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1. Introduction 
 

More than two centuries have passed since marquise de Condorcet, a man 

of brilliant genius and deep insight, had proposed a social choice procedure now 

known as the choice of the Condorcet winner – an alternative preferred to any 

other one by the majority of voters. 
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However, it was Condorcet himself who constructed a counterexample that 

demonstrated how inconsistent this choice rule might be. He considered the case 

of three alternatives: a, b, c, and three voters, who were assumed to have the 

following preferences with respect to alternatives: 

1st voter: a›b›с, 

2nd voter: c›a›b, 

3rd voter: b›c›a. 

The preferences were also assumed to be transitive, i.e. if a›b and b›c, then 

a›c. 

If one uses the simple majority rule to construct social preferences, i.e. if 

one says that a is preferred to b socially when at least 2 voters out of 3 prefer a to 

b, then the social preferences will cycle: a›b, b›c and c›a, and the majority relation 

will not have a maximal element. This situation has been called "the Condorcet 

paradox". 

Solution concepts based on majority relation (tournament solutions) were 

designed to resolve the problem the Condorcet paradox presents. As the works of 

20th-century social theorists have shown, Condorcet’s idea to use majority rule to 

define “the will of the people” is normatively sound - when choices are to be 

made by a group, the only methods of aggregation of individual preferences that 

satisfy several important normative conditions (independence of irrelevant 

alternatives, Pareto efficiency, monotonicity, neutrality with respect to 

alternatives and anonymity with respect to voters) are different versions of the 

majority rule. Therefore social preferences are often modeled by a binary relation 

based on simple majority rule (majority relation). A major defect of this model is 

impossibility to define the best choice simply as a choice of maximal elements of 

a relation representing preferences, since the majority relation almost never 

possesses maximal elements. Over the last 50 years of research in the area 

numerous attempts to bypass the Condorcet paradox led to proliferation of 

alternative concepts of optimal social choice and related solutions, always 

nonempty and Condorcet consistent (i.e. picking up maximal elements of the 

majority relation whenever they exist).  

In this paper we develop a unified matrix-vector representation of such 

solutions as the core, the uncovered, uncaptured, untrapped and minimal 

externally stable sets, the weak and strong top cycle sets, the classes of k-stable 
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alternatives and k-stable sets. This representation determines convenient 

algorithms for their calculation. We also propose new versions of some 

tournament solutions. 

The structure of the text is as follows. Basic definitions and notations are 

given in Section 2. In this section it is demonstrated how a relation and a subset of 

alternatives can be represented by the Boolean matrix and the Boolean 

characteristic vector, and the vector-matrix representation for the set of maximal 

elements of an arbitrary relation is obtained. 

Section 3 contains matrix-vector representations for the following solution 

concepts: the Condorcet winner, the core, the fifteen versions of the uncovered set 

[1-6], the uncaptured set [7], the union of minimal externally stable sets [8-10], 

the weak and strong top cycle sets [11-16], the untrapped set [7]. These 

representations are obtained in the general case, when ties are allowed. Also in 

this section new versions of the uncovered set and a new version of the minimal 

weakly stable set, called weakly externally stable set, are proposed. A criterion to 

determine whether an alternative belongs to the union of minimal weakly 

externally stable sets is established. This criterion provides a connection between 

this solution and some versions of the covering relation. 

Section 4 contains matrix-vector representations for the classes of k-stable 

alternatives and classes of k-stable sets introduced by Aleskerov and Subochev 

[17] (see also [10, 18]). 

In Section 5 it is demonstrated how to use matrix-vector representations for 

calculation of such solutions as the weakly uncovered set and Levchenkov sets. 

In Section 6 the results of the paper are summarized in the form of a 

theorem. The proof of Lemma 2 is given in Appendix. 

 

2. Matrix-vector representation of sets and 
relations: basic definitions 

 

A decision is modeled as a choice of a subset from a set A of available 

alternatives. We presume that A is finite, |A|=n<∞. Alternatives from A are 

denoted by a unique natural number i, 1≤i≤n. In computations a subset B, B⊆A, 

can be represented by the characteristic (n-component) vector b=[bi]: bi=1 ⇔ i∈B 
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and bi=0 ⇔ i∉B. The characteristic vectors of the set A and the set containing 

only one alternative {j} will be denoted as a and e(j), respectively.  

It is presumed that choices are guided by preferences. Preferences of a 

chooser are modeled by a binary relation ρ on A. Formally ρ is a set of ordered 

pairs from A, ρ⊆A×A. A pair (i, j) that belongs to ρ is also denoted as iρj. In 

computations a binary relation on A can be uniquely represented by (n×n) matrix 

R=[rij]: rij=1 ⇔ (i, j)∈ρ and rij=0 ⇔ (i, j)∉ρ. Matrix E=[eij]: eij= 1 if i=j, 0 

otherwise, represents the relation of identity ε: (i, j)∈ε ⇔ i=j.1 

If it is not specifically noted, all matrices and vectors are presumed to be 

Boolean ones. Therefore in all expressions, containing addition and/or 

multiplication of elements, these operations are understood as logical disjunction 

and conjunction, respectively. Addition and multiplication of matrices and vectors 

are defined and denoted in a standard way. Rtr denotes a transposed matrix: Q=Rtr 

⇔ qij=rji. R  and v  denote a matrix and a vector obtained by logical inversion of 

values of all entries of the corresponding matrix R and vector v, ijr =0 ⇔ rij=1. If 

v is the characteristic vector for a set V, V⊆A, then v  is the characteristic vector 

for the set A\V. 

An idea of optimal choice is connected with the concept of maximal 

element of a preference relation. There are two versions of what is to be 

considered as a maximal element. 

 

Definition 1. An alternative i is a weak maximal element of a relation ρ or 

weak ρ-maximal in A if ∀j jρi ⇒ iρj. 2  

 

Definition 2. An alternative i is a strong maximal element of a relation ρ or 

strong ρ-maximal in A if ∀j≠i (j, i)∉ρ. 

 

The set of strong maximal elements is always a subset of the set of weak 

maximal elements. If ρ is asymmetric (i.e. ∀(i, j) (i, j)∈ρ ⇒ (j, i)∉ρ), these sets 

                                                
1 Throughout the paper plain lowercase letters without indices denote alternatives or numbers, 
plain capital letters without indices - sets of alternatives, Greek letters - relations. Vectors are 
denoted by bold small letters, vector components - by plain small letters with one index. Matrices 
are denoted by bold capital letters, matrix elements - by plain small letters with two indices. 
2 Here and below ∀j stands for ∀j∈A. 
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coincide. If ρ is also acyclic they are always nonempty. If ρ is transitive then the 

set of its weak maximal elements is always nonempty as well. This is not true for 

the set of strong maximal elements. In this paper, a term “maximal element” is 

used instead of “weak maximal element”. 

Let MAX(ρ) denote the set of all alternatives that are ρ-maximal in A. If R 

is the matrix representing ρ, then i∉MAX(ρ) ⇔ ∃j: j≠i & rij=0 & rji=1. Let 

Q= trRR + , then (∃j: j≠i & rij=0 & rji=1) ⇔ (∃j: qij=1). Then i∈MAX(ρ) ⇔ qij=0 

for all j, 1≤j≤n. Let v=Q⋅a, then vi=∑
=

⋅
n

1k
kik aq =0 iff qij=0 for all j, 1≤j≤n, then vi=0 

iff i∈MAX(ρ). Therefore v= aQ ⋅ = aRR ⋅+ )( tr =max(ρ) is the characteristic 

vector for the set MAX(ρ).  

The matrix expression for max(ρ) looks simpler when ρ is asymmetric or 

complete (i.e. ∀(i, j) (i, j)∈ρ ∨ (j, i)∈ρ). 

If ρ is asymmetric then ∀j≠i rji=1 ⇒ rij=0, and rii=0 for all i∈A. Then 

i∉MAX(ρ) ⇔ ∃j: j≠i & rji=1. Let Q=Rtr, then (∃j: j≠i & rji=1) ⇔ (∃j: qij=1). 

Consequently, i∈MAX(ρ) ⇔ qij=0 for all j, 1≤j≤n, therefore 

max(ρ)= aQ ⋅ = aR ⋅tr . It follows also from Definition 2 that this formula gives us 

the matrix-vector representation of the set of strong maximal elements of any ρ. 

If ρ is complete then ∀j≠i rij=0 ⇒ rji=1. Consequently, i∉MAX(ρ) ⇔ ∃j: 

j≠i & rij=0. Let Q= ER + , then (∃j: j≠i & rij=0) ⇔ (∃j: qij=1). Then i∈MAX(ρ) ⇔ 

qij=0 for all j, 1≤j≤n, therefore max(ρ)= aQ ⋅ = aER ⋅+ )( . 

Let us formulate this result as 

 

Lemma 1.  

1) If R is the matrix representing a relation ρ, then the characteristic vector 

max(ρ) for the set of ρ-maximal elements MAX(ρ) is max(ρ)= aRR ⋅+ )( tr ;  

2) if ρ is asymmetric then max(ρ)= aR ⋅tr ;  

3) ∀ρ smax(ρ)= aR ⋅tr  is the vector of the set of strong ρ-maximal 

elements;  

4) if ρ is complete then max(ρ)= aER ⋅+ )( . 
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Definition 3. A binary relation π is called the asymmetric part of a binary 

relation ρ if ∀(i, j) (i, j)∈π ⇔ ((i, j)∈ρ ∨ (j, i)∉ρ). 

 

Corollary of Lemma 1. If π is the asymmetric part of ρ then 

MAX(ρ)=MAX(π).  

 

Proof of the Corollary. Let P be the matrix representing π. It follows 

from baba ∧=∨  that P= )( tr RR + . Since π is asymmetric, by Lemma 1(2) 

max(π)= aRP ⋅)(tr . Since )( trR =(R )tr, we obtain 

Ptr=( )( tr RR + )tr= trtr )( RR + = )( trRR + . Then 

max(π)= aRP ⋅)(tr = aRR ⋅+ )( tr =max(ρ) ⇔ MAX(ρ)=MAX(π). □ 

 

An ordered pair (i, j) such that iρj is also called a ρ-step. A path from i to j 

is an ordered sequence of steps starting at i and ending at j, such that the second 

alternative in each step coincides with the first alternative of the next step. If all 

steps in a path belong to the same relation ρ, we call it ρ-path, i.e. a ρ-path is an 

ordered sequence of alternatives i, j1, …, jk-1, j, such that iρj1, j1ρj2, …, jk-2ρjk-1, jk-

1ρj. The number of steps in a path is path’s length. An alternative j is called 

reachable in k steps from i if there is a path of length k from i to j. A ρ-path from i 

to j is called a minimal ρ-path if i≠j and there is no ρ-path from i to j which is 

shorter. Also minimal ρ-paths must not be cycles. 

Let κ(ρ) denote the transitive closure of ρ: (i, j)∈κ(ρ) if j is reachable 

from i via ρ. By definition, κ(ρ) is reflexive. Let κk(ρ) denote the k-transitive 

closure of ρ. The k-transitive closure is an abridged version of the transitive 

closure: (i, j)∈κk(ρ) ⇔ i=j or j is reachable from i in no more than k steps via ρ. If 

d is the maximum of lengths of all minimal ρ-paths in A (i.e. if d is the diameter 

of the digraph, which represents ρ) then κk(ρ)=κ(ρ) ⇔ k≥d. The value d=d(ρ) will 

be called the ρ-diameter of A. 

 

Relations µ, τ  and υ  
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Now let us consider the framework of the social choice problem. A group 

of agents have to choose alternatives from the set A. The number of agents is 

greater than one. Each agent has preferences over alternatives from A. The 

preferences of the group are represented by majority relation µ, which is a binary 

relation on A, µ⊂A×A, constructed thus: (i, j)∈µ if and only if an alternative i is 

strongly preferred to an alternative j by majority of all agents. By assumption, 

majority is defined so that µ is asymmetric. The analysis presented here is mostly 

independent from the definition of what is majority as long as the respective 

majority relation is asymmetric. Decisions may be made under any version of 

majority: simple majority, absolute majority, qualified majority or unanimity – 

statements of all lemmas and theorem of the paper and almost all other statements, 

except for those that rely on McGarvey’s theorem [19], will hold. If neither (i, 

j)∈µ, nor (j, i)∈µ holds, and if i≠j then (i, j) is called a tie. A set of ties τ is a 

symmetric binary relation on A, (i, j)∈τ ⇔ (j, i)∈τ. We presume that τ is 

irreflexive: ∀i (i, i)∉τ. Let υ denote the relation, which is the union of µ, τ and ε, 

υ=µ∪τ∪ε. It is complete and reflexive (∀i (i, i)∈υ). Relations µ, τ and υ can be 

interpreted as group's strong social preference (µ), social indifference (τ) and 

weak social preference (υ) relations. 

A binary relation is called a tournament if it is asymmetric and complete. 

If simple majority rule is used, if the number of voters is odd and no individual 

voter is indifferent between any two alternatives, then µ is a tournament and τ is 

empty. 

Let M=[mij], T=[tij] and U=[uij] denote the matrices representing µ, τ and 

υ, respectively. It is evident that U=M+T+E= trM , M+Mtr+E=T . 

The lower section of an alternative i is a set L(i)={j∈A: iµj}. 

Correspondingly, the upper section of i is a set D(i)={j∈A: jµi}. The horizon of i 

is a set H(i)={j∈A: iτj}. Let l(i), d(i) and h(i) denote characteristic vectors of L(i), 

D(i) and H(i), respectively. They are calculated by the following formulae. 

(1) l(i)=Mtr⋅e(i), d(i)=M⋅e(i), h(i)=T⋅e(i) 
The proof is obvious. 
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3. Representations of various tournament solutions 
in the general case 
 

A decision is defined as a choice of a subset of A. It is presumed that social 

decisions should be based on social preferences represented by µ. Therefore 

collective decision-making is modeled by social choice functions S that map the 

set of all possible majority relations {µ} into a set of subsets of A: {µ}→2A. 

McGarvey [19] proved that if majority is simple then the set of all possible 

majority relations on A equals the set of all asymmetric relations on A. 

 

The Condorcet winner and the core 
 

The first candidate for optimal social choice function is the core Cr - a set 

of all µ-maximal alternatives in A, Cr=MAX(µ), i∈Cr ⇔ D(i)=∅. Since µ is an 

asymmetric part of υ, by Lemma 1 and its Corollary Cr=MAX(µ)=MAX(υ) and 

cr=max(µ)=max(υ)= aM ⋅tr = aU ⋅ = aETM ⋅++ )( . 

If R=X+Y, then rij=1 ⇔ xij=1 ∨ yij=1. Let R=M+E. If ∀j≠i rij=1 then i is a 

Condorcet winner - an alternative dominating any other alternative via the 

majority relation (there can be at most one such alternative). Therefore 

cw= aEM ⋅+ )(  is the characteristic vector of the set CW containing only the 

Condorcet winner cw, CW={cw}.  

The main problem with the set of Condorcet winners and the core is that 

they are almost always empty, which makes these social choice functions 

impractical. But they provide us with an important normative principle – the 

outcome of an optimal social choice function should always coincide with the set 

of Condorcet winners, when the Condorcet winner exists (Condorcet consistency). 

Finally the social choice should be based on social preferences only. That means 

that a social choice function must satisfy neutrality - it should be invariant with 

respect to the automorphism group of the digraph corresponding to the given 

relation (if a permutation of alternatives’ numbers does not change the relation 

then alternatives chosen after the permutation should be labeled with the same 

numbers as ones chosen before). 
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Definition 3. A social choice function S: {µ}→2A is called a (tournament) 

solution if  

1) it is always nonempty, ∀µ S(µ)≠∅;  

2) it satisfies Condorcet consistency, ∀µ CW≠∅ ⇒ S(µ)=CW; 

3) it is neutral. 

 

To distinguish solutions thus defined from other types of solutions the term 

“tournament solution” is used. It is applied irrespectively of whether a solution 

considered was defined for the set of all asymmetric relations or just for 

tournaments. If two social choice functions coincide when their domains are 

restricted to the set of tournaments, they may be considered as different versions 

of the same tournament solution. 

We limit our account only to several such solutions, and refer a reader to 

an extensive account of tournament solutions made by Laslier [20] for information 

on other concepts proposed in the literature.  

 

The uncovered set 
 

The first tournament solution we consider is the uncovered set UC [1,2]. 

We substitute a subrelation α, α⊆υ, called the covering relation for the weak 

social preference relation υ and choose strong α-maximal elements. The covering 

relation has its normative justification (provided below), therefore a choice from 

the uncovered set can be regarded as optimal.  

The versions of the covering relation are presented in Table 1. These 

versions will be denoted αNn, where N is a Roman numeral denoting a row and n 

is a small letter denoting a column. An alternative i covers an alternative j 

(version Nn), iαNnj, if the condition in the cell (N, n) holds. 

Table 1. The versions of the covering relation 
N\n a b c 

I iµj & L(j)⊂L(i)∪H(i) 
(iµj ∨ L(i)∩D(j)≠∅) & 

L(j)⊆L(i)∪H(i) 
L(j)⊆L(i)∪H(i) 

II iµj & L(j)⊂L(i) L(j)⊂L(i) L(j)⊆L(i) 

III iµj & D(i)⊂D(j) D(i)⊂D(j) D(i)⊆D(j) 
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IV 
iµj & ((L(j)⊂L(i) & D(i)⊆D(j)) ∨ 

(L(j)⊆L(i) & D(i)⊂D(j))) 

(L(j)⊂L(i) & D(i)⊆D(j)) ∨ 

(L(j)⊆L(i) & D(i)⊂D(j)) 
L(j)⊆L(i) & D(i)⊆D(j) 

V H(j)∪L(j)⊂L(i) 
(H(j)\{i})∪L(j)⊆L(i) & 

H(i)∪H(j)≠{i, j} 
(H(j)\{i})∪L(j)⊆L(i) 

Since relations αNa and αNb are asymmetric, all their maximal elements are 

strong. Since αNb is an asymmetric part of αNc, maximal elements of αNb are weak 

maximal elements of αNc. Let us define an uncovered alternative as a strong 

maximal element of αNn and the uncovered set UCNn as the set of such 

alternatives. 

Let us consider the following example. 

 

Example 1. A={a, b, c, d, e} and µ={(a, b), (b, c), (c, d), (c, e), (d, e), (e, 

b)}.  

In Example 1 L(a)={b}, L(b)={c}, L(c)={d, e}, L(d)={e}, L(e)={b}, 

D(a)=∅, D(b)={a}, D(c)={b}, D(d)={c}, D(e)={c, d}, H(a)={c, d, e}, H(b)={d}, 

H(c)={a}, H(d)={a, b}, H(e)={a}, therefore αIa={(a, b), (c, d), (d, e)}, αIb={(a, 

b), (a, c), (c, d), (d, e)}, αIc={(a, b), (a, c), (a, d), (a, e), (c, d), (d, a), (d, e), (e, 

a)}, αIIa=αIIb={(c, d)}, αIIc={(a, e), (c, d), (e, a)}, αIIIa={(a, b), (d, e)}, 

αIIIb=αIIIc={(a, b), (a, c), (a, d), (a, e), (d, e)}, αIVa=αVa=∅, 

αIVb=αIVc=αVb=αVc={(a, e)}, consequently UCIa={a, c}; UCIb={a}; UCIc=∅; 

UCIIa=UCIIb={a, b, c, e}; UCIIc={b, c}; UCIIIa={a, c, d}; UCIIIb=UCIIIc={a}; 

UCIVa=UCVa=A; UCIVb=UCIVc=UCVb=UCVc={a, b, c, d}. 

The version αIIIb of the covering relation might be called the oldest one. It 

was proposed by Fishburn [1] and is related to the game-theoretic concept of 

majorization proposed by Gillies [21]. Its normative rationale is the following: if i 

is better than j and if all alternatives, which are better than i, are also better than j, 

then it is suboptimal to choose j [1]. Similar justifications can be constructed for 

other versions. Independently of Fishburn, Miller [2] proposed αIIc for 

tournaments and proved that (in tournaments) it is equivalent to αIIa, αIIb and αIIIb. 

Also he suggested αIVc for the general case (when τ≠∅). After Miller’s work, 

Richelson [3] proposed αIVb. Bordes [4] considered uncovered sets based on 

versions αIIa, αIIb, αIIIb and αIVb as different choice functions in the case τ≠∅ and 
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proposed αIIIa and αIVa to complete the picture. He also proposed L(j)⊂L(i) & 

D(i)⊂D(j) as a version of covering relation but (then) wrongly attributed it to 

Miller. Independently of Bordes, the version αIVa was suggested by McKelvey [5]. 

Duggan [6] proposed αIa and αVa. Here again to complete the picture we propose 

the versions αIb, αIc, αIIIc, αVb, αVc of the covering relation and UCIIc as a choice 

function different (in the general case) from UCIIb and other versions of the 

uncovered set. 

In a tournament all versions of the uncovered set coincide and are equal to 

a set of maximal elements of 2-transitive closure of µ, UC=MAX(κ2(µ)), which is 

yet one more normative justification for this solution. Another interpretation of 

this equality is given in Section 4. 

Nonemptiness of UCNa and UCNb, N=II÷IV, is guaranteed by transitivity of 

αNa and αNb, N=II÷IV. Nonemptiness of UCVa follows from nonemptiness of 

UCIVa and from inclusion αIVa⊇αVa. Relation αVc can not have cycles of length 

greater then two, therefore αVb, which is an asymmetric part of αVc, is acyclic and 

UCVb is always nonempty as well. Thus versions UCNa and UCNb, N=II÷V are true 

tournament solutions. 

The relations αIa and αIb may have cycles, and for any q-majority rule 

(except unanimity) it is possible to find a relation µ such that UCIa=UCIb=∅, e.g. 

one may construct a µ-cycle of sufficiently great length. 

 

Example 2. A={a, b, c}, µ={(a, c), (b, c)}. 

 

Example 2 can be constructed for any q-majority rule. Here τ={(a, b), (b, 

a)}, υ={(a, c), (a, b), (b, a), (b, c)}, αNa=αNb=µ, αNc=υ, as a result 

UCNa=UCNb={a, b}, UCNc=∅, N=I÷V. Thus social choice functions UCNc are not 

true solutions for all types of majority rule, and UCIn are not true solutions for all 

types of majority rule except unanimity. Nevertheless, it is important to know how 

they are calculated, since these versions of the uncovered set can be used for 

calculation of several other tournament solutions, such as the union of minimal 

weakly externally stable sets and classes of k-stable sets.  
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Let us construct the matrices representing αNn. An alternative i belongs to 

versions UCNa or UCNc if there exists a path of a certain type from i to any other 

alternative. The conditions for i∈UCNn are listed in Table 2. 

Table 2. The versions of the uncovered alternatives 
N\n a c 

I ∀j≠i iµj ∨ iτj ∨ ∃k: iµk & kµj ∀j≠i iµj ∨ ∃k: iµk & kµj 

II ∀j≠i iµj ∨ iτj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) ∀j≠i iµj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) 

III ∀j≠i iµj ∨ iτj ∨ ∃k: (iµk & kµj) ∨ (iτk & kµj) ∀j≠i iµj ∨ ∃k: (iµk & kµj) ∨ (iτk & kµj) 

IV 
∀j≠i iµj ∨ iτj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) 

∨ (iτk & kµj) 

∀j≠i iµj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) ∨ 

(iτk & kµj) 

V 
∀j≠i iµj ∨ iτj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) 

∨ (iτk & kµj) ∨ (iτk & kτj) 

∀j≠i iµj ∨ ∃k: (iµk & kµj) ∨ (iµk & kτj) ∨ 

(iτk & kµj) ∨ (iτk & kτj) 

Calculating the uncovered set in a tournament, Banks [22] considered a 

product R=M⋅M and pointed out that an element rij=∑
=

⋅
n

1k
kjik mm  is not equal to 

zero iff (∃k:  iµk & kµj). That is rij≠0 iff there is a two-step µ-path from i to j. 

Since we presume that all vectors and matrices are Boolean ones, rij=1 iff there is 

a two-step µ-path from i to j and rij=0 otherwise. Respectively, if R=M⋅T then 

rij=1 iff there is a two-step path from i to j, where the first step is a µ-step iµk, and 

the second step is a τ-step kτj, rij=1 ⇔ (∃k: iµk & kτj), otherwise rij=0. 

Analogously, if R=T⋅M then rij=1 ⇔ (∃k: iτk & kµj), and if R=T⋅T then rij=1 ⇔ 

(∃k: iτk & kτj). 

Let Q=M2+M+T+E. If qij=1 then either i=j, or iτj, or iµj, or ∃k: iµk & kµj 

hold. Consequently, if qij=1, then i is not covered by j according to the version αIa. 

If ∃j: qij=0, then neither i=j, nor iτj, nor iµj holds, hence jµi. Also ∑
=

⋅
n

1k
kjik mm =0 

⇒ (mkj=1 ⇒ mik=0) ⇒ (kµj ⇒ (kµi ∨ kτi)). Therefore, if qij=0, then i is covered 

by j according to αIa. Then (qij=1 ⇒ (j, i)∉αIa and qij=0 ⇒ (j, i)∈αIa) ⇔ 

trQ = tr)( ETMMM +++⋅ =R is the matrix representation of αIa. Similar 

considerations produce matrices representing all αNa and αNc (see Table 3)  

Table 3. The matrix representation of the versions αNa and αNc of the covering relation 
N\n a c 
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I tr)( ETMMM +++⋅  tr)( EMMM ++⋅  

II tr)( ETMMMTM +++⋅+⋅  tr)( EMMMTM ++⋅+⋅  

III tr)( ETMMMMT +++⋅+⋅  tr)( EMMMMT ++⋅+⋅  

IV tr)( ETMMMTMMT +++⋅+⋅+⋅  tr)( EMMMTMMT ++⋅+⋅+⋅  

V tr)( ETMMMTMMTTT +++⋅+⋅+⋅+⋅  tr)( EMMMTMMTTT ++⋅+⋅+⋅+⋅  

By Lemma 1 (Statement 3) ucNn=max(αNn)= aR ⋅tr  and we obtain the 

following formulae for the characteristic vectors ucNa and ucNc of the uncovered 

sets UCNa and UCNc (Table 4). 

Table 4. Characteristic vectors of the uncovered sets UCNa and UCNc 
N\n a c 

I aETMMM ⋅+++⋅ )(  aEMMM ⋅++⋅ )(  

II aETMMMTM ⋅+++⋅+⋅ )(  aEMMMTM ⋅++⋅+⋅ )(  

III aETMMMMT ⋅+++⋅+⋅ )(  aEMMMMT ⋅++⋅+⋅ )(  

IV aETMMMTMMT ⋅+++⋅+⋅+⋅ )(  aEMMMTMMT ⋅++⋅+⋅+⋅ )(  

V aETMMMTMMTTT ⋅+++⋅+⋅+⋅+⋅ )(  aEMMMTMMTTT ⋅++⋅+⋅+⋅+⋅ )(  

 A relation αNb is an asymmetric part of the relation αNc, therefore by 

Lemma 1 (Statement 1) and its Corollary expressions for characteristic vectors 

ucNb are given by the expression aRR ⋅+ )( tr , where R is the matrix representing 

αNc (see Table 3). They are too long to be written in full here. 

Finally, it should be noted that in terms of M and U the expressions for 

ucNn are simpler. These formulae are given in Section 6.  

 

The uncaptured set 
 

The concept of the uncaptured set UCp was proposed by Duggan [7]. The 

majority relation µ lacks maximal elements due to intransitivity, whereas 

transitivity of a relation guarantees nonemptiness of the set of its maximal 

elements. The choice from the uncaptured set is defined and justified as the choice 

of maximal elements of all maximal transitive subrelations of µ. 
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Duggan [7] proved that the uncaptured set coincides with the set of 

maximal elements of a certain subrelation of µ, which he called the capturing 

relation, β⊆µ, UCp=MAX(β). By definition an alternative i is captured by an 

alternative j, (j, i)∈β if none of the following propositions holds: 1) (j, i)∉µ; 2) ∃k: 

(iµk & kµj)∨(iµk & kτj)∨(iτk & kµj); 3) ∃k, l: (iµk & kµl & lµj)∨(iµk & kτl & lµj). 

Therefore i∈UCp if any alternative dominating i is either 1) reachable from i in 

two steps, at least one of which is a µ-step, or 2) reachable from i in three steps, 

the first and the last of which are µ-steps.  

It is evident that in tournaments the uncaptured set is the set of maximal 

elements of 3-transitive closure of µ, UCp=MAX(κ3(µ)), which is another 

justification for this solution. 

Let Q=M⋅T⋅M+M⋅M⋅M+M⋅T+T⋅M+M⋅M+M+T+E. If qij=1 then either 

i=j, or iτj, or iµj, or ∃k: (iµk & kµj)∨(iµk & kτj)∨(iτk & kµj), or ∃k, l: (iµk & kµl & 

lµj)∨(iµk & kτl & lµj) hold. Consequently, if qij=1 then i is not captured by j, (j, 

i)∉β, and (j, i)∈β if qij=0. Therefore 

 R= trQ = tr)( ETMMMTMMTMMMMTM +++⋅+⋅+⋅+⋅⋅+⋅⋅   

is the matrix representation of the capturing relation β. 

Since the capturing relation is asymmetric, by Lemma 1 (Statement 2) we 

obtain the following formula for the characteristic vector ucp of the uncaptured 

set UCp: 

ucp=max(β)= aR ⋅tr =
aETMMMTMMTMMMMTM ⋅+++⋅+⋅+⋅+⋅⋅+⋅⋅ )( . 

 

The weak and strong top cycles and the untrapped set 
 

A nonempty set B, B⊆A, is called a dominant set if each alternative in B 

dominates each alternative outside B, i∈B ⇔ (∀j∉B iµj) [11, 15, 16]. A dominant 

set will be called a weak top cycle set (denoted WTC) if it is minimal, i.e. if none 

of its proper subsets is a dominant set [1, 14, 15, 23].  

Dominant sets must not be confused with dominating and (*)-dominating 

sets [29]. The latter concepts are defined for simple, non-directed graphs, which 

are used as representations of various networks. They are based on a notion of 
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proximity and bear similarity to externally stable sets discussed in the next 

paragraph. 

A nonempty set B, B⊆A, is called an undominated set if no alternative 

outside B dominates some alternative in B, i∈B ⇔ (∀j∉B ⇒ (j, i)∉µ) [11]. An 

undominated set is called a strong top cycle set if it is maximal, i.e. if none of its 

proper subsets is an undominated set [12]. If such a set is not unique, then the 

solution is defined as the union of these sets [13]. It is denoted STC. 

In Example 1 the undominated sets are {a} and A and the only dominant 

set is A, therefore STC={a} and WTC=A. 

In Example 2 undominated sets are {a}, {b}, {a, b} and A, dominant sets 

are {a, b} and A. As a result, minimal undominated sets are {a} and {b}, the 

minimal dominant set is {a, b}, consequently STS=WTS={a, b}. 

Solutions STC and WTC have multiple justifications. Concepts of 

dominant and undominated sets may be considered as generalizations of such 

notions as the Condorcet winner and the undominated alternative. Therefore WTC 

and STC are the substitutes for the Condorcet winner and the core, respectively. 

Alternatives from STC or WTS may be considered as the best choices because they 

belong to the subsets of A, which are the best ones (i.e. ones that do not contain 

subsets better than themselves) among a number of certain subsets endowed with 

some good property related to comparisons of alternatives.  

STC also possesses an important property of absorption. If proposals are 

put to vote one by one, then any superset of an undominated set is absorbing in a 

sense that no voting trajectory leads outside of it. An absorbing set is absolutely 

stable. If at a certain round of voting an alternative from such a set is made a 

decision, then from this moment on it can be changed only for an alternative from 

the same set. Thus STC is a union of minimal absorbing sets. 

The following normative justification will help us to construct matrix-

vector representations for STC and WTC. Since transitivity guarantees the 

existence of maximal elements, Deb [24] proposed to use transitive closures of 

majority relations instead of relations themselves. He proved that sets of maximal 

elements of transitive closures of µ and υ coincide with STC and WTC: 

STC=MAX(κ(µ)), WTC=MAX(κ(υ)). In Example 2 κ(µ)=µ, κ(υ)=υ={(a, b), (a, c), 

(b, a), (b, c)}, therefore MAX(κ(µ))=MAX(κ(υ))={a, b}. 
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Let us consider matrices M(k)=∑
=

k

1i

iM +E and U(k)=∑
=

k

1i

iU ; m(k)ij=1 if there is 

a µ-path from i to j, j≠i, of length no greater than k, also m(k)ii=1 for all i. 

Consequently M(k) represents the k-transitive closure of µ - κk(µ). Respectively, 

U(k) represents κk(υ). By definition κk(µ)≠κd(µ)(µ) if k<d(µ) and 

κd(µ)(µ)=κk(µ)=κ(µ) for any k≥d(µ). Analogously, κk(υ)≠κd(υ)(υ) if k<d(υ) and 

κd(υ)(υ)=κk(υ)=κ(υ) for any k≥d(υ). Consequently, M(d(µ)) and U(d(υ)) are the 

representations of κ(µ) and κ(υ), respectively. Let us note that M(d(µ))≠M(d(µ)-1) & 

M(d(µ))=M(d(µ)+1) and U(d(υ))≠U(d(υ)-1) & U(d(υ))=U(d(υ)+1) hold. 

Since STC=MAX(κ(µ)), ρ=κ(µ), R=M(d), by Lemma 1(1) the characteristic 

vector of the strong top cycle set STC is  

stc= aMM ⋅+ )( tr
(d)d)( . 

A µ-diameter d=d(µ), is determined by a condition M(d)≠M(d-1) & 

M(d)=M(d+1).  

Since WTC=MAX(κ(υ)), ρ=κ(µ), R=U(d). Completeness of υ implies 

completeness of κk(υ) and κ(υ). Therefore by Lemma 1 (Statement 4) the 

characteristic vector of the weak top cycle set WTC is  

wtc= aEU ⋅+ )( (d) = aU ⋅d)( . 

A υ-diameter d=d(υ) is determined by a condition U(d)≠U(d-1) & 

U(d)=U(d+1). 

Nonemptiness of the set of maximal elements is also guaranteed by 

acyclicity. The untrapped set UT was defined by Duggan [7] as the set of maximal 

elements of all maximal acyclic subrelations of µ. Duggan [7] proved that the 

untrapped set coincides with the set of maximal elements of a certain subrelation 

of µ, which he called the trapping relation γ⊆µ, UT=MAX(γ).  

An alternative i traps an alternative j if iµj and i is not reachable from j via 

µ, (i, j)∈γ ⇔ (i, j)∈µ & (j, i)∉κ(µ) [7].  

In Example 1 γ={(a, b)} and UT={a, c, d, e}. In Example 2 γ=µ, 

UT=MAX(µ)={a, b}. 

Let Q=M(d(µ))+T. If qij=1 then either iτj or iκ(µ)j holds. Consequently, if 

qij=1 then i is not trapped by j, (j, i)∉γ, and (j, i)∈γ if qij=0. Therefore if d=d(µ) 
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then R= trQ = tr
(d) )( TM +  represents γ. Since trapping is asymmetric, by Lemma 1 

(Statement 2) we obtain the following formula for the characteristic vector ut of 

the untrapped set UT: 

ut=max(γ)= aR ⋅tr = aQ ⋅ = aTM ⋅+ )( (d) . 

A diameter d=d(µ) again is determined by a condition M(d)≠M(d-1) & 

M(d)=M(d+1) or, alternatively, Md≠M(d-1) & Md+1=M(d). 

If µ is a tournament, solutions STC, UT and WTC coincide and are called 

the top cycle set TC. 

 

The minimal weakly stable, minimal externally stable and minimal weakly 
externally stable sets 

 

To the best of our knowledge, the idea of weak stability appears for the 

first time in [25]. The concept of the minimal weakly stable set as a social choice 

rule was introduced by Aleskerov and Kurbanov [9]. A nonempty set B, B⊆A, is 

called a weakly stable set if it has the following property: if i belongs to B, then 

for any j outside B, which dominates i, there is k in B, which dominates j. In terms 

of upper and lower sections B is weakly stable if ∀j∉B B∩L(j)≠∅ ⇒ B∩D(j)≠∅.  

A weakly stable set is called a minimal weakly stable set if none of its proper 

subsets is a weakly stable set. If such set is not unique, then the solution is defined 

as the union of these sets.  

When µ is a tournament the notion of weak stability coincides with von 

Neumann-Morgenstern's concept of external stability: B is externally stable 

if ∀j∉Β B∩D(j)≠∅, that is B is a externally stable set if there is one-step µ-path 

from some alternative in B to any alternative outside B  [26]. If one assumes (in 

contradiction with our assumption of µ’s asymmetry) that µ is symmetric, then 

definition of an externally stable set turns into a definition of a dominating set [29] 

mentioned in the previous paragraph, since symmetric binary relations are 

represented by simple (non-directed) graphs. 

Weak stability is a generalization of external stability, since the latter 

implies the former but not vice versa. Thus it is possible to define the second 

version of this solution: a union of minimal externally stable sets MES. A 

definition of a minimal externally stable set was given by Wuffl, Feld and Owen 
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[8], but they consider the framework of spatial voting games and do not use MES 

as a solution concept. The union of minimal externally stable sets was proposed as 

a social choice rule in general (non-spatial) setting and as a version of the union of 

minimal weakly sets by Subochev [10]. It is evident that the union of minimal 

dominating sets will always coincide with the universal set A. 

To see the difference between MWS and MES let us consider Example 1. It 

is not difficult to check that the only minimal weakly stable sets are {a} and {c, 

e}, therefore MWS={a, c, e}. At the same time the only minimal externally stable 

sets are {a, c} and {a, b, d}, consequently MES={a, b, c, d}. 

Like STC and WTC the concepts of MWS and MES may be justified as 

choices from the narrowest subsets of A that possess some good property related 

to binary comparisons of alternatives. The idea of the minimal externally stable 

set may also be viewed as a generalization of the concept of WTC: the former is 

obtained from the latter through the substitution of ∃ for ∀ in the definition of the 

dominant set. 

Another interpretation of MWS and MES is presented in Section 4, where 

generalizations of UC and MWS are discussed.  

To calculate MES we will use the following theorem: i∈MES ⇔ i∈UCIIIa 

∨ ∃j: j∈L(i) & j∈UCIIIa [10]. That is an alternative belongs to MES iff it ether 

belongs to UCIIIa, or belongs to an upper section of some alternative from UCIIIa. 

For instance, in Example 1 b is covered (version IIIa) by a but dominates c, which 

is uncovered (version IIIa), therefore according to the theorem b must belong to 

MES, and indeed it does, since b belongs to the minimal externally stable set {a, b, 

d}. 

Consequently, MES is a union of UCIIIa and upper sections of all 

alternatives from UCIIIa. By the formula (1) for the characteristic vector d(UCIIIa) 

of the union of upper sections of all alternatives from UCIIIa we obtain 

d(UCIIIa)= d(i)
i∈UCIIIa
∑ = M ⋅ e(i)

i∈UCIIIa
∑ =M⋅ e(i)

i∈UCIIIa
∑ =M⋅ucIIIa. 

Thus mes=ucIIIa+d(UCIIIa)=ucIIIa+M⋅ucIIIa=(M+E)⋅ucIIIa and finally 

mes=(M+E)⋅ aETMMMMT ⋅+++⋅+⋅ )( . 

Unfortunately, we could not get similar representation for MWS. 
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Let us also propose a new (third) version of the minimal weakly stable set. 

This version is important for calculation of rankings based on the idea of relative 

stability of alternatives and sets (described in Section 4). A set B will be called a 

weakly externally stable set if ∀i∉B B∩(D(i)∪H(i))≠∅. That is B is a weakly 

externally stable set if there is a one-step υ-path from some alternative in B to any 

alternative outside B, ∀i∉B  ∃ j: j∈B & jυi. Correspondingly, B is not a weakly 

externally stable set if ∃i: B⊆L(i), i.e. if there is an alternative dominating all 

alternatives from B via µ. The weak external stability, like external stability, is 

monotonous, i.e. if B⊆C then weak external stability of B implies weak external 

stability of C. 

A new social choice function is defined as the union of all minimal weakly 

externally stable sets in A and denoted MWES. In a tournament solutions MWS, 

MES and MWES coincide and are denoted as MWS.  

A criterion to determine whether an alternative belongs to MWES is given 

by the following  

 

Lemma 2. An alternative i belongs to a minimal weakly externally stable 

set MWES iff i is uncovered according to αIIa or if some alternative from the lower 

section of i or from the horizon of i is not covered (version αIIc) by any alternative 

from the upper section of i,  

i∈MWES ⇔ i∈UCIIa ∨ ∃j: j∈L(i)∪H(i) &  

& (∀k∈D(i) jµk ∨ ∃l: (jµl & lµk)∨(jµl & lτk))).  
 

The proof of Lemma 2 is given in Appendix. 

Lemma 2 allows us to find the matrix representation of MWES. Let 

R= EMMMTM ++⋅+⋅ = EUM +⋅ . Then rij=0 ⇔ (j, i)∉αIIc. Let b and c be 

characteristic vectors of sets B and C, B⊆A, C⊆A, respectively. Let v=R⋅b, then 

vi=1 ⇔ ∃j∈B: (j, i)∈αIIc. Consequently, iv =1 ⇔ ∀j∈B (j, i)∉αIIc. Then 

(c⋅ v )=∑
=

⋅
n

1k
kk vc =1 iff there is at least one alternative in C not covered (version 

αIIc) by any alternative from B. Now let B=D(i), C=L(i)∪H(i) and fi=(c⋅ v ). Then 

fi=1 iff there is some alternative from the lower section of i or from the horizon of 

i not covered (version αIIc) by any alternative from the upper section of i, i.e. f is a 
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characteristic vector of precisely those alternatives that satisfy the aforestated 

condition. Let sch(R) denote a vector made of diagonal elements of R, v=sch(R) 

⇔ vi=rii for all i, 1≤i≤n. According to the formulae (1)  

bj=d(i)j=(M⋅e(i))j=mji; ck=l(i)k+h(i)k=(Mtr⋅e(i))k+(T⋅e(i))k=mik+tki=mik+tik. 

As a result fi= ∑
=

⋅+⋅⋅+
n

1k j,
jikjikik m)()t(m EUM ,  

that is f=sch((M+T)⋅ MEUM ⋅+⋅ )( ).  

Let mwes denote a characteristic vector of MWES. Then by Lemma 2 

mwes=ucIIa+f. Therefore mwes= aUUM ⋅+⋅ )( +sch((M+T)⋅ MEUM ⋅+⋅ )( ). 

 

4. Classes of k-stable alternatives and k-stable sets 
 

The concept of weak stability has the following rationale. An alternative 

can be interpreted as a particular state of affairs, which will emerge as a result of 

an act of choice. An undominated alternative is therefore an absolutely stable 

state: if it is a status quo, there will be no majority in favor of any change. Though 

not a stable state in an absolute sense, a dominated alternative might be relatively 

stable: such a state can be changed by majority vote for something else, but if this 

happens it is always possible to restore this state through a series of binary 

comparisons. The idea of relative stability of alternatives, which are understood as 

states, underlies the concept of sets of k-stable alternatives introduced by 

Aleskerov and Subochev [17]; see also [10]. Such solutions as the uncovered set, 

the uncaptured set and the top cycle are particular versions of these sets. 

But it is also possible to interpret sets of alternatives as states or 

macrostates. We say that an alternative x as a state of affairs (a microstate) 

realizes a macrostate X, X⊆A, when x∈X. For instance, the fact, that a certain 

person (alternative) is occupying an elected office, might be treated as a 

microstate, and the fact, that a certain political party has this person as their 

member and exerts control over the office through him/her, might be treated as a 

macrostate. Components of the STC are therefore absolutely stable macrostates: it 

is not possible to change a status quo, when it belongs to a minimal undominated 

set, by proposing any alternative outside this set. The concepts of weakly stable 

and k-stable sets [10, 18] represent the idea of a relatively stable macrostate: a 

representative of a party might be voted out of the office and changed for an 
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opposition figure, but the party is always able to restore their control in just one 

round (weakly stable set) or at most k rounds (k-stable set) of voting, respectively, 

by proposing other candidates (given the possibility to make such proposals). 

Similar interpretation is given by Wuffl, Feld and Owen [8] to justify the solution 

they proposed (Finagle’s point), which is based on the concept of external stability 

and thus is related to MWS and MES. 

Let µ be a tournament. An alternative i is called generally stable if every 

other alternative in A is reachable from i via µ [17]. Every alternative in A is 

reachable from i iff it is in the top cycle set TC [23], thus all alternatives in TC and 

only they are generally stable. The choice from TC is therefore justified as the 

choice of generally stable alternatives. Let s(i, j) denote a minimal length function, 

which is equal to the length of a minimal µ-path from i to j.  

Let s(i, i)=0 and s(i, j)=∞ if j is not reachable from i via µ. Then i is 

generally stable iff 
Aj

max
∈

s(i, j)<∞. 

Generally stable alternatives are not equally stable – they may be more 

stable or less stable than the others. An alternative i is called k-stable if 
Aj

max
∈

s(i, 

j)=k<∞ [17]. An alternative with smaller k is therefore considered as more stable 

one. Let SP(k) denote a class of k-stable alternatives in A. We define a solution P(k) 

as the set of those generally stable alternatives, from which it is possible to reach 

any given alternative in A in no more than k µ-steps, P(k)=SP(1)+SP(2)+…+SP(k). 

Solution P(k) is a generalization of the uncovered and the uncaptured sets since 

this definition and τ=∅ imply P(k)=MAX(κk(µ)), therefore UC=P(2) and UCp=P(3).  

The ideas of the generally stable and k-stable sets replicate the concepts of 

the generally stable and k-stable alternatives. A set B, B⊆A, is called a k-stable set 

if for any alternative j outside B, j∈A\B, there exists a µ-path of length s: s≤k to j 

from some alternative i from B, i∈B, but at the same time there is at least one 

alternative j outside B, j∈A\B, such that it is not reachable in less than k µ-steps 

from any i: i∈B [10, 18]. A k-stable set will be called a minimal k-stable set if 

none of its proper subsets is a k-stable set. It follows from this definition that a 

weakly (externally) stable set is a 1-stable set. 

SS(k) denotes a class of those alternatives, which belong to some minimal k-

stable set, but do not belong to any minimal stable set with the degree of stability 

less than k. We define a solution S(k) as a union of those minimal generally stable 
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sets, from which it is possible to reach any alternative outside a set in no more 

than k steps: S(k)=SS(1)+SS(2)+…+SS(k). Solution S(k) generalizes the concept of the 

minimal weakly (externally) stable set, S(1)=MWS. 

Let A={a, b, c, d, e} and µ={(a, c), (a, d), (a, e), (b, a), (b, d), (b, e), (c, b), 

(c, e), (d, c), (e, d)}. Then SP(1)=∅, SP(2)={a, b, c}, SP(3)={d}, SP(4)={e}, 

P(2)=UC={a, b, c}, P(3)=UCp={a, b, c, d}, SS(1)=MWS={a, b, c, d}, SS(2)=∅, 

SS(3)=∅, SS(4)={e}, S(1)=S(2)=S(3)={a, b, c, d}, S(4)=A. 

It is possible to use the filtration by classes SP(k) and SS(k) as new methods 

of ranking alternatives in a tournament (described in [10, 18]). 

Let p(k) denote the characteristic vector of P(k). Since µ is complete, all 

κk(µ) are complete as well. By Lemma 1(4) p(k)= aEM ⋅+ )( (k) = aM ⋅(k) . Since all 

matrices are Boolean ones, the following equation holds ∑
=

k

1i

iM +E=(M+E)k. 

Consequently M(k)=∑
=

k

1i

iM +E=Uk and p(k)= aU ⋅k . 

Let sp(k) denote the characteristic vector of SP(k). By definition of P(k) 

i∈SP(k) ⇔ i∈P(k) & i∉P(k-1). Therefore sp(k)i=p(k)i⋅ 1)i-(kp = 1)i-(k(k)i pp + , that is 

sp(k)= 1)-(k(k) pp + = aMaM ⋅+⋅ 1)-k((k) = aUaU ⋅+⋅ 1-kk .  

If k=1 then M(k-1)=E. aE ⋅ =o ⇒ sp(1)=p(1)= aEM ⋅+ )( =cw - the 

Condorcet winner. 

If k=2 then M(k-1)=M+E. aEM ⋅+ )( =cw. If there is the Condorcet winner, 

then aEMM ⋅++ )( 2 =cw . cw+cw=a ⇒ sp(2)= cwcw + = a  ⇔ SP(2) is empty. If 

there is no Condorcet winner then sp(2)=p(2)= aEMM ⋅++ )( 2 =uc, which 

corresponds to SP(2)=UC when CW=∅.  

It is also evident that p(3)= aEMMM ⋅+++ )( 23 =ucp. 

A is finite therefore ∃m=max
i∈WTC

(
Aj

max
∈

s(i, j)). Then P(m)=TC, tc=p(m) and 

SP(k)=∅ for all k: k>m. By definition of d, which is the µ-diameter of A, 

m=max
i∈WTC

(
Aj

max
∈

s(i, j))≤
Ai

max
∈

(
Aj

max
∈

s(i, j))=d, so there is no need to multiply U till 

the value of d is determined - it is enough to find m and stop. It was shown in [10] 
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(see also [18]) that if SP(1)=CW=∅ then SP(k)≠∅ for all k: 2≤k≤m and SP(k)=∅ for 

all k: k>m. Therefore the value of m can be determined from the condition  

p(m-1)≠p(m) & p(m)=p(m+1). 

A relation µ is asymmetric, but if there is no Condorcet winner, all k-

transitive closures κk(µ), k≥2, possess the symmetric part, since all κk(µ) are 

complete and |MAX(κ2(µ))|=|P(2)|=|UC|≥3 for any A: |A|≥4 [2]. Let κk(µ) be 

denoted as υ(k), υ(k)= κk(µ). Let µ(k) and τ(k) denote asymmetric and symmetric 

parts of κk(µ), respectively. By definition υ(1)=υ, µ(1)=µ, τ(1)=τ∪ε.  

Let us consider υ(k) and µ(k) as versions of relations υ and µ. If a set B, 

B⊆A, is a k-stable set it follows from the definition of a k-stable set that any 

alternative j outside B will be reachable from some alternative i from B in one υ(k)-

step, i.e. ∀j∉B ∃i: i∈B & iυ(k)j. If the degree of stability of B is greater than k, 

then ∃j: (j∉B & ∀i∈B (i, j)∉υ(k)). Consequently, if B is a minimal k-stable set 

with respect to µ, it must be a minimal weakly externally stable set with respect to 

υ(k). Conversely, if B is a minimal weakly externally stable set with respect to υ(k), 

then it must be a minimal stable set with degree of stability no less than k with 

respect to µ.  

Let ss(k) and s(k) denote characteristic vectors of classes of k-stable sets SS(k) 

and solutions S(k), respectively. Let MWES(υ(k)) and mwes(υ(k)) denote the union 

of minimal weakly externally stable sets and its characteristic vector with respect 

to υ(k). Then i∈SS(k) ⇒ i∈MWES(υ(k)) and i∈MWES(υ(k)) ⇒ i∈SS(x), x: x≤k, that is 

SS(k)⊆MWES(υ(k)) and MWES(υ(k))⊆S(k). Consequently s(k)=mwes(υ(k))+s(k-1). By 

definition SS(1) is the union of externally stable sets (with respect to µ), thus we 

obtain the following inductive formulae for calculation of s(k): 

s(1)=ss(1)=mes=(M+E)⋅p(2)=U⋅ aU ⋅2 , 

s(k)=s(k-1)+mwes(υ(k))=s(k-1)+ aUUM ⋅+⋅ )~~~( +sch( MEUMTM ~)~~()~~( ⋅+⋅⋅+ ), 

where U~ =M(k), M
~ = )( k)(

tr
(k) MM + . 

Since P(k)⊆S(k)⊆P(k+2)⊆TC [10] iterations will stop at some k between m-2 

and m, when s(k) becomes equal to tc=p(m). Finally i∈SS(k) ⇔ i∈S(k) & i∉S(k-1). 

Therefore ss(k)i=s(k)i⋅ 1)i-(ks = 1)i-(k(k)i ss + , that is ss(k)= 1)-(k(k) ss + . 
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5. Weak uncovered set and Levchenkov sets 
 

With a slight modification of our approach we may also obtain algorithms 

for calculations of two tournament solutions resulted from weakening of the 

notion of covering relation. Below as in the previous Section we consider only 

such µ that are tournaments. 

 

Weak covering à la Laffond and Lainé 
 

It is said that an alternative x weakly covers y, if xµy and card{z: yµz & 

zµx}≤1, that is there is at most one 2-step µ-path from y to x. The weak uncovered 

set WUC is a strong top cycle with respect to the relation of weak covering [27]. 

This solution is a refinement of the uncovered set, WUC⊆UC. 

To construct the matrix representing the weak covering relation one needs 

not only to know if there is a 2-step µ-path from y to x, but how many are there 

such paths. If elements of M are considered to be plain ordinary numbers 0 and 1 

then the entry zij of its square Z=M2 is the number of 2-step µ-paths from i to j. 

Thus to calculate WUC one may construct a Boolean matrix M~  representing the 

weak covering relation from the ordinary matrices M and Z=M2: for i≠j ijm~ =1 ⇔ 

(mij=1 ∨ zij≥2); iim~ =0 for all i. Then wuc= aMM ⋅+ )~~( tr
(d)d)( , where 

M~ (k)=∑
=

k

1i

i~M +E. The value of d is determined by a condition M~ (d)≠M
~

(d-1) & 

M~ (d)=M
~

(d+1).  

 

Weak covering à la Levchenkov 
 

It is said that z is a partner of x against y if xµz and zµy holds. Let q be a 

natural number. It is defined that x q-surpasses y if y has no partner against x and 

either xµy or x has at least q partners against y [28]. It is evident that x q-surpasses 

y if either x covers y, or yµx & (∀z yµz ⇒ xµz) & card{z: xµz & zµy}≥q holds. A 

Levchenkov set of order q LS(q) is a set of maximal elements of a relation "q-

surpasses". These solutions are refinements of the uncovered set,  
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LS(1)⊆LS(2)⊆…⊆LS(q)⊆…⊆UC. 

A Boolean matrix R(q) representing the relation "q-surpasses" is 

constructed from M and Z=M2 in the following way: for i≠j r(q)ij=1 ⇔ zji=0 & 

(mij=1 ∨ zij≥q); r(q)ij=0 for all i. Since the relation "q-surpasses" is asymmetric, by 

Lemma 1 (Statement 2) for the characteristic vector ls(q) of Levchenkov set of 

order q we obtain ls(q)= aR ⋅trq)( . 

For more information on these solutions see [20]. 

 

6. Conclusion 
We have constructed an instrument for finding optimal social choice sets - 

a calculation technique based on matrix representations of corresponding 

preference relations. To avoid the problem of integer overflows we suggested the 

use of Boolean matrices instead of plain ordinary ones.  

It turns out that the calculations needed to obtain any solution considered 

are of polynomial complexity. This opens the way for construction of algorithms 

with minimal complexity. This problem will be addresses in further publications. 

Since any binary relation can be represented by a directed graph, 

calculation of choice functions, which are based on a majority preference relation, 

can be formulated as a graph-theoretical problem. On the other hand, simple non-

directed graphs, which represent symmetric binary relations, are extensively used 

as models of various networks, for instance, social networks [30, 31, 32]. 

Therefore, a natural direction for further research would be to compare 

tournament solutions and algorithms presented in this paper with social network 

solution concepts, e.g., the dominating set (which has been briefly mentioned in 

Section 3). 

It is also worth noting here that the constructed matrix-vector 

representation allowed us to introduce several new versions of some solutions, 

namely, versions of the uncovered set and minimal weakly externally stable set. 

The following Theorem summarizes the results of this paper. We use 

matrices M and U instead of M and T, since it makes all expressions simpler. 

 

Theorem. Let cw, cr, ucNn, mes, mwes, ucp, stc, ut and wtc, respectively, 

denote characteristic vectors of the following solutions: the Condorcet winner CW, 
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the core Cr, fifteen versions of the uncovered set UCNn, the union of minimal 

externally stable sets MES, the union of minimal weakly externally stable sets 

MWES, the uncaptured set UCp, the strong top cycle set STC, the untrapped set 

UT, the weak top cycle set WTC.  

Let sp(k), ss(k), p(k) and s(k) denote characteristic vectors for classes of k-

stable alternatives SP(k), classes of k-stable sets SP(k), and solutions 

P(k)=SP(1)+SP(2)+…+SP(k) and S(k)=SS(1)+SS(2)+…+SS(k), respectively. Let a denote 

the characteristic vector of the set A, ε denote the relation of identity represented 

by E=[δij], d=d(ρ) denote a ρ-diameter of A. Let M, T, U denote Boolean matrices 

representing relations µ, τ and υ=µ∪τ∪ε on A. Finally, let M(k)=∑
=

k

1i

iM +E and 

U(k)=∑
=

k

1i

iU .  

Then 

1) cw= aEM ⋅+ )( , 

cr= aU ⋅ = aM ⋅tr , 

ucIa= aUMM ⋅+⋅ )( , 

ucIb= aRR ⋅+ )( tr , where R= tr)( EMMM ++⋅ , 

ucIc= aEMMM ⋅++⋅ )( , 

ucIIa= aUUM ⋅+⋅ )( , 

ucIIb= aRR ⋅+ )( tr , where R= tr)( EMMMTM ++⋅+⋅ , 

ucIIc= aEUM ⋅+⋅ )( , 

ucIIIa= aUMU ⋅+⋅ )( , 

ucIIIb= aRR ⋅+ )( tr , where R= tr)( EMMMMT ++⋅+⋅ , 

ucIIIc= aEMU ⋅+⋅ )( , 

ucIVa= aUUMMU ⋅+⋅+⋅ )( , 

ucIVb= aRR ⋅+ )( tr , where R= tr)( EMMMTMMT ++⋅+⋅+⋅ ,  

ucIVc= aEUMMU ⋅+⋅+⋅ )( , 

ucVa= aUU ⋅⋅ , 
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ucVb= aRR ⋅+ )( tr , where R= tr)( EMMMTMMTTT ++⋅+⋅+⋅+⋅ , 

ucVc= aEUMMUTT ⋅+⋅+⋅+⋅ )( , 

ucp= aUUMMUMUM ⋅+⋅+⋅+⋅⋅ ) ( , 

mes=(M+E)⋅ aUMU ⋅+⋅ )( , 

mwes= aUUM ⋅+⋅ )( +sch((M+T)⋅ MEUM ⋅+⋅ )( ), 

stc= aMM ⋅+ )( tr
(d)d)( , d=d(µ): (M(d)≠M(d-1)) & (M(d)=M(d+1)), 

ut= aTM ⋅+ )( (d) , d=d(µ): (M(d)≠M(d-1)) & (M(d)=M(d+1)), 

wtc= aU ⋅d)( , d=d(υ): (U(d)≠U(d-1)) & (U(d)=U(d+1)). 

2) If µ is a tournament, then U=M+E, M(k)=U(k)=Uk and  

p(k)= aM ⋅(k) = aU ⋅k , 

sp(k)= 1)-(k(k) pp + = aMaM ⋅+⋅ 1)-k((k) = aUaU ⋅+⋅ 1-kk , 

cw=p(1)=sp(1)= aEM ⋅+ )( = aU ⋅ , 

uc=p(2)= aEMM ⋅++ )( 2 = aU ⋅2 , 

ucp=p(3)= aEMMM ⋅+++ )( 23 = aU ⋅3 , 

stc=ut=wtc=p(m)= aEM ⋅+ )( (m) = aU ⋅m , m: p(m-1)≠p(m) & p(m)=p(m+1), 

s(1)=ss(1)=mes=(M+E)⋅p(2)=U⋅ aU ⋅2 , 

s(k)=s(k-1)+mwes(υ(k))=s(k-1)+ aUUM ⋅+⋅ )~~~( + 

+sch( MEUMTM ~)~~()~~( ⋅+⋅⋅+ ), 

ss(k)= 1)-(k(k) ss + , 

where U~ =M(k), M
~ = )( k)(

tr
(k) MM + . 
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Appendix 
Proof of Lemma 2. Suppose i∈B, B is a minimal weakly externally stable 

set. Then B\{i} is not weakly externally stable ⇔ ∃j∉B\{i}: (B\{i})⊆L(j). At the 

same time if j∉B then B∩(D(j)∪H(j))≠∅. Consequently either j=i or i∈D(j)∪H(j) 

holds, that is i∈D(j)∪H(j)∪{j}. A condition i∈D(j)∪H(j)∪{j} is equivalent to 

j∈L(i)∪H(i)∪{i}. 

A condition (B\{i})⊆L(j) is equivalent to B⊆L(j)∪{i}. Since by 

assumption B is a weakly externally stable set and B⊆L(j)∪{i} then L(j)∪{i} must 

be a weakly externally stable set as well (due to monotonicity of weak external 

stability). Consequently, if B is a minimal weakly externally stable set and i∈B 

then it is necessary that ∃j: j∈L(i)∪H(i)∪{i} & L(j)∪{i} is a weakly externally 

stable set. 

Let us prove that this condition is sufficient for the existence of a minimal 

weakly externally stable set B such that i∈B. Suppose ∃j: j∈L(i)∪H(i)∪{i} & 

L(j)∪{i} is a weakly externally stable set. If L(j)∪{i} is minimal then B=L(j)∪{i}. 

If it is not the case then ∃C: C⊂L(j)∪{i} and C is a minimal weakly externally 

stable set. By definition L(j) is not a weakly externally stable set. Since C is 

weakly externally stable, C is not a subset of L(j) (monotonicity of weak external 

stability). But C⊂L(i)∪{i}, therefore i∈С and B=C.  

Thus, i belongs to a minimal weakly externally stable set iff ∃j: 

j∈L(i)∪H(i)∪{i} and L(j)∪{i} is a weakly externally stable set. 

L(i)∪{i} is not a weakly externally stable set ⇔ ∃k: (L(i)∪{i})⊆L(k) ⇔ 

kµi & L(i)⊆L(k) ⇔ i∉UCIIa. Therefore, L(i)∪{i} is a weakly stable set iff i∈UCIIa. 

Suppose ∃j: 1) j∈L(i)∪H(i) & 2) L(j)∪{i} is not a weakly externally stable 

set. Then (2) ⇔ ∃k: (L(j)∪{i})⊆L(k). Then (L(j)∪{i})⊆L(k) ⇔ L(j)⊆L(k) & 

{i}⊆L(k). Then {i}⊆L(k) ⇔ k∈D(i). j∈L(i)∪H(i) & k∈D(i)) ⇒ k≠j. Then (k≠j & 

L(j)⊆L(k)) ⇔ kαIIcj. Consequently, ∃j: 1) j∈L(i)∪H(i) & 2) L(j)∪{i} is not a 

weakly externally stable set ⇔ ∃j, k: 1) j∈L(i)∪H(i) & 2) k∈D(i) & 3) kαIIcj. 

Therefore a set L(j)∪{i}: j∈L(i)∪H(i) is weakly externally stable iff j is not 

covered by any alternative from the upper section of i according to αIIc. 
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Therefore ∃j: 1) j∈L(i)∪H(i)∪{i} and 2) L(j)∪{i} is a weakly externally 

stable set ⇔ either i∈UCIIa, or ∃j: 1) j∈L(i)∪H(i) & 2) j is not covered by any 

alternative from the upper section of i according to αIIc. 

As a result, i belongs to the set MWES iff either i is uncovered according to 

the version αIIa of the covering relation, or some alternative from the lower section 

of i or from the horizon of i is not covered by any alternative from the upper 

section of i according to the version αIIc of the covering relation. □ 
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