
i = 1 de-

fines (d − 1)-dimensional sphere. Then the induced metric and the
Laplacian on the space in question is

ds2 = dρ2 + sinh2 ρ dΩ2, and

� = ∂2
ρ + (d − 1) cothρ∂ρ + �Ω

sinh2 ρ
, (4)

where dΩ2 and �Ω are the metric and Laplacian on the (d − 1)-
dimensional sphere.

The Feynman propagator G(X1, X2) of the minimally coupled
massive, m, scalar QFT in EAdS should be a solution of the Klein–
Gordon equation. This equation is invariant under the EAdS isom-
etry. Hence, its solution should be a function of the EAdS invariant
combination of the two points X1 and X2 [15]. Such a combina-
tion is the hyperbolic distance Z12 = X1 · X2, where X1 and X2
are the coordinates in the ambient space of the two points on the
hyperboloid, i.e. X2

1 = X2
2 = 1. In the Poincaré coordinates the hy-

perbolic distance is Z12 = 1+ (z1−z2)2+|�x1−�x2|2
2z1 z2

, while in global EAdS
Z12 = cosh(ρ1) cosh(ρ2) − sinh(ρ1) sinh(ρ2) cos �ϕ , where �ϕ is
the angle between the two vectors on the spherical ρ-sections. In
EAdS the hyperbolic distance ranges as 1 � Z12 < ∞.

The Klein–Gordon operator when acting on the function of the
hyperbolic distance Z , rather than the function of the two points
X1 and X2 separately, is equivalent to (see e.g. [13,14] for a similar
discussion in dS space)

−� + m2 = (
1 − Z 2)∂2

Z − dZ ∂Z + m2, (5)

which converts the Klein–Gordon equation into a form of the hy-
pergeometric equation. The solution of the latter equation, which
is finite as Z → ∞ is as follows

G(Z) ∝ Z−μ− d−1
2

× F

(
d − 1

4
+ μ

2
,

d + 1

4
+ μ

2
;μ + 1; 1

Z 2
+ iε

)
, (6)

where μ2 = ( d−1
2 )2 + m2 and F is the 2 F1 hypergeometric func-

tion. This propagator corresponds to the unique EAdS invariant
vacuum state [15] and is related via analytical continuation to the
in–out (Q-)propagator in dS space [16,17]. The presence of iε in
the argument of the hypergeometric function is the usual shift,
Z → Z − iε , of the pole at Z = 1 + iε , corresponding to the co-
incident points. Note that the propagator in question has as well
the pole at Z = −1 + iε on the complex Z -plane. It is an analyti-
cal function on this plane with the cut going from Z = −1 + iε to
infinity just above the real axis.

Throughout this Letter we are going to study one-loop contri-
bution in the minimally coupled massive real scalar field theory:

L = √|g|
[

gμν

2
∂μφ∂νφ + m2

2
φ2 + λ

3
φ3 + · · ·

]
. (7)

Dots here stand for the higher self-interaction terms, which make
the theory stable. The reason why we are going to consider be-
low formulas only due to the unstable cubic part of the potential
is just to simplify them. This instability does not affect our conclu-
sions.

The main subject of this Letter is the IR behavior of the one-
loop contribution. But let us say a few words about the UV diver-
gencies. Obviously they should be the same as in flat or dS space,
because short wavelength fluctuations of the fields are not sensi-
tive to the large curvature of the space-times.

In the UV limit |X1 − X2| → 0 and, hence, (z1−z2)2+|�x1−�x2|2
2z1 z2

� 1.
In this limit the propagator acquires the form: G(Z) ∝ 1/

(Z − 1)
d−1

2 . The one-loop contribution to the propagator is

G1loop(1,4) = λ2
∫

G(Z12)G2(Z23)G(Z34)
dz2 dV 2

zd
2

dz3 dV 3

zd
3

, (8)

where V is (d −1)-dimensional flat spatial volume. The leading UV
divergence comes from:

GU V
1loop(1,4) ∝ λ2

∫
G(Z12)

1

(Z23 − 1)d−1
G(Z34)

×dz2 dV 2

zd
2

dz3 dV 3

zd
3

. (9)

The integration variables X2, X3 can be changed to ρ = X2+X3
2 ,

ε = X2−X3
2 . In the UV limit |ε| is negligible with respect to |ρ|.

Then one can approximate Z23 −1 
 ε2/2ρ2
z , z2z3 
 ρ2

z , Z12 
 Z1ρ ,
−Z34 
 Zρ4, where ε2 = ε2

z + ε2
i . As the result we obtain

GU V
1loop(1,4) ∝

∫
ddρ

G(Z1ρ)G(Zρ4)

ρ4
z

∫
dε

εd−3
. (10)
0
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Thus, as expected, the UV divergence in EAdS space is the same as
in flat and dS spaces.

3. Poincaré patch of EAdS

In this section we consider the IR behavior of the one-loop con-
tribution to the scalar field propagator in the Poincaré patch of
EAdS space. To do the one-loop calculation in a curved space one
in general has to specify the coordinate system, because the result
of the calculation can depend on the choice of the coordinates if
there are large IR effects. In fact, in different coordinate systems
one, in principle, can specify different types of boundary condi-
tions, which is usually done implicitly (see e.g. [2] for a similar
discussion in dS). The boundary conditions are necessary in those
situations when coordinates under consideration cover only some
part of the whole space. Large IR effects, if any, are obviously sen-
sitive to the boundary conditions.

Due to the spatial homogeneity of EAdS space we find it more
convenient to perform the Fourier transformation of the propaga-
tor (6) over the d − 1 spatial dimensions. The eigenfunctions of the

Klein–Gordon operator are z
d−1

2 Kν(kz)ei�k�x and correspond to the
eigenvalues ν2 −μ2, where K is the MacDonald function. Then the
basis of the so called Kontorovich–Lebedev integral transformation
is the following resolution of the δ-function:

δ(x − y) = 1√
xy

∞∫
0

dτ
2τ sinhπτ

π2
Kiτ (x)Kiτ (y). (11)

Using it, one can represent the Fourier transform of (6) as

G(z1, z2,k) = − 1

π2
(z1z2)

d−1
2

×
∞∫

0

2τ sinhπτ

τ 2 + μ2
Kiτ (kz1)Kiτ (kz2)dτ . (12)

The τ integration can be done using 2.16.52.11, 2.16.52.12 of [18]:

G(z1, z2,k) = π2

2
(z1z2)

d−1
2

[
Iμ(kz1)Kμ(kz2)θ(z2 − z1)

+ Iμ(kz2)Kμ(kz1)θ(z1 − z2)
]
. (13)

Here I is another MacDonald function. It is not hard to see, using
2.16.31.2, 2.16.31.3 of [18], that the inverse Fourier transform of
the last expression is (6), if d = 4. In the other dimensions the
situation should be similar.

The one-loop contribution (8) in the Fourier transformed form
is as follows:

G1loop(z1, z4, p) = λ2
∫

G(z1, z2, p)G(z2, z3,q)G
(
z2, z3, |p − q|)

× G(z3, z4, p)
dd−1q

(2π)d−1

dz2 dz3

zd
2zd

3

. (14)

Substituting (13) into this expression and making the change of
variables xi = qzi , i = 1,2,3,4 in the last expression, we obtain
that the one-loop contribution contains the following integrals:

∞∫
x1

dx2

(x2,x4)∫
0

dx3(x2x3)
d−3

2 Iμ

(
p

q
x3

)
Kμ

(
p

q
x2

)
Iμ(x3)Kμ(x2)

× Iμ

( |p − q|
x3

)
Kμ

( |p − q|
x2

)
, (15)
q q
x4∫
x1

dx3

x3∫
x1

dx2(x2x3)
d−3

2 Iμ

(
p

q
x3

)
Kμ

(
p

q
x2

)
Iμ(x2)Kμ(x3)

× Iμ

( |p − q|
q

x2

)
Kμ

( |p − q|
q

x3

)
, (16)

∞∫
x1

dx2

x2∫
x4

dx3(x2x3)
d−3

2 Kμ

(
p

q
x3

)
Kμ

(
p

q
x2

)
Iμ(x3)Kμ(x2)

× Iμ

( |p − q|
q

x3

)
Kμ

( |p − q|
q

x2

)
, (17)

∞∫
x4

dx3

x3∫
x1

dx2(x2x3)
d−3

2 Kμ

(
p

q
x3

)
Kμ

(
p

q
x2

)
Iμ(x2)Kμ(x3)

× Iμ

( |p − q|
q

x2

)
Kμ

( |p − q|
q

x3

)
, (18)

x1∫
x4

dx2

x2∫
x4

dx3(x2x3)
d−3

2 Iμ

(
p

q
x2

)
Kμ

(
p

q
x3

)
Iμ(x3)Kμ(x2)

× Iμ

( |p − q|
q

x3

)
Kμ

( |p − q|
q

x2

)
, (19)

∞∫
x4

dx3

(x1,x3)∫
0

dx2(x2x3)
d−3

2 Iμ

(
p

q
x2

)
Kμ

(
p

q
x3

)
Iμ(x2)Kμ(x3)

× Iμ

( |p − q|
q

x2

)
Kμ

( |p − q|
q

x3

)
, (20)

x1∫
0

dx2

(x2,x4)∫
0

dx3(x2x3)
d−3

2 Iμ

(
p

q
x2

)
Iμ

(
p

q
x3

)
Iμ(x3)Kμ(x2)

× Iμ

( |p − q|
q

x3

)
Kμ

( |p − q|
q

x2

)
, (21)

x4∫
0

dx3

(x3,x1)∫
0

dx2(x2x3)
d−3

2 Iμ

(
p

q
x2

)
Iμ

(
p

q
x3

)
Iμ(x2)Kμ(x3)

× Iμ

( |p − q|
q

x2

)
Kμ

( |p − q|
q

x3

)
, (22)

and is defined as follows

G1loop(z1, z4, p)

= λ2(z1z4)
d−1

2

+∞∫
0

dq

q

{
Iμ(pz1)Kμ(pz4)

[
(15) + (16)

]

+ Iμ(pz4)Kμ(pz1)
[
(19) + (20)

]
+ Iμ(pz1)Iμ(pz4)

[
(17) + (18)

]
+ Kμ(pz1)Kμ(pz4)

[
(21) + (22)

]}
. (23)

The expressions (xi, x j) as the limits of integration in these formu-
las denote that the integration is going to that value among xi and
x j which is smaller.

As the side remark let us point out that one can show that the
obtained one-loop result is the function of Z , i.e. is invariant under
EAdS isometry. The question appears because Poincaré patch cov-
ers only half of EAdS and, hence, brakes the isometry. In particular,
in the loop integrals this fact reveals itself via the non-invariance
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of the measure of integration in the vertices. The measure is
defined in terms of the coordinates X0, . . . , Xd in the ambient
space as dd+1 Xδ(X2 − 1)θ(X0 − Xd). (This measure is equivalent to
dz
zd dd−1x.) The presence of the Heaviside θ -function, restricting to
the Poincaré patch, brakes the EAdS isometry. The latter is just the
rotation group of the ambient (d + 1)-dimensional space. However,
one can show that under the infinitesimal rotation around X0 to-
wards say X1 (Xd → Xd − ϕX1) the one-loop contribution changes
by the integral over the measure dd+1 Xδ(X2 − 1)ϕX1δ(X0 − Xd) =
d(X0 + Xd)dd−1 Xδ(X2 − 1)ϕX1. This integral does vanish be-
cause its integrand is the product of the Feynman propagators in
EAdS (6), which, due to the shift Z → Z − iε , are the analytical
functions of X0 + Xd in the lower half complex plane1 and decay
at the complex infinity as a power of Z .

Returning back to the IR behavior, note that in the Poincaré
patch of dS space the one-loop contribution to the two-point func-
tion has the divergence in the limit p

√
η1η2 → 0, η1/η2 = const.

Similar limit in EAdS is p
√

z1z4 → 0, z1/z4 = const and via analyt-
ical continuation one may expect that in EAdS the one-loop con-
tribution behaves as log(p

√
η1η2/μdS) → log(p

√
z1z4/μ) in the

limit in question. However this expectation is wrong.
In fact, using the behavior of the MacDonald functions Kμ(x) 


Γ (μ)
2 ( 2

x )μ , Iμ(x) 
 1
Γ (μ+1)

( x
2 )μ , as x → 0, it is straightforward to

show that (23) behaves as pd−1 in the described limit, i.e. is not
divergent. That is true even for the massless fields. So in Poincaré
patch of EAdS there are no large IR effects even for the massless
scalars.

4. Global EAdS

We go on with the global EAdS calculation. The eigen-functions
of the Klein–Gordon operator in the global EAdS are H p,l,m(ρ,Ω) =
Z p,l(ρ)Yl,m(Ω) [20], where Yl,m(Ω) are spherical harmonics on
the (d − 1)-dimensional sphere: �Ω Yl,m(Ω) = −l(l +d − 2)Yl,m(Ω)

(m = 1,2, . . . , M and M = (2l+d−2)(l+d−3)!
l!(d−2)! for d = 3,4, . . .). Here

Z p,l(ρ), with p > 0 and l = 0,1, . . . , solve the equation as follows:

[
∂2
ρ + (d − 1) coth(ρ)∂ρ − l(l + d − 2)

sinh2(ρ)

]
Z p,l

= −
[

p2 +
(

d − 1

2

)2]
Z p,l. (24)

They are given by

Z p,l(ρ) = Γ (ip + l + d−1
2 )

Γ (ip)
sinh

2−d
2 (ρ)P

2−d
2 −l

ip− 1
2

(coshρ) (25)

and obey the orthogonality and completeness condition:

∞∫
0

Z p,l(ρ)Z∗
p′,l(ρ) sinhd−1(ρ)dρ = δ

(
p − p′),

1 We would like to thank A.Polyakov for telling us the idea of this proof. The same
observation was used to prove the dS isometry invariance of the one-loop contribu-
tion in Poincaré patch over the Bunch–Davies vacuum in scalar field theory. (Some
elements of the proof can be found in [16,19].) At the same time one can show that
one-loop contributions for the α-vacua are not dS invariant, because propagators in
this case have different analytical properties on the complex Z plane from those
of Bunch–Davies propagator. The question which vacuum in dS space is stable un-
der the small density perturbations was addressed in [2]. It follows from the kinetic
equation [2] that Bunch–Davies vacuum is unstable under the small perturbation,
while the stable one is defined with respect to the out-Jost harmonics.
∞∫
0

Z p,l(ρ)Z∗
p,l

(
ρ ′)dp = sinh1−d(ρ)δ

(
ρ − ρ ′). (26)

As the result we have the orthogonality and completeness condi-
tion for H p,l,m∫

dρ dΩ sinhd−1(ρ)H p′,l′,m′(ρ,Ω)H p,l,m(ρ,Ω)

= δ
(

p − p′)δll′δmm′ ,∫
dp

∑
l,m

H p,l,m(ρ1,Ω1)H p,l,m(ρ2,Ω2)

= δ(ρ1 − ρ2)

sinhd−1(ρ1)
δ(Ω1,Ω2). (27)

The convenient for our further discussion equality is as follows
(see e.g. [20])

(
Z 2 − 1

) 2−d
4

∣∣∣∣Γ (ip + d−1
2 )

Γ (ip)

∣∣∣∣
2

P
2−d

2

ip− 1
2
(Z)

= (2π)
d
2
∑
l,m

H∗
p,l,m(ρ1,Ω1)H p,l,m(ρ2,Ω2), (28)

where Z is the hyperbolic distance between (ρ1,Ω1) and (ρ2,Ω2);
P b

a (Z) is the associated Legendre function. The useful for our dis-
cussion properties of these functions are: P b

a = P b−a−1 and Pm
a =

Γ (a+m+1)
Γ (a−m+1)

P−m
a if m ∈ Z .

With the use of (27) and (28) one can prove that
∫

dρ2dΩ2 sinhd−1(ρ2)
(

Z 2
12 − 1

) 2−d
4 P

2−d
2

ip1− 1
2
(Z12)

× (
Z 2

23 − 1
) 2−d

4 P
2−d

2

ip2− 1
2
(Z23)

∣∣∣∣Γ (ip2 + d−1
2 )

Γ (ip2)

∣∣∣∣
2

= (2π)
d
2 δ(p1 − p2)

(
Z 2

13 − 1
) 2−d

4 P
2−d

2

ip1− 1
2
(Z13). (29)

More generally, using the orthogonality and completeness of the
Legendre functions (26), with the substitution coshρ = Z , one can
Mehler transform any function F (Z) → f (p) of the hyperbolic dis-
tance Z [20]:

F (Z) =
∞∫

0

f (p)P b
ip−1/2(Z)

∣∣∣∣Γ ( 1
2 + ip − b)

Γ (ip)

∣∣∣∣
2

dp,

where f (p) =
∞∫

1

F (Z)P b
−ip−1/2(Z)dZ . (30)

This transformation is well defined if
∫ ∞

1 |F (Z)|2 dZ < ∞ [21]. To
obey the latter condition in the formulas below one has to apply
Pauli–Villars UV regularization procedure.

In particular, the Mehler transform of the propagator in EAdS
follows from (27) and (28):

G(Z) = −
∞∫

0

dp
∑
l,m

H p,l,m(ρ1,Ω1)H∗
p,l,m(ρ2,Ω2)

p2 + (d−1
2 )2 + m2

= − (Z 2 − 1)
2−d

4

(2π)
d
2

∞∫ P
2−d

2

ip− 1
2
(Z)

p2 + μ2

∣∣∣∣Γ (ip + d−1
2 )

Γ (ip)

∣∣∣∣
2

dp. (31)
0
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Now if g(p) is the Mehler transform of (Z 2 − 1)(d−2)/4Greg(Z)

and h(p) is the Mehler transform of (Z 2 − 1)(d−2)/4G2
reg(Z), where

b = 2−d
2 in (30) and Greg is the Pauli–Villars regularized propaga-

tor, then the Mehler transform of the one-loop contribution to the
propagator, i.e. of (Z 2 − 1)(d−2)/4G1loop(Z), is (2π)dλ2 g2(p)h(p)/4.

Furthermore, using (26) and (30) one can prove the Parseval
equality

∥∥F (Z)
∥∥2 ≡

∞∫
1

∣∣F (Z)
∣∣2

dZ =
∞∫

0

∣∣ f (p)
∣∣2

∣∣∣∣Γ (ip + d−1
2 )

Γ (ip)

∣∣∣∣
2

dp

≡ ∥∥ f (p)
∥∥2

[21]. Then one has the following chain of relations

1

(2π)2dλ4

∥∥(
Z 2 − 1

)(d−2)/4
G1loop(Z)

∥∥
= ∥∥g2(p)h(p)

∥∥ �
∥∥h(p)

∥∥
= ∥∥(

Z 2 − 1
)(d−2)/4

G2
reg(Z)

∥∥ < ∞.

The inequality follows from the fact that

∥∥g2(p)h(p)
∥∥2 = 1

(2π)2d

∞∫
0

|h(p)|2
(p2 + μ2)4

∣∣∣∣Γ (ip + d−1
2 )

Γ (ip)

∣∣∣∣
2

dp

�
∞∫

0

∣∣h(p)
∣∣2

∣∣∣∣Γ (ip + d−1
2 )

Γ (ip)

∣∣∣∣
2

dp ≡ ∥∥h(p)
∥∥2

,

because∣∣g(p)
∣∣ = 1

(2π)d/2(p2 + μ2)
< 1.

Thus, G1loop is finite and even decays fast as Z → ∞ for the fields
with any mass: even when m = 0.

5. Conclusions

Loop corrections in the Poincaré patch of dS space contain
large IR contributions which behave as powers of λ2 log(pη/μdS).
Naive analytical continuation, μdS → iμ and η → iz, to the
Poincaré patch of EAdS should produce contributions of the type
λ2 log(pz/μ). However, we show that such an analytical continu-
ation is wrong. In particular, there are no large IR effects for the
fields in Poincaré patch of EAdS even for the massless fields. As
well there are no IR divergences for the massless scalar fields in
global EAdS. Thus, IR effects for non-conformal scalar fields in EAdS
and AdS are even weaker than in Minkowski space. That should be
expected on general physical grounds, because of the special con-
fining EAdS geometry: The general physical discussion along these
lines can be found in [22], while more rigorous tree level discus-
sion is in [23].

This observation points out that the large IR effects in dS space
have a deeper physical reason rather than just its infinite space-
time volume. In this Letter we just make a small step towards
clarification of the physical origin and consequences of the strong
IR effects in dS space.
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