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Morse—Smale cascades on 3-manifolds

V.Z. Grines and O. V. Pochinka

Abstract. This is a survey of recent (from 2000) results obtained by the
authors in collaboration with Russian and foreign colleagues. The major
theme of our investigations involves Morse-Smale cascades on orientable
3-manifolds and includes a complete topological classification of them,
a determination of the interconnection between their dynamics and the
topology of the ambient manifold, a criterion for embeddability in a topo-
logical flow, and necessary and sufficient conditions for such cascades to
have an energy function.
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Introduction

In 1937 Andronov and Pontryagin [2] introduced the concept of a rough system
of differential equations defined in a bounded part of the plane: a system that
retains its qualitative properties under small changes in the right-hand side. They
proved that the flow generated by such a system is characterized by the following
properties:

1) the set of fixed points and periodic orbits is finite, all its elements are hyper-

bolic;
2) there are no separatrices from a saddle to a saddle;
3) all w- and a-limit sets are contained in the union of the fixed points and the
periodic orbits (limit cycles).

The above properties are also known to characterize rough flows on a two-dimen-
sional sphere. The principal difficulty in passing from a two-dimensional sphere
to orientable surfaces of positive genus is the possibility that there may exist new
types of motion (non-closed recurrent trajectories). That there are no such trajec-
tories for rough flows without equilibrium states on a two-dimensional torus follows
from Maier’s 1939 paper [42]. In 1959 Peixoto [56] introduced the concept of struc-
tural stability of flows to generalize the concept of roughness. We recall that a flow
ft is structurally stable if, for any sufficiently close flow g, there exists a homeo-
morphism / sending trajectories of the system g¢* to trajectories of the system f?.
The original definition of a rough flow involved the additional requirement that the
homeomorphism h be C%-close to the identity map. The concepts of ‘roughness’
and ‘structural stability’ are now known to be equivalent, though this fact is highly
non-trivial. In [57] and [58] Peixoto proved that the above conditions 1)-3) are
necessary and sufficient for the structural stability of a flow on an orientable closed
(compact and without boundary) surface and showed that such flows are dense in
the space of all C*-flows.

An immediate generalization of properties of rough flows on orientable surfaces
leads to Morse-Smale systems (continuous and discrete). The non-wandering set
of such a system consists of finitely many fixed points and periodic orbits, each of
which is hyperbolic, and the stable and unstable manifolds W and W' intersect
transversally! for any distinct non-wandering points p, g.

Morse-Smale systems are named after Smale’s 1960 paper [68], where he first
introduced flows with the above properties and proved that they satisfy inequalities
similar to the Morse inequalities. That Morse-Smale systems are structurally stable
was later shown by Smale and Palis [52], [55]. However, already in 1961 Smale [70]

ITwo smooth submanifolds X; and X2 of an n-manifold X are said to intersect transversally
(be in general position) if either X1 N X9 = @ or T, X1 + T X2 = T X for any point z € (X1 NX2)
(here T A denotes the tangent space to a manifold A at a point z).
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proved that such systems do not exhaust the class of all rough systems, constructing
for this purpose a structurally stable diffeomorphism on the two-dimensional sphere
S? with infinitely many periodic points. This diffeomorphism is now known as the
‘Smale horseshoe’. Nevertheless, these systems have great value both in applications
(because they adequately describe any regular stable processes) and in studying the
topology of the phase space (because of the deep interrelation between the dynamics
of these systems and the ambient manifold).

The key problem in the study of dynamical systems is the determination of the set
of complete topological invariants: properties of a system that uniquely determine
the decomposition of the phase space into trajectories up to topological equivalence
(conjugacy). We recall that two flows f* and f’* (two diffeomorphisms f and f’) on
an n-manifold M™ are said to be topologically equivalent (topologically conjugate)
if there exists a homeomorphism h: M™ — M™ that carries trajectories of f! to
trajectories of f'* (that is, f’h = hf). The topological classification of dynamical
systems occupies a special place in the qualitative theory of differential equations.
Besides the immediate use of the topological invariants obtained, very valuable
information can be derived from the discovery of fundamentally new dynamical
phenomena. Thus far this problem has a rich history.

The equivalence class of Morse-Smale flows on a circle is uniquely determined
by the number of its fixed points. For cascades on a circle, Maier [42] found in 1939
a complete topological invariant consisting of a triple of numbers: the number of
periodic orbits, their periods, and the so-called ordinal number. In 1955 Leon-
tovich and Maier [40] introduced a compete topological invariant — the scheme of
a flow —for flows with finitely many singular trajectories on a two-dimensional
sphere. This scheme contained a description of singular trajectories (equilibrium
states, periodic orbits, separatrices of saddle equilibrium states) and their relative
positions. In 1971 Peixoto [59] formalized the notion of a Leontovich-Maier scheme
and proved that for a Morse—Smale system on an arbitrary surface a complete topo-
logical invariant is given by the isomorphism class of a directed graph associated
with it whose vertices are in a one-to-one correspondence with the equilibrium states
and closed trajectories and whose edges correspond to the connected components
of the invariant manifolds of the equilibrium states and closed trajectories, where
the isomorphisms preserve specially chosen subgraphs.?

Morse-Smale flows (cascades) on manifolds of dimension n > 3 (n > 2) feature
a new type of motion compared with lower-dimensional systems, because of possi-
ble (heteroclinic) intersections of the invariant manifolds of distinct saddle points.
Afraimovi¢ (Afraimovich) and Sil’nikov (Shil'nikov) [1] proved that the restriction of
Morse—Smale flows to the closure of the set of heteroclinic trajectories is conjugate
to a suspension over a topological Markov chain. Nevertheless, an invariant simi-
lar to the Peixoto graph proved to be sufficient for describing a complete topological
invariant for a broad subclass of such systems, and in particular for Morse—Smale
diffeomorphisms on surfaces with finitely many heteroclinic orbits (Bezdenezhnykh
and Grines [6], |7], 1985; Grines [25], 1993),® for flows with finitely many singu-
lar trajectories on 3-manifolds (Umanskii, [73], 1990), for flows on the sphere S",

2Tn [51] Oshemkov and Sharko pointed out a certain inaccuracy concerning the Peixoto invari-
ant due to the fact that an isomorphism of graphs does not distinguish between types of decom-
positions into trajectories for a domain bounded by two periodic orbits.
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n > 3, without closed orbits (Piljugin [60], 1978), and for diffeomorphisms with
saddle points of Morse index 1 on closed orientable manifolds M"™, n > 3 (Grines,
Gurevich, Medvedev [26], [27], 2007-2008).

Topological classification of even the simplest Morse—Smale diffeomorphisms on
3-manifolds does not fit into the concept of singling out a skeleton consisting of
stable and unstable manifolds of periodic orbits. The reason for this lies primarily
in the possible ‘wild’ behaviour of separatrices of saddle points. More specifically,
even though the closure of a separatrix may differ from a separatrix by only one
point, it may fail to be even a topological submanifold. Pixton [61] (1977) was the
first to construct a diffeomorphism with wild separatrices —for this he employed
the Artin—Fox curve [3] to realize the invariant manifolds of a saddle fixed point
(see Fig. 5). In 2000 Bonatti and Grines [9] investigated the class of diffeomor-
phisms on a three-dimensional sphere (diffeomorphisms in the Pixton class &)
that have non-wandering set consisting of four fixed points: two sinks, a source,
and a saddle. They showed that the Pixton class contains a countable set of pairwise
topologically non-conjugate diffeomorphisms. Furthermore, the topological conju-
gacy class of a diffeomorphism f € & is uniquely determined by the embedding
type of a one-dimensional separatrix in the basin of a sink, which is described by
a new topological invariant: a smooth embedding of the circle S! (the orbit space
of a one-dimensional separatrix) in the manifold S? x S! (the space of wandering
orbits in the basin of a sink).

The appearance of new topological invariants gives rise to a natural research
problem, the investigation of bifurcations that facilitate passing from one class of
topologically conjugate diffeomorphisms to another. For the bifurcations appear-
ing here a distinctive feature is that the structure of the non-wandering set is not
changed, whereas the qualitative change of a diffeomorphism takes place solely
because of a change in the embedding type of separatrices of saddle points. In [12]
the present authors collaborated with Bonatti and Medvedev to prove that a pas-
sage from one topological conjugacy class to another in the set of Pixton diffeomor-
phisms can be realized using a sequence of two bifurcations of saddle-node type.
We note that this result provides a solution in the Pixton class of the problem
posed by Palis and Pugh in [54] on finding a smooth arc with some ‘good’ prop-
erties (for example, with finitely many bifurcations) to connect two structurally
stable dynamical systems (two flows or two diffeomorphisms). Recall that two C”-
diffeomorphisms (r > 0) f, f': X — X are said to be C"-isotopic if there exists
a C"-homotopy F': X x [0,1] — X between f and f’ such that the map f;: X — X
defined by f;(z) = F(x,t) is a C"-diffeomorphism for each ¢ € [0,1]. Here the
family {f:,t € [0,1]} of C"-diffeomorphisms is called a C"-arc connecting f and f’.
Newhouse and Peixoto proved in [50] that any two Morse-Smale flows on a closed
manifold can be connected by an arc with finitely many bifurcations. However, for

30ne should also point out that Langevin [39] proposed a different approach to finding topo-
logical invariants for such diffeomorphisms. Though no classification results were given in [39], the
ideas there nevertheless turned out to be very fruitful and have been put to use in the classification
of diffeomorphisms, as is demonstrated, in particular, in the present survey. A classification of
Morse-Smale diffeomorphisms on surfaces with infinitely many heteroclinic orbits which required
the machinery of topological Markov chains follows from the paper [15] by Bonatti and Langevin,
where necessary and sufficient conditions for topological conjugacy of Smale diffeomorphisms
(C'-structurally stable diffeomorphisms) on surfaces were established.
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discrete dynamical systems the situation is different. For example, it follows from
work of Matsumoto [41] and Blanchard [8] that any closed orientable surface admits
isotopic Morse—Smale diffeomorphisms that cannot be connected by such an arc.

Another difference between Morse-Smale diffeomorphisms in dimension 3 from
their surface analogues lies in the variety of heteroclinic intersections: a connected
component of such an intersection may be not only a point as in the two-dimensional
case, but also a curve, compact or non-compact (see Figs. 2, 3). The problem of
a topological classification of Morse-Smale cascades on 3-manifolds either with-
out heteroclinic points (gradient-like cascades) or without heteroclinic curves was
solved in a series of papers from 2000 to 2006 by Bonatti, Grines, Medvedev,
Pécou, and Pochinka (9], [11], [13], [14]. A complete topological classification of the
class MS(M?) of orientation-preserving Morse-Smale diffeomorphisms on a closed
orientable 3-manifold M3 was announced by Pochinka in [62], [63], and a com-
plete proof was given in [64]. In what follows, MS(M™), n > 1, will denote the
set of orientation-preserving Morse-Smale diffeomorphisms on a closed orientable
n-manifold M™.

Since Morse-Smale systems exist on any compact manifold, the problem of the
interrelation between the dynamics of such systems and the topological structure
of the ambient manifolds is interesting and important. The first step in this direc-
tion was made by Smale [68], who employed the Morse inequalities to establish
a connection between the Betti numbers of the ambient manifold and the number
and index of equilibrium states and closed trajectories of a Morse-Smale flow on it.
Franks [24] gave analogues of the Morse inequalities for Morse-Smale flows without
equilibrium states. We note that the set of Morse-Smale flows without rest points
consists of periodic trajectories. For such flows on manifolds of dimension n > 4,
Asimov [4] constructed a special round-handle decomposition of the ambient man-
ifold and proved that if a manifold admits a round-handle decomposition, then on
the manifold there exists a Morse-Smale flow without rest points. The topological
structure of a three-dimensional manifold admitting a Morse-Smale flow without
rest points was investigated by Morgan [49], who showed that the ambient mani-
fold is either a Seifert manifold or a special union of Seifert spaces and ‘thick’ tori
T? x [0,1].

Progress in finding relations between the topology of a 3-manifold and the dy-
namics of a Morse-Smale cascade defined on it has been made by Bonatti, Grines,
Medvedev, Pécou, and Zhuzhoma. For example, a complete topological classifi-
cation of the phase spaces of Morse-Smale cascades without heteroclinic curves
on 3-manifolds was obtained in [10], and in [33] it was shown that the ambi-
ent 3-manifold of a gradient-like diffeomorphism with tamely embedded frames
of one-dimensional separatrices of saddle points admits a Heegaard splitting whose
genus is uniquely determined by the periodic data of the diffeomorphism.

Another conceptual direction in the qualitative theory is connected with the
‘fundamental theorem of dynamical systems’ established by Conley [19] in 1978.
According to this theorem, any continuous dynamical system (flow or cascade)
has a continuous Lyapunov function (that is, a function which is decreasing along
trajectories of the system outside the chain recurrent set and is constant on the
chain components. From several points of view, information about the existence of
an energy function for a smooth dynamical system is of greater interest, that is,
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a smooth Lyapunov function whose set of critical points coincides with the chain
recurrent set of the system.

The most complete results in this direction were obtained for Morse-Smale sys-
tems for which the chain recurrent set coincides with the set of fixed points and
periodic orbits. In 1961 Smale [69] proved that a gradient-like flow (a Morse-Smale
flow without closed trajectories) always has an energy function which is a Morse
function. In 1968 Meyer [44] generalized this result and constructed an energy func-
tion which is a Morse-Bott function for an arbitrary Morse—Smale flow. Here we
recall that a point p € M™ is called a critical point of a C"-smooth (r > 2) function

P: M"™ — Rif é?—w(p) =...= aa—(p) =0 (grady(p) = 0) in some local coordi-
T Ln
nates x1, ..., (z;j(p) =0forall j =1,...,n). A critical point p is non-degenerate
2
if the Hessian matrix of second derivatives A (p) is non-singular; otherwise p is

Ox; 0x;
degenerate. A function ¥: M™ — R is a Morse function if all its critical points are
non-degenerate, and 1 is a Morse—Bott function if, at any critical point, the Hessian
is non-singular in the direction normal to the critical level set.

In 1977 Pixton [61] proved that a Morse—Smale diffeomorphism on a surface has
an energy function that is a Morse function. Moreover, he constructed on a 3-sphere
a diffeomorphism without an energy function and showed that this phenomenon is
related to wild embeddings of separatrices of saddle points. In [31], [32] the present
authors collaborated with Laudenbach to investigate conditions for the existence
of an energy function for Morse-Smale cascades on 3-manifolds. From these inves-
tigations it became clear that many Morse-Smale cascades on 3-manifolds fail to
have an energy function. This means that for such a system any Lyapunov function
which is also a Morse function has additional critical points (distinct from the peri-
odic points of the diffeomorphism). And this leads us to the concept of a Lyapunov
function with a minimum number of critical points, which was called a quasi-energy
function in [30]. There a subclass of cascades was singled out in the Pixton class as
those which fail to have an energy function but for which a quasi-energy function can
be constructed. However, the problem of constructing a quasi-energy function for
arbitrary Morse-Smale cascades is still a matter for the future.

The existence of an energy function for a Morse—Smale cascade imposes certain
restrictions on its dynamics. It does not guarantee, however, that a diffeomor-
phism admitting an energy function can be imbedded in some flow, even if there
are no heteroclinic intersections. Recall that a diffeomorphism f is embeddable in
a C™-flow (m > 0) if it is the time-one shift along trajectories of some C™-flow X*
(f = X1). The problem of embeddability a diffeomorphism in a flow is classical;
a detailed survey of results in this area can be found in [74]. In particular, from
the papers [52], [55], in which Morse-Smale diffeomorphisms are shown to be struc-
turally stable, it follows that for any manifold M™ there exists a non-empty open
(in Diff'(M™)) set of Morse-Smale diffeomorphisms that embed in a topological
flow (a C%flow). We note that, according to [16], the set of C2-diffeomorphisms
that embed in a C'-smooth flow is nowhere dense in the space of Morse-Smale
diffeomorphisms. In [52] Palis found some necessary conditions for a diffeomor-
phism f € MS(M™) to embed in a topological flow, and for n = 2 he showed that
these conditions are also sufficient and posed the problem of extending this result to
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higher dimensions. In [28] and [29] the present authors collaborated with Gurevich
and Medvedev to solve the Palis problem in dimension n = 3.

The present survey is structured as follows.

In §1 we include properties of Morse-Smale diffeomorphisms necessary for an
understanding of their dynamics. Namely, here we shall be concerned with asymp-
totic behaviour, the topology of the embedding, and the structure of the space of
orbits that lie on separatrices of periodic points.

Section 2 deals with the Pixton class, which provides a framework for understan-
ding the results to be presented. In §2.1 we present an approach to the topological
classification of diffeomorphisms in the Pixton class. By extending this approach
we arrive at a complete topological classification of arbitrary Morse-Smale dif-
feomorphisms on 3-manifolds. In §2.2 we construct a simple arc connecting two
topologically non-conjugate cascades in the Pixton class.

Section 3 presents a complete topological classification (including a realization)
of diffeomorphisms in the set MS(M?). More specifically, we prove that for a dif-
feomorphism f € MS(M?) the equivalence class of its scheme Sy is a complete
topological invariant, and the scheme contains information about the periodic data
and the topology of the embedding of the two-dimensional invariant manifolds of
saddle points of f in the phase space. Moreover, properties of this scheme are
employed to single out a set . of abstract schemes for each S € .% of which a dif-
feomorphism fg € MS(M?3) is constructed such that the schemes Sy, and S are
equivalent.

In §4 we derive relations between the number gy = (ry — Iy +2)/2 and the
topology of a manifold M3, where ry and is the number of saddle periodic points,
and [ is the number of node (source or sink) periodic points of a diffeomorphism
f € MS(M?3). A topological classification is obtained for three-dimensional closed
orientable manifolds that admit Morse-Smale diffeomorphisms without heteroclinic
curves. These manifolds are shown to be either a three-dimensional sphere in the
case gy = 0, or a connected sum? of gy copies of S* x S'. The case when f
is gradient-like and has tamely embedded frames of one-dimensional separatrices
exhibits another relation between the number g¢ and the topology of M3. In this
case the ambient manifold M3 admits a Heegaard splitting® of genus gf-

Section 5 gives results involving the existence of an energy function for a Morse—
Smale cascade on a 3-manifold. For example, in §5.1 we construct a quasi-energy
function for a subset of the class of Pixton diffeomorphisms. In §5.2 we introduce
for a gradient-like diffeomorphism the concept of a self-indexing energy function and
prove that a criterion for its existence is related to the presence of special Heegaard

4Let X; and X2 be two compact n-manifolds and let D; C X; and Dy C X3 be subspaces
homeomorphic to D™, with hy: D™ — D1 and hg: D™ — Da the corresponding homeomorphisms.
Let g: 0D1 — 0D3 be a homeomorphism such that the map h;lghl |8]ID" : S*=1 — $7~1 reverses
the orientation. The space X1 ff Xo = (X7 \ int D1) Uy (X2 \ int D2) is called a connected sum of
X1 and Xo.

5A three-dimensional closed manifold is called a handlebody of genus g > 0 if it is obtained
from a 3-ball by an orientation-reversing identification of g pairs of pairwise disjoint 2-disks on the
boundary of the ball. The boundary of a handlebody is a closed surface of genus g. A Heegaard
splitting of genus g > 0 for a manifold M3 is a representation of M3 as a gluing together of
two handlebodies of genus g by means of some diffeomorphism of their boundaries; the common
boundary of these bodies is called a Heegaard surface in the manifold M?3.
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surfaces of genus gy. In §5.3 we introduce for an arbitrary Morse-Smale diffeomor-
phism of a three-dimensional manifold the concept of a dynamically ordered Morse—
Lyapunov function, whose properties are closely connected with the dynamics of the
diffeomorphism. Necessary and sufficient conditions for the existence of an energy
function with these properties are shown to be governed by the embedding type of
the invariant manifolds of saddle orbits of the diffeomorphism.

In Section 6 Morse-Smale diffeomorphisms on 3-manifolds are used to demon-
strate fundamentally new obstructions to embedding in a flow as compared to their
analogues on surfaces. It is proved that a diffeomorphism f € MS(M3) embeds in
a topological flow if and only if its scheme S is trivial.

1. Basic properties

Definition 1.1. A diffeomorphism f: M™ — M™ on a smooth closed (compact,
without boundary) connected orientable n-manifold M™ (n > 1) is called a Morse—
Smale diffeomorphism if

1) the non-wandering set 2 is finite and hyperbolic;

2) the stable and unstable manifolds W5 and W, intersect transversally for any
periodic points p, q.

In this section we present the properties of Morse-Smale diffeomorphisms needed
to understand their dynamics. Some of the results below were announced and
proved in the survey [71] and the papers [52], [55]; for detailed proofs see the
monograph [34]. All facts are given for the class MS(M™) of orientation-preserving
Morse-Smale diffeomorphisms f: M™ — M™ on an orientable manifold M™.

1.1. Dynamics. Let f € MS(M"). By Definition 1.1 the non-wandering set
Qy of f consists of finitely many periodic points (2y = Pery). The hyperbolic
structure of {1y means that at each periodic point p € Q of period m,, the eigen-
afme
values of the Jacobian matrix < i’; > do not have unit modulus. It follows that
x
P
at any periodic point p there are invariant manifolds, the stable manifold W, and
the unstable manifold W, which are defined in topological terms as follows:

W= {x eM™: lim d(f"™(z),p) = o},

n—-+00

W = {x eM™: lim d(f~""(z),p) = o},

p n—-+oo

where d is the metric on M™. Moreover, dim W = n — g, and dim W}’ = ¢,, where

with modulus

ox

greater than 1 and is called the Morse index. In what follows, for any subset P of )¢

we denote by Wg (respectively, W) the union of all the unstable (stable) manifolds

of all the points in P. A connected component £ (£;;) of the set W\ p (W' \p) is

called a stable (unstable) separatriz of a point p. The number v, which equals +1 or

—1 depending on whether the map f™» ‘W“ preserves or reverses the orientation is
p

ofme
gp is the number of eigenvalues of the Jacobian matrix ( / )

called the orientation type of a point p. The triple (my,q,,v,) = (me,,q0,,ve,)
is called the periodic data of a point p or an orbit &.
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A periodic point p is called a saddle point if 0 < ¢, < n, otherwise p is called
a node; further, p is called a sink (respectively, source) if ¢, = 0 (¢, = n). Since
a diffeomorphism f € MS(M™) preserves orientation, the orientation type of a node
point is +1, whereas for a saddle point both cases +1 and —1 are possible. Given
q € {0,...,n}, we denote by €2, the set of periodic points with Morse index ¢, by
ks the total number of periodic orbits, and by £, the number of periodic orbits
with Morse index not exceeding q.

Qualitative properties (from the viewpoint of topological conjugacy) of Morse—
Smale diffeomorphisms are largely determined by the embedding, position, and
asymptotic behaviour of the invariant manifolds of periodic points, as described in
the following assertion.

Statement 1.1. Let f € MS(M™). Then:

1) M" =U,eq, Wy

2) Wy is a smooth submanifold® of M™ that is homeomorphic to R% for any
periodic point p € §y;

3) cl(fy)\ (£ Up) = Urle: punws 2o Wit for any unstable separatriz €, of any

periodic point p € §¢.

Since the stable manifold of a periodic point of a diffeomorphism f is the unstable
manifold of the same point regarded as a periodic point of the diffeomorphism !,
all the assertions for unstable manifolds also hold (with corresponding modifica-
tions) for stable manifolds.

In view of the theorem on local topological classification of a hyperbolic fixed
point of a diffeomorphism (see Theorem 5.5 in [53]), the map f™» at p is locally
conjugate to the linear diffeomorphism a,, ., : R™ — R™ given by

Lgp+1 Tgp+2 .’L'n>

aqp,l,p(xl,...,xn):(up-2x172x2,...,2xqp71/p 5 T g

We call ag,: R" — R" a canonical diffeomorphism. Further, we let ag,, and ag ,
denote the restrictions of a,, to Ozy...z, and Ozgy1 ...y, and we call them
the canonical expansion and the canonical contraction, respectively. By virtue of
assertion 2) in Statement 1.1, ng is a smooth submanifold of M™. Hence, the map

f’WSP: ng — ng is a diffeomorphism. These facts enable us to give a global

topological classification of the maps f }W“ , in the following form.
Op

6A subset A of a C"-manifold X (r > 0) is called a C"-submanifold if, for some integer
0 < k < m, each point of A lies in a chart (U, ) of X such that (UNA) =RF or p(UNA) = Rﬁ,
where R¥ = {(z1,...,2,) € R": 2441 = - = x,, = 0} and Ri ={(z1,...,2zn) € RF: z;, > 0}.
Furthermore, A becomes a C"-manifold with the charts {(U NA, d"UnA) } A C°-submanifold is
also called a topological submanifold.

It is a classical fact in topology that a subset A of a C7"-manifold X with » > 1 is
a (C7-submanifold if and only if it is the image of a C"-embedding; that is, there exist
a C"-manifold B and a regular C"-map g: B — X (the rank of the Jacobian matrix of g at
any point equals the dimension of the manifold B) which maps B homeomorphically to the sub-
space A = g(B) with the topology induced from X. Such a map g is called a C"-embedding.
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Statement 1.2. Let f € MS(M™). Then for any periodic point p € Q the diffeo-
morphism fme |Wu Wt — Wt is topologically conjugate to the canonical expansion

qu — qu

In the case when a periodic point of a diffeomorphism f € MS(M™) is a saddle
point, information can be acquired not only from the embedding in the ambient
space of its invariant manifolds, but also from the embedding of an f-invariant
neighbourhood of its orbit.

For ¢ € {1,...,n — 1} and t € (0,1] let A} = {(z1,...,2,) € R": (2} +
s+ al) (@l 4+ 2p) <t} and let Ay = JVl We note that the set </Vt i
invariant under the canonical drffeomorphlsm Qq,vs Wthh has a unique saddle ﬁxed
point at the origin O, with unstable and stable manifolds W35 = Oz, ...z, and

Wé = Ol‘q+1 R

Definition 1.2. Let f € MS(M™). A neighbourhood N, of a saddle point o € Q¢
is said to be linearizing if there exists a homeomorphism p,: N, — A5, conjugating

the diffeomorphism fmf" with the canonical diffeomorphism ag, ., | R
(r do

The neighbourhood Ny, mj(; ! f¥(N,) equipped with the map pe, compo-
sed of the horneornorphlsms pof 7R fE(N,) — Ay, k=0,...,m, — 1, will be
called a linearizing neighbourhood of the orbit &, and the homeomorphism pes,

will be called a linearizing homeomorphism.

Statement 1.3. Any saddle point (orbit) of a diffeomorphism f € MS(M™) has
a linearizing neitghbourhood.

In the neighbourhood .#; we define a pair of transversal foliations .7, Z/ as
follows:

T = U {(@1,. . 20) € Mgt (Tgats- s Tn) = (Cqr1,Cn)}s

(Cq1se1Cn)EOTG41...Tp

TS = U {1,y n) € Mg: (X1, 2q) = (c1,. .., ¢q)}

(c1,...,¢q)EOT ...

'Qm

We note that the canonical diffeomorphism a,, maps leaves of the foliation .7
(Z#;) into leaves of the same foliation. By virtue of Statement 1.3, for any saddle
point ¢ of a diffcomorphism f € MS(M?) the foliations .Z! and .%; induce,
via the linearizing homeomorphism, the f-invariant fohatrons Fg. and Fg  on
the linearizing neighbourhood Ny, ; these foliations are said to be linearizing (see
Fig. 1).

In view of assertion 1) in Statement 1.1, the invariant manifolds of periodic
points of a diffeomorphism f € MS(M™) are submanifolds of M™. Nevertheless,
the closure of an invariant manifold of a saddle point may have a complicated topo-
logical structure. This phenomenon may be of a dynamical or of a purely topolog-
ical nature. The first case here corresponds to the situation when a separatrix of
a saddle point is involved in heteroclinic intersections.

Definition 1.3. If 01 and o, are different periodic saddle points of a diffeomor-
phism f € MS(M™) for which W7 NW} # &, then the intersection W7 N W is
said to be heteroclinic. Furthermore.
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Figure 1. Linearizing foliations in a linearizing neighbourhood.

o if dim(W; NW ) > 0 (respectively, dim(W; N W ) = 1), then a connected
component of the intersection W7 MW is called a heteroclinic manifold (a hetero-
clinic curve) (see Fig. 2);

w2

’ UCompact

heteroclinic

A non-compact agze curves
heteroclinic curve

(a) (b)
Figure 2. Heteroclinic curves.

o if dim(W; N W) = 0, then the intersection W7 N W} is countable, any
point of it is called a heteroclinic point, and the orbit of a heteroclinic point is
called a heteroclinic orbit (see Fig. 3).

Definition 1.4. A diffeomorphism f € MS(M™) is said to be gradient-like if the
condition W3 NW2 # & with distinct points 01,02 € €y implies that dim W7, <
dim W .

The transversality condition of the invariant manifolds readily implies that a dif-
feomorphism f € MS(M™) is gradient-like if and only if it has no heteroclinic points.

By assertion 3) in Statement 1.1, the closure of a separatrix of a saddle point
involved in a heteroclinic intersection does not have the structure of a topological
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Heteroclinic
points

Figure 3. Heteroclinic points.

manifold; otherwise, being the one-point compactification of a Fuclidean space,
it is a topologically embedded manifold. Recall that a C%-map g: B — X is
a topological embedding of a topological manifold B in a manifold X if it maps B
homeomorphically onto the subspace g(B) with topology induced from X. The
image A = g¢(B) is called a topologically embedded manifold. We note that in
general a topologically embedded manifold is not a topological submanifold. If A
is a submanifold, then it is said to be tame or tamely embedded; otherwise it is said
to be wild or wildly embedded, and the points at which the conditions for being
a topological submanifold are not satisfied are called wild points or points of wild
embedding.

Statement 1.4. Let f € MS(M™) and let o be a saddle point of f such that an
unstable separatriz (% is not involved in heteroclinic intersections. Then

c(fg) \ (g U o) = {w},

where w is a sink periodic point. Furthermore, if g = 1, then cl(¢%) is an arc topo-
logically embedded in M™, and if g, > 2, then cl(£%) is the sphere S%° topologically
embedded in M™.

By assertion 2) in Statement 1.1, the set £% U o is a smooth submanifold of M™.
However, it may well be that the manifold cl(£%) is wild at w, in which case the
separatrix £ is said to be wild; otherwise, it is tame.

For n = 2 the results of Moisa [48] guarantee that any compact arc, and hence
any separatrix without heteroclinic points, is tamely embedded in M?2. An example
(not related to the dynamics) of a compact wild arc in S* with one wild point
was given by Artin and Fox [3] in 1948. In 1977 Pixton [63] realized this arc by
separatrices of a saddle point of a Morse-Smale diffeomorphism on a 3-sphere (see
Fig. 4). The next result provides a criterion for a tame embedding of separatrices
of saddle points of a diffeomorphism f € MS(M?) in the ambient 3-manifold.

Statement 1.5. Let f € MS(M?3), let w be a sink point, and let £* be a one-dimen-
sional (respectively, two-dimensional) separatriz of a saddle o such that 2 C WS.
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Figure 4. Pixton’s example.
Then €% is tamely embedded in M3 if and only if there exists a smooth 3-ball B,, C

WS containing w in its interior and such that £} intersects 0B, in a single point
(in a single circle).

7
8

A0 Ty

Figure 5. Pixton diffeomorphisms that are not topologically conjugate.

f/

"o wh

Since a conjugating homeomorphism must take invariant manifolds of periodic
points of one diffeomorphism into analogous manifolds of another, it becomes appar-
ent that there exist at least two topologically non-conjugate diffeomorphisms with
isomorphic graphs —this involves a diffeomorphism f for which all the separatri-
ces are tame and a diffeomorphism f’ having some wild separatrices (see Fig. 5).
Consequently, the graph is not a complete topological invariant, and thus we need
mechanisms capable of tracing not only the asymptotic behaviour of separatrices,
but also the topology of their embedding. For this purpose we must digress briefly
into the theory of group actions on manifolds. The main source of the information
in the following subsection is the remarkable book [37].
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1.2. Orbit spaces. Let g: X — X be a diffeomorphism of a manifold X and
let nx be the number of connected components of X. We denote by X/g the
space of g-orbits on X, and by py: X — X/g, the natural projection. To simplify
matters, we shall assume that the space X/g is connected. One says that g acts
discontinuously on X if, for any compact set K C X, the set of k € Z for which
g*(K)N K # @ is finite. In this case the projection p, is a covering that induces
a homomorphism 7 : 71(X/g) — Z as follows. Let p,'(Z) be the inverse image of
a point € X/g under p,. We note that p;l (Z) is the orbit of any point x € p;l(f).
Let ¢ be a loop in X/g such that ¢(0) = ¢(1) = Z. By the monodromy theorem,
there exists a loop ¢ in X based at x (¢(0) = z) which is a lift of the path é.
Moreover, there exists an element k € nxZ such that c¢(1) = g*(z). Here nxZ
denotes the set of integers which are multiples of nx. Let ng: m1(X/g) — nxZ be
a map carrying [c] to k. By definition, a fundamental domain for the action of g
on X is a closed set D, C X for which there exists a set 59 with the following
properties:

1) cl(Dy) = Dg;

2) gk(ﬁg) N Eg =@ for all k € (Z\ {0});

3) UkeZ gk(D.q) =X.

Statement 1.6. Let the diffeomorphism g act discontinuously on an n-manifold X .
Then:

1) the natural projection py: X — X/g is a covering;

2) the orbit space X/g is a smooth n-manifold;

3) for a fundamental domain Dy of the action of g on X, the orbit spaces Dgy/g
and X/g are homeomorphic;

4) the map nx/q: m(X/g) — nxZ is an epimorphism.

As an illustration of this result, consider the orbit space 7//;?” = (R*\ O)/ay,
of the action of the canonical expansion a; , on R?\ O with ¢ € {1,...,n} and
v € {+1,—1}. This action is discontinuous, and {(z1,...,2,) E RI: 1 <z + -+

mg < 4} is a fundamental domain of it (see Fig. 6). This leads us to the following
list of spaces:

1) the space 7//;?_1 is homeomorphic to the circle S';

2) the space VZI“ 1 is homeomorphic to the product of circles S* x S
3) the space 7//;?_1 is homeomorphic to a Klein bottle;

4) the space 7//;‘ 1 is homeomorphic to the two-dimensional torus T?;

5) the space ”/Z;’f_l, q > 3, is homeomorphic to a generalized Klein bottle (the
topological space obtained from S?~! x [0, 1] by identifying its boundaries by means
of the map g: S77! x {0} — S?7! x {1} given by the formula g(x1,z2,...,24,0) =
(—331,.%2, e ,l‘q,/l\));

6) the space #,*, | is homeomorphic to S7~! x S*.

The next result partially explains how the problem of topological classification
of diffeomorphisms reduces to manipulations with topological objects.

Statement 1.7. Assume that the diffeomorphisms g and g’ act discontinuously
on the manifolds X and X', respectively, and that the spaces X/g and X'/q' are
connected. Then:
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Figure 6. Orbit spaces of the canonical expansion.

4) ¢=2,v=+1

1) if h: X — X is a homeomorphism (dzﬁeomorphzsm) such that hg = ¢'h,
then the map h: X/g — X'/g" given by h = pg/hpg s a homeomorphzsm and
Ng = ngrh*, where h* is the isomorphism induced by the homeomorphism h

A) if h: X/g — X'/g" is a homeomorphism (dzﬁeomorphzsm) such that ng =
Ng'hs, then for any points x € X and z’ € pg (h(pg( x))) there exists a unique
homeomorphism h: X — X' that is a lift of h and is such that hg = ¢g'h and
h(z) =a'.

Using Statements 1.2 and 1.7, we arrive at the following fact.

Statement 1.8. Let p be a periodic point with Morse index q, > 1 for a diffeo-
morphism f € MS(M™). Then the orbit space Wg = (Wg \ 0p)/[ is a smooth

gp-manifold that is homeomorphic to %Z,up

2. The Pixton class

Let & denote the class of Morse-Smale diffeomorphisms f € MS(M?3) with
non-wandering set made up of a source fixed point «, a saddle fixed point o, and
sink fixed points w; and wy. Considering that Pixton’s example lies in this class,
we call & the Pizton class.



132 V.Z. Grines and O.V. Pochinka

2.1. Complete topological invariant. In this subsection we shall be concerned
with an approach to topological classification of Pixton diffeomorphisms; by general-
izing this approach we shall obtain a complete topological classification of arbitrary
Morse-Smale diffeomorphisms on 3-manifolds (see § 3).

2.1.1. Necessary and sufficient conditions for topological conjugacy. We set V; =
W, \ay and V; = V;/f and denotAe by ps: Vi — V; the natural projection. By
Statement 1.8, the quotient space V; is homeomorphic to the product S? x S,
and by Statement 1.6 the projection py: Vy — Vy is a covering that induces an
epimorphism 7y : 71 (V) — Z. In view of Statement 1.8 the space L} = pr(W; \oy)
is a two-dimensional torus smoothly embedded in the manifold ‘A/f. Moreover, the
torus L} is homotopically non-trivial, that is, z'z;*(m(L}i)) # 0, where ii?*: L —
V¢ is the inclusion map. Furthermore, from the definition of 7, it follows that

1piz,.(m(L3))) = Z (see Fig. 7).

Definition 2.1. The tuple Sy = (17f, ny, E;) is called the scheme of the diffeomor-
phism f € .

Figure 7. Schemes of Pixton diffeomorphisms.

In Fig. 7 we show the geometric components of the schemes Sy and Sy of the
diffeomorphisms f and f’ with phase portraits shown in Fig. 5. More precisely,
Figure 7 illustrates fundamental domains for the action of the diffeomorphisms f
and f" on Vy and Vp, respectively. Each fundamental domain is a three-dimensio-
nal annulus, from which the orbit spaces IA/f and ‘A/f/ are obtained by identifying the
boundary spheres of the annulus by means of the corresponding diffeomorphism f
or f'. Also, the orbit spaces L% and L, are obtained from cylinders by identifying
the circles with the same numbers.

From Statement 1.7 it follows that if diffeomorphisms f, f € & are topologically
conjugate, then their schemes are equivalent in the sense of the following definition.

Definition 2.2. The schemes Sy and Sy of diffeomorphisms f, f € & are said to
be equivalent if there exists a homeomorphism @: ‘A/f — XA/f/ such that:

1) g = ngpds;

2) @(L;) = L.
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More precisely, the equivalence class of a scheme is a complete topological invari-
ant for a Pixton diffeomorphism.

Theorem 2.1. Diffeomorphisms f, f' € & are topologically conjugate if and only
if their schemes Sy, Sy are equivalent.

The idea of the proof is as follows. In view of assertion 1) in Statement 1.1,
the ambient manifold can be represented as the union M3 = Vf UWZ Uy By
Statement 1.7 the existence of a homeomorphism @: Vf — Vf/ that realizes the
equivalence of the schemes Sy and Sy implies the existence of a homeomorphism
¢: Vi — V} that conjugates the diffeomorphisms f‘vf and fl’vf, and is such that
e(Wi\o)=WZ \ o' In general, this homeomorphism cannot be extended to the
set W2. However, ¢ can be modified in the linearizing neighbourhood N, so that it
takes leaves of the linearizing foliation F] into leaves of the linearizing foliation F},
and hence it is uniquely extendable to the required conjugatmg homeomorphlsm

This modification is implemented in the orbit spaces Vf and Vf/ into which the
linearizing neighbourhoods N, and N, are projected as tubular neighbourhoods
N(LS) and N (L3,) of the tori L“’ and Lf,, the latter neighbourhoods being fibred

by the two-dimensional leaves of Fj and Fj, that are the projections by py and py
of the two-dimensional linearizing leaves of F; and F},, respectively (see Fig. 8).
The foliation F¥ (respectively, F'$,) has a unique compact leaf Ls (E?,), and its
holonomy group” Hol(Lj(7 Z) (Hol(L;,7 Z')) is an infinite cyclic group. The generator
of this group is a germ of the expansion of this interval with one fixed point. Since all
such expansions are topologAically conjugate in a neighbourhood of the fixed point,
the holonomy groups Hol( ,@) and Hol( f,,A’ Z') are conjugate. Moreover, the

conjugating homeomorphism can be taken to agree with @ on E}i Hence, there exist
neighbourhoods U(ES) and U( ,) of the tori E; and Eju and a homeomorphism
UL $)—=U (L %) coinciding with ¢ on E; that carries leaves of the foliations

into leaves of the foliations F =

F | . see, for example, [17], Theorem 2
slu(zs)
of Chap. IV).
Consider the map ¢ on U(E;) defined by b= P 1%o. We identify the neigh-
bourhood U(L}) with the set T? x [~1,1], and proceed to construct an isotopy

dr: T2 x [-1,1] — T2 x [=1,1] so as to have ¢y = ¢, ¢ = id|T2X[_1 it

U(L3,) (

and

"Let .% be a smooth foliation of codimension m on an n-manifold and let F' be a compact leaf of
this foliation. Let ¥ be a smooth local m-dimensional secant of the leaves of .% that passes through
a point x € F. Then to any closed loop ¢ C F' based at x there corresponds a diffeomorphism
e: ¥ — X with fixed point z that maps a point y € ¥ on a leaf of .7 into the first-return point of
this leaf to the secant 3 along the loop c. If ¢ € [c] € 71 (F,z), then the maps 1. and 1. coincide
in some neighbourhood of z, that is, they lie in the same germ of diffeomorphisms of 3 at z. Thus,
the map ¢ — . induces a homomorphism ®: 71 (F,z) — G(3,z) from the fundamental group
of the leaf F' at x into the group of germs of diffeomorphisms of ¥ at the point z. The group
Hol(F,z) = ®(m1(F,x)) is called the holonomy group of F at x. Holonomies F' and F’ are said
to be conjugate if there exist secants ¥ and ¥’ transversal to F' and F’ at points z € F and
x’ € I’ together with a homeomorphism h: F'UY — F/ U Y’ such that i) = hapeh~1 for any
[c] € 71 (F, z) near the point z’.
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Leaves of F} Leaves of F?, Leaves of F} Leaves of F?,
/

N(L%)

Figure 8. Construction of a conjugating homeomorphism.

$t(T2 x {0}) = T? x {0} for ¢ € [0,1]. To this end we define the maps hy ;: T? x
[t,1] — T? x [0,1] and h_¢: T? x [-1,—t] — T? x [-1,0], t € [0,1), as follows:

s—t s+t
h = —_— h, == rE———
+7t(x»s) <.’E, 1_ t), _’t(.’E,S) <£L’, -1 +t>

Further, we set
h:’lt(;ASh,,t(x,s), s €[-1,-t],
at(x»s) =9 (z,3), |s| < t,
h;}tdA)th,t(x,s), s € [t, 1],

and continuously extend the family ggt, t € [0,1), by the map g/b\l(x,s) = (z,s).
Then there exists a homeomorphism ®: U (Ls) — U(L$%) which is the identity map
on the boundary 8U(L“’) and agrees with ¢ in some neighbourhood of L‘S (see,

for example, Corollary 3.14 in [10]). It follows that the homeomorphism gaq) is the
required modification of the homeomorphism .

2.1.2. Realization. To describe the idea behind the realization of Pixton diffeomor-
phisms, we represent the manifold S* x S' as the orbit space (R®\ O)/a} ,, for
the action of the canonical expansion on R\ O. By Statement 1.6, the natural
projection psz2 g1 : R3\ O — S? x S! of this action is a covering that induces an epi-
morphism 7gz g1 : 71 (S? xS!) — Z. From Statements 1.2 and 1.7 it follows that the
scheme of any diffeomorphism f € &2 is equivalent (in the sense of Definition 2.2)
to the tuple S = (S2 x S!, ms2xs1, L¥), where L* C S? x S! is a two-dimensional
torus such that n(iis*(m(fs))) = Z. Such a tuple S is called an abstract scheme.
The following realization theorem holds.

Theorem 2.2. For any abstract scheme S = (S? x St, ng2 w51, Es) there exists a dif-
feomorphism fs € & whose scheme is equivalent to S.

The possibility of realizing an abstract scheme S = (S? x S, ng2 g1, E) by
a Pixton diffeomorphism is based on the following observation. We take a tubular
neighbourhood N(L®) C S? x S! of the torus L*, and define L® = = poha (L*)



Morse—Smale cascades on 3-manifolds 135

St x §?
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Figure 9. Realization of an abstract scheme.

and N(L®) = ps_2lxsl (N(L*)). Since the neighbourhood N(L*) is homeomorphic
to the orbit space (A1 \ W§)/a1, 41, it follows by Statement 1.7 that there exists
a diffeomorphism vy: N(L®) — A1 \ W4 which conjugates the diffeomorphisms
a§’+1‘N(LS) and al’“’ﬂl\wg' This fact enables one to ‘glue the neighbourhood

of the linear saddle’ in the manifold R? \ O (see Fig. 9). The latter means that on
the manifold M, = (R?\ O) U,_ .4 there exists a diffeomorphism fys : My — M,
whose non-wandering set consists of a single hyperbolic saddle point o with Morse
index 1, and its restriction to the manifold R, = M\ W is topologically conjugate
to the canonical expansion aj ;.

The manifold Ry, = M\ W¢ is obtained from the manifold R? \ O by remov-
ing the set N(L®) and attaching the set .47 \ W§. Then the orbit space Rs/fs
is obtained from the original manifold S? x S' by a so-called surgery along the
torus L°. This surgery consists in removing the tubular neighbourhood N(L?)
(homeomorphic to the orbit space Jf/l\s 1= (M \WE)/a1,+1) and gluing two solid

tori (homeomorphic to the orbit space /l\fﬁrl = (M \WE)/a1,41) onto the bound-
ary of the resulting manifold in such a way that the meridian of a solid torus (the
boundary of a two-dimensional disk in the solid torus that is not contractible on
the boundary torus) is identified with a homotopically trivial curve in S? x S! (see
Fig. 10). Since the torus L® is homotopically non-trivial in S? x S', it bounds
a solid torus in §? x S! (see, for example, Theorem 4 in [9]). Further, the manifold
obtained from the two solid tori (glued along the boundaries by a diffeomorphism
taking a meridian into a meridian) is diffeomorphic to S? x S! (see, for example,
Proposition 7.1 in [23]), and hence the manifold (S* xS');, obtained by the surgery
on S? x S' along L* consists of two copies of S x S'. Then Statement 1.7 implies
that the manifold Ry = M, \ W£ consists of two connected components, and the
restriction of the diffeomorphism fjs, to each of them is topologically conjugate to
the canonical contraction aj 4.

We compactify the manifold M, by adding three points, and we extend the dif-
feomorphism fys, by continuity by adding three hyperbolic nodes as fixed points:
one source and two sinks. The resulting diffeomorphism fg is therefore in the
Pixton class, and its scheme is equivalent to S.
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Figure 10. Surgery along a torus.

2.1.3. Topology of the ambient manifold.

Theorem 2.3. For any diffeomorphism f € &, the ambient manifold is diffeo-
morphic to the 3-sphere S3.

The proof of Theorem 2.3 is based on the following remarkable result describing
the topological structure of a neighbourhood of a sphere with one wild point.

Lemma 2.1. Let n: S — M3 be a topological embedding of the 2-sphere. Assume
that n is smooth everywhere except at one point, and let ¥ = n(S?). Then any
neighbourhood V of the sphere ¥ contains a neighbourhood K diffeomorphic to
S? x [0,1].

The proof of Lemma 2.1 amounts to constructing a smooth 3-ball B C M3 con-
taining a wild point z in its interior and such that 9B N ¥ consists of a single
circle. Then the required neighbourhood K is obtained from B by adding a tubu-
lar neighbourhood of the two-dimensional disk D = ¥\ int B. Figure 11 shows
how to construct such a ball B for the Artin—Fox wild sphere. We note that the
construction depends essentially on the fact that the sphere ¥ has at most one wild
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Figure 11. Construction of the ball B for the Artin—Fox sphere.

point. This is not accidental, because Lemma 2.1 fails in case there are two or more
wild points. An example of a two-dimensional sphere in R? with two wild points is
depicted in Fig. 12.

Figure 12. Two-dimensional sphere in R® with two wild points.

The scheme of the proof of Theorem 2.3 is now easily seen. According to State-
ments 1.1 and 1.4, the set ¥ = W7 U « is a topologically embedded sphere which
is smooth everywhere except at «. Since by assertion 1) in Statement 1.1 the
ambient manifold M? can be represented as M? = X U WS U WY , it follows that
the neighbourhood K, as required in Lemma 2.1, has boundary spheres S; and S,
in the basins W5 and W , respectively. Since each basin is homeomorphic to R3,
the set M3 \ int K consists of smooth 3-balls By C W, and Bs C W such that
0B, = S; and OBy = Sy. Thus, M?3 is the result of gluing together two smooth
3-balls By and By U K along the boundary, and hence is diffeomorphic to S (see,
for example, [23]).

2.2. Bifurcations that change the embedding type of separatrices. We let
J(S?) denote the set of orientation-preserving ‘North Pole-South Pole’ diffeomor-
phisms, that is, the diffeomorphisms whose non-wandering sets consist of exactly
two hyperbolic points: a source and a sink). The main result of the present sub-
section is as follows.
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Theorem 2.4. For any diffeomorphisms f, ' € 22 there exists a smooth arc
{f: € Diff(S®)} such that:

D fo=f. =1,

2) fr € P forallte0,1/3)U(2/3,1];

3) fi € J(S?) for allt € (1/3,2/3);

4) the non-wandering set of the diffeomorphism f;/3, i = 1,2, consists of two
hyperbolic fixed points — a source and a sink — and one non-hyperbolic saddle—node
fixed point.

The proof of Theorem 2.4 is divided into two parts:

(I) construction of a smooth arc with one saddle-node bifurcation point between
an arbitrary Pixton diffeomorphism and some North Pole-South Pole diffeomor-
phism;

(IT) comnstruction of a smooth isotopy between any North Pole-South Pole dif-
feomorphisms which consists of diffeomorphisms of the same type.

(I) The key to the first part of the proof is provided by a basic property of Pixton
diffeomorphisms, which we now give in the following proposition.

Proposition 2.1. For any diffeomorphism f € &2, at least one of the one-dimen-
sional separatrices is tame.

This result enables us to put the tame separatrix on a coordinate axis in the
local coordinates of the corresponding sink, and then to realize on it the standard
confluence of the saddle with the sink, thereby solving problem (I).

Passage to the orbit space will also be useful in proving Proposition 2.1.

Given a diffeomorphism f € &, we let 71 and 5 denote the unstable separatrices
of a point oy. By Statement 1.4, the closure cl(y;) (¢ = 1,2) of a one-dimen-
sional unstable separatrix of the point ¢ is homeomorphic to a simple compact
arc and consists of this separatrix and two points: ¢ and the sink. Assume for
definiteness that the point w; lies on the arc cl(v;). Fori = 1,2 we set V; = W, \wL
and V = V;/f. According to results in § 1.2, the natural projection p;: V; — V
is a covering that induces an epimorphism 7;: 771(‘/;) — Z. Here the manifold
V; is homeomorphic to the manifold S? x S!, and the set 3; = pi(v;) is a knot
(a homeomorphic image of a circle) in V; such that i (15, (m1(7:))) = Z.

The following criterion for tameness of the one-dimensional separatrix v;, ¢ = 1, 2,
is the key to the proof of Proposition 2.1.

Lemma 2.2. The separatriz v;, i = 1,2, is tame if and only if there exists a tubu-
lar neighbourhood N(7;) of the knot ; in V; such that the manifold V; \ N(7;) is
homeomorphic to a solid torus.

The sufficiency of the condition in Lemma 2.2 depends on the fact that the
existence of the neighbourhood N(7;) implies the existence of a homeomorphism
D 17; — S§? x S! such that $;(3;) = {x;} x S! for some z; € S?. In view of
Statement 1.7 this implies the existence of a homeomorphism ¢;: W3 — R3 for
which ¢;(7;) = R,

The scheme for proving necessity of the condition in Lemma 2.2 is as follows. If
the separatrix ; is tame, then by the definition of tameness there exists a smooth
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Figure 13. Duality of quotient spaces.

3-ball B; C W containing w; such that v; intersects dB; in a single point. By stan-
dard topological methods it can be deformed into a smooth 3-ball (again denoted
by B;) with the additional property that f(B;) C int B;.

We set K; = B;\int f(B;). By construction, the three-dimensional annulus K; is
a fundamental domain for the action of f on V;, and hence K,/ f is homeomorphic to
‘71» according to Statement 1.6. We choose a tubular neighbourhood N; C K; of the
arc l; = v; N K; so that the image f(d;) of the two-dimensional disk d; = N; N 9B;
coincides with the intersection N;NOf(B;). By construction, the set G; = K;\ N; is
bounded by a two-dimensional sphere composed of the disks §; = 0B;\ d;, f(4;) and
the two-dimensional annulus O0N; Nint G;. It follows that G; is a three-dimensional
ball. Furthermore, the tubular neighbourhood N (%;) is obtained from N; by identi-
fying the disks d; and f(d;), and its complement is obtained from G; by identifying
the disks 0; and f(d;) by means of the diffeomorphism f, and hence is a solid torus.

Thus, the proof of Proposition 2.1 amounts to checking that the complement of
at least one of the tubular neighbourhoods N (71 ), N (52) is a solid torus. The latter
fact follows from the duality of the quotient spaces (Vi \ N(31)) U (Va \ N(32)) =
XA/f \N (fj}) (see Fig. 13) and the fact that a homotopically non-trivial torus bounds
a solid torus in S§? x S!.

(IT) That there is a smooth arc connecting any two orientation-preserving dif-
feomorphisms, and hence any two North Pole-South Pole diffeomorphisms, on S?)
is a classical result due to Cerf [18]. We assert that this arc can be chosen to be
composed solely of North Pole-South Pole diffeomorphisms. The analogous result
fails to hold in dimension six (see Theorem 4.3.5 in [34]), because of the existence of
distinct smooth structures on a seven-dimensional sphere (as proved by Milnor [45]).

This problem reduces to the construction of a smooth arc {I; € J(S%), t € [0,1]},
connecting any diffeomorphism f € J(S3) with the canonical North Pole-South
Pole diffeomorphism g: S® — S? given by

43?1 41‘1 4.’11‘3 53?4 — 3>

g($1,$27$3,$4) = (53$4753$4753§C47531‘4
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It is readily verified that a3 ., = 9g9~ ", where ¥: S® — R3 is the stereographic
X1 To I3

projection 9(x1, xa, T3, Tq) = ( ) By construction, the arc

1—%471—LE471—$4
{l; € J(S?)} consists of the following parts:

1. a diffeomorphism I, € J(S?) for t € [0,1/4], where [y = f and [, /4 is a C*-dif-
feomorphism in J(S%);

2. a C2-diffeomorphism [, € J(S?) for t € [1/4,1/2], where 1, 5 is a C?-diffeo-
morphism in the class NS(S?) C J(S?) of diffeomorphisms with source at
N(0,0,0,1) and sink at S(0,0,0,—1);

3. a diffeomorphism I, € NS(S?) for ¢ € [1/2,3/4], where I3/4 is a diffeomor-
phism in the class E,(S*) ¢ NS(S?) of diffeomorphisms h such that there
exist neighbourhoods Vi, (N), V4(S) of the points N, S with h‘v,,(N)th =

(%)
Ivi(nuvi(s)’
4. a diffeomorphism I; € E,(S?) for t € [3/4,1] such that l; = g.
The construction of the first part of the arc {l;} is based on the structural
stability of f and on the density of C?-diffeomorphisms in the space of all diffeo-
morphisms.

To construct the second part of {l;}, we denote by « and w the source and sink
for the diffeomorphism /;,4. Let D, and D, (Ds and Dy) be disjoint 3-disks
containing o and w (S and N). Then there exists a C?-smooth arc { H; € Diff(S?)}
with the following properties: Hy = id, Hi(Dy) = Dy, H1(Dg) = D, H1(N) = «,
and H1(S) = w (see, for example, Theorem 3.2 in [35]). It follows that Ht_lll/4Ht
is an isotopy connecting Iy /4 with ly,9 = Hflll/4H1, and after reparametrization
this produces the required arc.

The construction of the third part is based on Belitskii’s theorem (see, for exam-
ple, [66]) on the smooth conjugacy of a C?-diffeomorphism to its linear part in
a neighbourhood of a hyperbolic node fixed point, and on the fact that there exists
a smooth arc connecting two linear contractions (expansions) on R? (see, for exam-
ple, Proposition 5.4 in [53]).

In the construction of the last part of the arc, we again pass to the space of wan-
dering orbits. To do this we note that for any diffeomorphism h € E4(S?) its
wandering set is diffeomorphic to S* x R, and there exists an r; € R (r;, € R)
such that h agrees with g on S? x [r}, +00) (S? x (—oo, 7}, ]). Further, there exists
a diffeomorphism v, : S* — S3 which conjugates the diffeomorphisms A and ¢ and
agrees with the identity map on D;{ U D, , where D;{ =$? x [r,f, +o0) U S and
D; =S§%x (—o0,r; JUN. In view of Statement 1.7 the diffeomorphism v, induces,
via the covering pszxgi: S2 x R — S2 x S!, a diffeomorphism 9, : S2 x St — §2 x St
which acts as the identity on the fundamental group. In view of Proposition 0.4
in [9], one of the diffeomorphisms ¢, and 01}y, is isotopic to the identity map, where
the diffeomorphism o is defined as follows. For any © € R we let Rg: S — S?
denote the map of rotation through the angle ® about the axis passing through the
points (0,0,1) and (0,0, —1). For A € R let 7y: S? x R — §2 x R be the diffeomor-
phism such that ox(s,7) = (Rar(r—x),7) on K\ = S? x [\, A+ 1) and it agrees with
the identity map outside K. Then ¥ = ps2 51 0x (Ps2 xs1 IKA)‘lz S? xSt — §2 xSt
is the required diffeomorphism.
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0 S xR

Pszxst Ei //// w
2 x st

Figure 14. Illustration for part (I).

Thus, the diffeomorphism 121\13 ,, may be regarded as isotopic to the identity map
(otherwise, I3/4 can be connected with the diffeomorphism /3,4 by the smooth
arc {vlss} C Eg(S?), where 14(S) = S, v (N) = N, and 4 is defined on S* x R by

(s,7), (s,7) € S? x (=00, N,
Vt(svr) = (RQW('rf/\)ty’r% (8,7") € Ky,
(Rart,T), (s,7) €S? x [\ +1,+00),

for ¢ € [0,1] and A > 7"?;/4). By the fragmentation lemma (see [5]), there are
diffeomorphisms @y, ..., w,: S* x S — §? x S! that are smoothly isotopic to the
identity, satisfy v,,, = @@y, and are such that for any i = 1,...,q there

exists a support U; of the isotopy {@w; :} between the identity and @; which has the
following properties: there exists a A; € [r;r/ +206—1),r +/ + 2i) such that some

connected component of the set pg}lxsl(Ui) is a subset of K,. Let w;;: S? — §3
be the diffeomorphism which agrees with (p§2><§1|K )71 A»_tlpSZXSI on K, and

with the identity map outside Ky,. Let py = w, ;- wy t¢13/4 — S3. Then
after a reparametrization {p,gp; '} is the required arc.

Exactly the same idea of passing to the quotient space is used in part (I) of
the proof when putting tame separatrices on coordinate axis. Figure 14 depicts an
h-invariant arc ¢ for some diffeomorphism h € E,4(S?) and shows its projection £ to
the manifold S2 x S!. Then we apply to the knot ¢ a diffeomorphism @: S2 x St —
S? x S' that is smoothly isotopic to the identity and such that the support U of
the isotopy {w;} between the identity map and @ has the following property there
exists a A € [r}, 7} 4+2) such that some connected component of the set pg' o, (U)
is a subset of K. Further, the figure shows an arc ¢,, that coincides with ¢ on
the set D; and is invariant under the diffeomorphism wh, where w: S* — S* is the
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(a) (b)

Figure 15. A ‘source-sink’ diffeomorphism (a) and its generalization (b).

diffeomorphism that coincides with (pgzxgl ’ K)\)_l’&)\_lpgzxgl on K and with the
identity map outside K.

3. Topological classification

In this section we give a complete topological classification of diffeomorphisms
in the class MS(M?3). Our classification is conceptually a development of methods
presented in § 2.1. The basic idea is to represent the dynamics of a diffeomorphism
f € MS(M?3) in a ‘source-sink’ form, where by ‘source’ and ‘sink’ we understand
invariant closed sets, one of which, say A, is an attractor, and the other, say R, is
a repeller.® The set V = M™\ (AU R) consists of wandering points that move
under the action of the diffeomorphism from the source to the sink (see Fig. 15). In
choosing a pair A, R that is suitable for a topological invariant, particular emphasis
will be placed on two things: first, the space V' = V/f of wandering orbits, together
with the projections of separatrices of saddle points embedded in it, should be
canonically describable, and second, the conjugating homeomorphism on V' should
be extendable to a homeomorphism to the attractor and the repeller. For Pixton
diffeomorphisms the set cl WY is such an attractor, the source « is a repeller, and
the set V coincides with WY\ . In the general situation such a choice is described
in the next subsection.

3.1. Necessary and sufficient conditions for topological conjugacy. Ass-
ume that f € MS(M?3). We represent the dynamics of f in a ‘source-sink’ form as
follows. Let Ay = W§ L, Ry = W§,uq,, and Vi = M3\ (A;URy). In this case the
set Ay (respectively, Ry) is a connected attractor (repeller) of the diffeomorphism f
with topological dimension not exceeding 1, and the set V; is a connected 3-mani-
fold. Furthermore, the quotient space IA/f = Vy/f is a closed connected orientable
3-manifold on which the natural projection py: Vy — ‘A/f induces an epimorphism
np: m(Vy) — Z. We also set L% = pp (W, \ Ay) and LY = py(Wg \ Ry).

8Recall that a compact subset A of M™ is an attractor for a diffeomorphism f: M™ — M™
if there exists a neighbourhood U of A such that f(U) C intU and A = [, oy f™"(U). This
neighbourhood U is said to be trapping. A set R C M™ is a repeller for f if R is an attractor
for f—1.
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Figure 17. Union of projections to ‘7f of two-dimensional separatrices.

Definition 3.1. The tuple Sy = (vf,nf, E}, E;ﬁ) is called the scheme of a diffeo-
morphism f € MS(M?3).

Each arcwise connected component of the set E; (ZT;) is the projection under
py of the stable (unstable) two-dimensional manifold of a saddle orbit and is home-
omorphic to a two-dimensional torus or a Klein bottle with an empty, finite, or
countable set of punctured points, the number of which equals the cardinality of
the set of heteroclinic orbits on this manifold. Figure 16 depicts the phase portrait
and the scheme of a diffeomorphism f € MS(S?) (in the form of a fundamental
domain whose boundaries are not identified). It is also assumed that the non-
wandering set of f is fixed, the periodic orbits are numbered as in the figure, and

st =ps(Wg,), j =5,6,7. The union Ls = /Wg U WGS u Wf" is shown separately
in Fig. 17, where /W; is a non-punctured torus, /V[763 is a torus with finitely many
punctured points, and W; is a torus with a countable number of punctured points.

Note that in the example in Fig. 16 the set fj; is empty, and the set ch consists
of one connected component. In the general situation each of the sets E} and E}
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C

Figure 18. The scheme of a diffeomorphism f € MS(S®).

has finitely many connected components, like those shown in Fig. 17. Moreover, the
sets L} and L} intersect transversally (the intersection is non-empty in general).
The simplest case of such an intersection is depicted in Fig. 18 with the exam-
ple of the scheme of a diffeomorphism f € MS(S®) whose wandering set contains
a non-compact heteroclinic curve. For this diffeomorphism the trapping neighbour-
hood My of the attractor Ay = clW2 is a solid torus, the fundamental domain
My \ int My for the action of f on V¢ is homeomorphic to T? x [—1, 1], and ‘A/f is
a three-dimensional torus obtained from the manifold C in Fig. 18 by identifying
the upper and lower annuli, as well as the outer and inner annuli. As a result of
this identification, the annulus K*° goes over into the torus L%, and the rectangle

K* into the torus 21;

In view of Statement 1.7 a necessary condition for topological conjugacy of dif-
feomorphisms f, f/ € MS(M?3) is that their schemes be equivalent in the sense of
the following definition.

Definition 3.2. The schemes Sy and Sy of dlffeomorphlsms 7 f’ € MS(M?3) are
said to be equivalent if there exists a homeomorphism @: Vf — Vf/ with the fol-
lowing properties:

1) g =ngp @ L

2) p(L}) = L} and p(L}) = L},

Theorem 3.1. Morse-Smale diffeomorphisms f, f' € MS(M?) are topologically
conjugate if and only if that their schemes are equivalent.

The underlying idea of the proof of sufficiency in Theorem 3.1 is similar to that
used for the Pixton class and depends on the fact that the homeomorphism ¢: Vy —
V¢ which is the lift of the homeomorphism ¢ and is not in general extendable to
the set Af U Ry, can be modified on the union of the linearizing neighbourhoods
N, in such a way that it takes two-dimensional linearizing foliations of f into
analogous foliations of f’. The difference is that for a diffeomorphism f € MS(M?),
in contrast to Pixton diffeomorphisms, the linearizing neighbourhoods of different
saddle points may intersect, and this necessitates matching the linearizing foliations
on such intersections. Thus, the fundamental technique here involves constructing
a compatible system of neighbourhoods, which is the topic of the next subsection.
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Figure 19. The phase portrait of a Morse-Smale diffeomorphism f: §* — S*

with dynamically ordered periodic orbits.

3.2. Dynamical order. Characteristic manifolds and spaces. Compatible
family of neighbourhoods. Following Smale [71], we consider the relation < on
the set of periodic orbits:

Op =0, < Wg NWg #0.

The relation < is a partial order, because the number of periodic orbits is finite,
and their invariant manifolds intersect transversally. Moreover, this relation can be
completed to form an order relation, for example, as follows.

Definition 3.3. An ordering 01, ..., Oy, of the periodic orbits of a diffeomorphism
f € MS(M™) is said to be dynamical if it satisfies the following conditions:

].) if 0; < ﬁj7 then 7 < j;

2) if go, < qo,, then i < j.

Figure 19 shows the phase portrait of a Morse-Smale diffeomorphism f: S? — S3
with dynamically ordered periodic orbits in the case when the non-wandering set
2y consists of fixed points. It is readily verified that a dynamical ordering of the
periodic orbits exists for any diffeomorphism f € MS(M ”) To check this it suffices
to observe that the condition &; < € implies that o, < gg,. Indeed, since the
intersection W5, NWg  is transversal, the condition Wg N W # @ implies that
dim Wg. +dim Wﬁ —n 2> 0. Hence, n—qg, + 9o, —n 2 0, and therefore g0, < qo,-

If the orbits of a diffcomorphism f € MS(M™) are dynamically ordered, then
for any periodic orbit 0; we set m; = me,, ¢; = qo,, Vi = ve,, W = Wg,
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and W} = Wg . To construct a compatible family of neighbourhoods, we employ
a sequence of representations of the dynamics of f in a ‘source—sink’ form; this
sequence is connected with a dynamical ordering of the orbits. Namely, for ¢ =
...,k — 1 we let

i kg
Ai=Jwy, Ri=|J W, Vi=M"\(AiUR).
j=1

j=i+1

Then the set A; (respectively, R;) is an attractor (repeller) of the diffeomorphism f,
and V; = foimﬂf \ 4; = Wl%me \ R;. Let V; = V;/f and denote by p;: V; —

171- the natural projection. We call V; the characteristic manifold and its orbit
space V; the characteristic space. These concepts will be used below in an essential
way in solving the realization problem for MS(M?)-diffeomorphisms, and also in
constructing global Lyapunov functions for them.

By virtue of Statement 1.3, for any saddle orbit &;, i = kg + 1,..., ko, there
exists a linearizing neighbourhood Ng, with a pair of linearizing foliations Fy, , F .
Given any saddle orbit 0;, we set N; = Ng,, F}* = Iy, and I} = Fg, . Also, for
any point z € N; we let F}*, (F7,) denote the unique leaf of F{* (F}’) passing
through x.

Definition 3.4. Let f € MS(M?3). A family Ny of linearizing neighbourhoods
Nio+1, - - - N, of all orbits of f is said to be compatible and the linearizing foliations
in these neighbourhoods are said to be compatible if the following conditions are
satisfied:

1) if W N W = & for iy <ia, then N;, NNy, = @;

2) if VVZS1 Nnwe # & and ¢;, = qi,, then (FZ;I ﬂNfL'l) C F? _ and (lei,z ﬁN,'Q) C

i1,T
FY  forz e (N: NN.,); 1

3) if the set H = W5 N WS, is non-empty, then there exists an f-invariant
neighbourhood N(H) C M? of H equipped with an f-invariant foliation G consis-
ting of two-dimensional disks that are transversal to / and such that (F5 , NGy N
Ni,) C F}, . and (Fj . NG, NN;,) C FY , for any point x € (N;; N Ny, NN (H))
with ¢;, < q;,, where G is the leaf of G passing through z.

A compatible system of neighbourhoods is a modification of an admissible system
of tubular families, as constructed in [52], [55] and having the properties 1) and 2).
The condition 3) is a technical supplement to the definition given by Palis and Smale
and is used in a very essential way in constructing a conjugating homeomorphism
in the proof of Theorem 3.1 and in singling out the set of abstract schemes in § 3.3.
Figure 20 depicts a foliated neighbourhood of a point A lying on a heteroclinic
curve in W3 N W for Morse-Smale diffeomorphisms on 3-manifolds. The lower
part of the figure shows the phase portraits of diffeomorphisms with heteroclinic
curves on S3.

Theorem 3.2. Any diffeomorphism f € MS(M?) has a compatible system of neigh-
bourhoods.

The proof of this theorem amounts to the successive construction of compatible
foliations according to the following plan.
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Figure 20. Foliated neighbourhood of a point on a heteroclinic curve.

1. Using induction on ¢ = kg + 1,...,k; and passing to the orbit space ‘71-, we
construct a two-dimensional foliation F? with the property 2) in Definition 3.4. For
i = ko + 1, F is the inverse image of the foliation of the tubular neighbourhood
N of the manifold p; (W) into two-dimensional disks. For i > ko+ 1, the foliation
in the tubular neighbourhood Z\Af;‘ is modified so that any connected component of
the intersection p;(Ff) N ]VZ“, ko+1,...,i—1, lies on a disk of the foliation.

2. A similar argument involving passage to the diffeomorphism f~! produces
a two-dimensional foliation F}* with the property 2) in Definition 3.4 for i = ky +
1, ey kg.

3. In the space ‘/}f we consider the projection H of heteroclinic curves which
coincides with the intersection E} N E;ﬁ By construction, His a compact set,

and in some neighbourhood N(H) of H there exists a foliation G consisting of
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Leaves of #7 4 Leaves of 77 4

75
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Figure 21. Leaves of the foliations 35\1‘9’“, ﬁfﬂ, fé}i“.

two-dimensional disks that are transversal both to H and to the two-dimensional
foliations constructed in steps 1 and 2. The foliation G is the inverse image of the
foliation G.

4. Using induction on ¢ = k1 + 1,..., ks and passing to the orbit space ‘A/i_l, we
construct a one-dimensional foliation F; with the properties 2) and 3) in Defini-
tion 3.4. This foliation is the inverse image of the foliation of the tubular neighbour-
hood N} of the manifold p;,_1 (W}*) into one-dimensional disks, modified so that any
connected component of the intersection p;_1 (G N Fjs) N ]\A/';L forj=ko+1,...,k
and of the intersection p;—1(F}) N ﬁ;‘ for j =k;+1,...,i—1 lies on a disk of the
foliation.

5. A similar argument involving passage to the diffeomorphism f~! gives a one-
dimensional foliation F* with the properties 2), 3) in Definition 3.4 for i = ky +
1,..., ks

3.3. Realization using the abstract scheme. The solution of the realization
problem is based primarily on the possibility of a canonical description of the sets
L% and L% in the scheme Sy of a diffeomorphism f € MS(M?).

Recall that a; ,: R3 — R? is the canonical diffeomorphism a1, (21, %2, 23) =
(v-2x1,v-22/2,23/2), and af , = al,l,|W5 is the canonical contraction. The orbit
space #°, = (W5\O)/aj , of the canonical contraction is a two-dimensional torus
for v = +1 or a Klein bottle for v = —1. Further, the set A4 = {(x1,z2,23) €
R3: 27 (23 + x3) < 1} is ay,,-invariant, and A%, = (A;%)/ay1,, is a tubular neigh-
bourhood of the surface #;°,, where .47* = .41\ W{. The natural projection p = :

) “T1,v

M — A%, is a covering and it induces an epimorphism U m1(A5,) — L.
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We let ,ff’y and j\luy denote the pair of transversal foliations on Ji//l\fy whose
leaves are the projections under p = of the leaves of the foliations 77 and Z
1,v

(see the left-hand part of Fig. 21). Considering an at most countable set X C ”///E,/,
we denote by Z the union of all leaves of .#', that pass through points of X. Let

Wlsl/X: 1S,U\X7 ‘/Vlst:‘/Vl?u\Za
‘jle_ 18,1/\27 ‘jluX_ ﬁV\Z
Definition 3.5. Let V be a closed 3-manifold equipped with a map 7 consisting of

epimorphisms to Z from the fundamental groups of all the connected components
of V. A compact set L* ¢ V will be said to be an s-lamination if it consists of a finite

number n, of arcwise connected components VV1 . Wss such that any component
is a smooth submanifold, the component /Wls is a closed surface, (cl Wf \ /V[7f) C
UZ Ly W7 for ¢ > 1, and moreover, for any ¢ = 1,...,n, there exist a tubular
neighbourhood N(Wis) of the surface Wf, numbers mj € N and v} € {-1,+1},
aset X; C 7//}7,/5, and a homeomorphism i : (WS) 1vs,xs with the following
properties:

1) (W) = yﬂls,yf,xis%
2) n([c]) =m; -n = (15([c])) for any closed curve ¢ C N(W?);

3) for any j < ¢ and any leaf & of the foliation é‘\f,w’X‘s, the set ﬁj(N(/V[?j) N

(113)71(2)) is either empty or is a subset of a leaf of the foliation j\\f,y;) xs-

We note that an s-lamination is a lamination in the sense of the classical defi-
nition.? The following proposition is a direct corollary of Statement 1.1 and Theo-
rem 3.2.

Proposition 3.1. The set JAL; in the scheme Sy of any diffeomorphism f € MS(M?3)
is an s-lamination.

Using the canonical description of an s-lamination, we can introduce a surgery
operation on the manifold 1% along an s-lamination L*. This operation generalizes
the surgery along a torus and exhibits a subtle property of the embedding of the
lamination L in the manifold Vf To this end, we consider the canonical expansion
at, =a1 V|W“ Its orbit space = (W5\ 0)/at, is a pair of knots for v = +1

N7

or a single knot for v = —1. The set JVLU = (™) /a1, is a tubular neighbourhood

of the manifold 7//;“1,, where 41" = A1\ W§. The natural projection p =, : " —
, 1,0

MY, is a covering that induces a map 7 ;= made up of non-trivial homomorphisms
5 1,v

9Given an n-dimensional manifold X (n > 2) and a subset Y C X, assume that Y is a union
U, Lj of disjoint m-dimensional (1 <m < n — 1) connected manifolds L; (leaves). The family
2 = {Lj;,j € J} is called an m-dimensional lamination with support Y = supp.Z if, for any
point € Y, there exist a neighbourhood U, C X and a homeomorphism v : U, — R™ such that
any connected component of the intersection Uz N L; (provided it is non-empty) is mapped by 1
into an m-dimensional hyperplane {(z1,...,2n) € R": Zpm41 = Cmt1,--.,&Tn = Cn }-
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into Z on the fundamental group of each connected component of the manifold @V.
Let %Afl, denote the foliation of JT/;SV whose leaves are the projections by p 7,

’ ’ “"1,v
of the leaves of the foliation /s (see Fig. 21). We consider the diffeomorphism
Gt A\, — M8\ W7, defined by G, = P 0z |z, )

Let L® = Uiz, Wf be an s-lamination on the manifold V. Since Wf is a closed
surface, the homeomorphism pf can be assumed to be a diffeomorphism. The

surgery of v along Wf by means of the diffeomorphism Cﬁ/\s = (10 |N(W S\ will
1
be called surgery along the ﬁrst surface of the s- lammatzon Fori=1,...,ns—1

we set W7 = pWS(W ' U (77, N GY)), where G is the union of the leaves P of
gl’,/ such that pgp. (L* \W1 ) ﬁpr(@) +@. Let L* = Uns_1 W?. By construction,

the set L® is again an s-lamination on the manifold V., and will be called the

W
derivative of the s-lamination L*. The manifold ‘A/ES will be said to be obtained
from the manifold V/ by surgery along the s-lamination L if it is obtained from V/
by successive surgeries along the first surfaces of the derivatives of the laminations.
Arguing just as in the case of surgeries along a torus, we obtain the following result.

Proposition 3.2. For any diffeomorphism f € MS(M?3), any connected compo-
nent of the manifold V=, is diffeomorphic to S x S!.

Similarly, we define a u-lamination on the manifold V and consider the manifold
VA obtained by surgery of 1% along the u-lamination L. Moreover, the statements
analogous to Propositions 3.1 and 3.2 can be proved. It turns out that the necessary
conditions in these propositions provide a sufficient condition for singling out the
set . of abstract schemes.

Definition 3.6. A tuple S = (?,n,fs, E“) is called an abstract scheme if:

1) V is a closed 3-manifold whose fundamental group admits an epimorphism
n: 7T1(‘7) — Z

2) L* and L* are transversal s- and u-laminations on ‘7, respectively;

3) any connected component of the manifold obtained by surgery of v along the
s-lamination L* (the u-lamination f“) is diffeomorphic to S x S.

Theorem 3.3. For any abstract scheme S € . there exists a diffeomorphism
f € MS(M?3) whose scheme is equivalent to S.

The existence of an epimorphism 7 on V leads to the existence, first, of a smooth
connected non-compact 3-manifold V' without boundary that covers the space V,
and second, of a diffeomorphism fy: V' — V which is a positive generator of the
covering transformation group'® G(V, p: V. — V, V). The rest of the proof of
Theorem 3.3 proceeds as for the realization of Pixton diffeomorphisms: we suc-
cessively glue ng hyperbolic saddle orbits with Morse index 1 and n, hyperbolic
saddle orbits with Morse index 1 into the manifold V. Using property 3) of the
abstract scheme, we can compactify the resulting manifold by adding finitely many

10By definition, the covering transformation group G(X p, X) of a covering p: X — X is the
group of all homeomorphisms h: X — X for which ph =
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hyperbolic sink and source orbits, the number of which is equal to the number of

connected components of the manlfolds V- . and VLU, respectively.

4. Interrelation between dynamics
and topology of the ambient manifold

In this section we present some relationships between the topology of the ambient
manifold M3 and the number of saddle and node periodic points of a diffeomor-
phism f € MS(M?3).

4.1. Classification of the 3-manifolds admitting Morse—Smale diffeomor-
phisms without heteroclinic curves. Let MS, (M?) denote the class of Morse—
Smale diffeomorphisms without heteroclinic curves on 3-manifolds. The following
is a classification theorem for phase spaces of diffeomorphisms in this class.

Theorem 4.1. Let f € MS.(M3) be a diffeomorphism for which Qs consists of
ry saddle points and ly node points. Then gy = (ry —ly 4+ 2)/2 is a non-negative
integer, and the following assertions hold:

1) if g5 = 0, then M? is a 3-sphere;

2) if gy > 0, then M3 is a connected sum of gy copies of S* x S!.

Conversely, for any non-negative integers r, l, g such that g = (r — 1 + 2)/2
is a mon-negative integer, there evists a diffeomorphism f € MS,(M?3) with the
following properties:

a) if g =0, then M? is a 3-sphere, and if g > 0, then M? is a connected sum of
g copies of S x S';

b) the non-wandering set of a diffeomorphism f consists of r saddle points and
l node points.

Theorem 4.1 has the following immediate corollary.

Corollary 4.1. If the ambient 3-manifold of a Morse-Smale diffeomorphism f is
different from both S® and a connected sum of finitely many copies of S* x S!, then
the wandering set of f must contain heteroclinic curves.

We describe the idea of the proof of Theorem 4.1.

The direct assertion. It suffices to deal with diffeomorphisms in the subclass
MS...(M3) € MS.(M3) of diffeomorphisms f for which the non-wandering set
consists solely of fixed points such that among them there is at least one saddle
point with Morse index 2 and all the separatrices of the saddle points are invariant
under f (if 7y = 0, then f € MS,(M?) is a ‘source-sink’ diffeomorphism and M? is
homeomorphic to S? (see, for example, Theorem 2.2.1 in [34]), and hence [ = 2 and
gy = 0, so that the theorem holds; if ry # 0, then there exists a non-zero integer ¢
such that f¢ € MS,.(M?)). The proof is by induction on the number 7§ > 0 of
saddle points of f € MS,.(M?3). So we consider the case r¢ > 0 and assume that
the required assertion has been proved for 7y < ry.

Since a diffeomorphism f € MS,..(M?) has no heteroclinic curves, it follows that
separatrices of saddle points with distinct Morse indices do not intersect. Hence,
because the non-wandering set €2 is finite, there is at least one saddle point pg in
Qo # @ whose two-dimensional unstable separatrix is not involved in heteroclinic
intersections. By assertion 3) in Statement 1.1, there exists a sink w € Qy such that
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Figure 22. Illustration for the proof of the direct assertion in Theorem 4.1.

the separatrix Wy, \po is contained in W2. Let ¥ = Wy Uw. By Statement 1.4, 3 is
a sphere topologically embedded in M? and is smooth everywhere except possibly
at the single point w. By Lemma 2.1, there exists a neighbourhood K of ¥ which
is diffeomorphic to S? x [0,1] (see Fig. 22). Then ¥ is an attractor, and we can
assume without loss of generality that f(K) C int K.

Removing the domain int K from the manifold M3, we obtain a compact mani-
fold with two boundary components S and Ss. Let M; be the compact manifold
without boundary that is obtained from M?\ int K by attaching two closed 3-balls
By and Bs to its boundary. One can easily construct a Morse-Smale diffeomor-
phism fi: My — M such that f; agrees with f on M3\ f~1(K), has exactly two
attracting fixed points wy € B and we € B, and has no other periodic points in
B1UBs. Then f; has the same number of fixed points as f, the number of its saddle
fixed points is 7y, = ry — 1, and the number of sinks and sources is ly, =y + 1.
We consider two cases: a) M3\ K is disconnected, and b) M3\ K is connected.

In case a) the manifold M; is a disjoint union of two manifolds Ml and M, and

M3 is a connected sum M # Ml. Let fl and fl denote the restrictions of f; to the
respective manifolds M; and M;. We have TE <y and ry <7y, so the induction
hypothesis ensures that M; and M, are connected sums of 95, = (7“]7l — lfl +2)/2
and gj, = (rj, —lj +2)/2 copies of S* x S, respectively (by a manifold consisting
of 0 copies of S? x S! we mean S?). As a corollary, M? is a connected sum of

Tﬁ_lﬁ+2+rf1_lf1+2:Tfl_lf1+4:rf_lf+2
2 2 2 2

copies of S? x S'. This proves the theorem in case a).

In case b) the manifold M; is connected, and hence M?® = M; # M., where M,
is diffeomorphic to S? x S! (see, for example, [43]). This is illustrated in Fig. 23,
which schematically shows the manifold M? containing a sphere ¥ not separating
it, with a tubular neighbourhood K bounded by the spheres S; and S5. Then there
exists a solid cylinder H intersecting each sphere S; and Sy precisely in a single
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i

S? x St

Figure 23. Illustration for case b).

two-dimensional disk. In the manifold M; the balls By and B> are attached to the
spheres S7 and S5, and the union B; U H U Bs is a 3-ball in M7. Another 3-ball B
(shaded) is contained in S? x S!. Also, the manifold S? x S' \ B is homeomorphic
to K U H. Then the connected sum M; # (S? x S') obtained using these 3-balls is
homeomorphic to M3.

As before, we denote by 7y, the number of saddles and by l;, the number of
sinks and sources of the diffeomorphism f;. We have r¢y, = ry — 1, so by the
induction hypothesis M; is either S? if (ry, — Iy, +2)/2 = 0 or a connected sum
of (ry, — Iy, +2)/2 copies of S* x S'. Consequently, M3 is a connected sum of
(rey = lp, +2)/2+1 = (ry — Iy +2)/2 copies of S* x S!, and thus the conclusion
of the theorem also holds in this case.

The converse assertion. In this part of the proof of Theorem 4.1, for any
non-negative integers r, [, g such that g = (r — l + 2)/2 is a non-negative integer,
we construct a gradient-like vector field X on M3 with the following properties:

a) if g = 0, then M? is a 3-sphere, and if g > 0, then M? is a connected sum of
g copies of S x S!;

b) the non-wandering set of the flow X consists of r saddle points and I node
equilibrium states.

In this case the required diffeomorphism will be the time-one map of the flow
generated by the resulting vector field.

a) In case M3 is a sphere, we have [ = 7 + 2. On the 3-ball B let X, denote
a vector field that is transversal to S, directed outwards, has a unique source in the
interior, and does not have closed trajectories. Also, on the compact 3-ball B let X3
be a Morse—-Smale vector field that is transversal to the boundary S = 0B and has
precisely one sink, r sources, r saddles with two-dimensional unstable manifolds,
and no closed trajectories. Gluing together two copies of B along the boundaries,
one copy with the field X and the other with the field X7, we obtain the 3-sphere
S? equipped with a Morse-Smale vector field without heteroclinic intersections and
closed trajectories and having precisely [ sources and sinks and r saddles (see Fig. 24,
where the flow X is constructed for r = 4).

b) In the case when M? is a connected sum of g > 0 copies of S? x S!, M3 is
obtained by gluing together two copies of handlebodies B, of genus g by means of
a diffeomorphism of its boundary S, = 0B, that is isotopic to the identity map
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Figure 25. Construction of the vector field X on a connected sum of g > 0
copies of S% x S'.

(see, for example, [23]). Let r be written as the sum r = ry + o, where r; > g,
j =1,2. For j = 1,2 we construct the vector fields X,, and X,, on B, as in Fig. 25
(in which X,, and X,, are shown for g =3, 71 =5, 12 = 4).

Gluing together two copies of the handlebody B, along the boundaries, one copy
with the field X, and the other with the field X,,, we obtain a connected sum of
g copies of S? x S! equipped with a Morse-Smale vector field without heteroclinic
intersections and closed trajectories and having precisely [ sources and sinks and
r saddles.

4.2. Heegaard splitting of the ambient 3-manifold of a gradient-like dif-
feomorphism. Let MSy(M"™) denote the subclass of gradient-like diffeomorphisms
in MS(M™). By Statement 1.4, the closure cl¢ of any one-dimensional unstable
separatrix £ of a saddle point o of a diffeomorphism f € MSo(M™) is homeomorphic
to the closed interval consisting of this separatrix and two points: ¢ and some sink w.
Let L., be the union of the unstable one-dimensional separatrices of saddle points
that contain w in their closures. Since W is homeomorphic to R™ (see assertion 2)
in Statement 1.1) and the set F,, = L, Uw is a union of simple arcs with a unique
common point w, we call F,, a frame of one-dimensional unstable separatrices, in
analogy with a frame of arcs in R", and we make the following definition.



Morse—Smale cascades on 3-manifolds 155

«
@

/&

A

o &
“ 4 \\XDQ
=
AN
N\
&

>

4,

<y

w2
® 02
w
Figure 26. Gradient-like diffeomorphism on S* with mildly wild frame of
separatrices.

Definition 4.1. A frame F, of separatrices is said to be tame if there exists a home-
omorphism v, : W5 — R"™ such that ¢,,(F,) is a frame of rays in R™. Otherwise,
the frame of separatrices is said to be wild.

If « is a source for a diffeomorphism f, then we define a tame (wild) frame F,, of
one-dimensional stable separatrices similarly. Figure 26 shows the phase portrait
of a diffeomorphism on S3. Debrunner and Fox proved in [20] that the frame of
separatrices F, is wild in this case, and they referred to such frames of n > 1 arcs
as mildly wild, because removing any arc from the frame makes it tame.

The main result in this subsection is the following.

Theorem 4.2. If all the frames of one-dimensional separatrices of a diffeomor-
phism f € MSo(M?3) are tame, then the ambient manifold M3 admits a Heegaard
splitting of genus gy.

The idea behind the proof is as follows. Since the one-dimensional frames of
separatrices of f are tame, for the attractor Ay = W§ o we can construct a con-
nected trapping neighbourhood M4, which is a smooth handlebody of some genus
ga, and is composed of sets B and C, where B is a union of Q| (here |X] is the
cardinality of a set X) three-dimensional balls containing sinks, and C' is a union
of |©21] three-dimensional balls containing saddles of index 1. Also, any connected
component of C intersects B in precisely two two-dimensional disks belonging to the
intersection 0B NIC, and M, \ Ay is diffeomorphic to the manifold Sga, X (0,1],
where SgAf is an orientable surface of genus ga, (see Fig. 27).

By construction, among the connected components of C' there are g, balls
whose removal from M4 ; results in a connected manifold. Further removal of the
remaining |[©2;|—g4, balls gives the manifold B. It follows that 1+[Q1|—ga, = [Q0],
and therefore g4, = 1+ Q1] — [Q].
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Figure 27. Trapping neighbourhoods of a one-dimensional attractor and

a one-dimensional repeller.

Similarly, by passing to the diffeomorphism f~!, we construct a neighbourhood
Mp, of the repeller R that is a handlebody of genus gr, = 1+ [€22] — [Q23] and
for which Mg, \ Ry is diffeomorphic to Sgr, * (0,1], where Sgr, is an orientable
surface of genus gr,. The set Ay is an attractor, and hence there is a number
no € N such that f"0(Mja,) C int Ma,. Then the space K = My, \ int f"°(Ma,)
is diffeomorphic to Sy, = x [0,1] (see Theorem 3.3 in [33]). By construction, K is
a fundamental domain for the restriction of the diffeomorphism f™° to V. Hence,
Vy is diffeomorphic to S, a; X R. A similar argument for the diffeomorphism f~!
shows that the characteristic manifold Vy is diffeomorphic to Sy, x R. Hence,

9A; = 9R;- Setting g = 9gA; = gRr,, We see that

29 =ga, +gr;, = 1+ Q] = [Qo] + 1 + [Qa] — 23]
:2+‘91+Q2|7|Qo+93|:2+T’f*lf:2gf,

and thus g = gy.

Consider a natural number n; € N such that f"*(Ma,) N Mg, = @. Then the
manifold K = M?\ (f™(My,) U Mg,) is diffcomorphic to Sy, x [0,1]. Since
the manifolds f"*(Ma,) and Mg, are handlebodies of genus gy, it follows that
M3 = [ (Ma,) U (Mg, UK) is a splitting of genus gy of the manifold M3,

5. Existence of an energy function

The non-wandering set of a diffeomorphism f € MS(M™) is finite, and it is
therefore natural to seek a Lyapunov function for it in the class of Morse functions.
This leads us to the following definition.
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Definition 5.1. A Morse function ¢: M™ — R is called a Lyapunov function for
feMS(M™) if:

1) ¢(f(x)) < ¢(x) for any z ¢ Qf;

2) Y(f(x)) = ¢(x) for any = € Q.

The following assertion ([61], Proposition) shows that the dynamics of a diffeo-
morphism f € MS(M™) is closely related to properties of the Lyapunov function.

Statement 5.1. Let p: M™ — R be a Lyapunov function for a diffeomorphism
feMS(M™). Then:
1) —% is a smooth Lyapunov function for f=';
2) if p is a periodic point of f, then (x) < (p) for any x € W' \ p and
¥(x) > Y(p) for any x € W\ p;
3) if p is a periodic point of f, then p is a critical point of 1;
4)

the index of a critical point'" p is equal to dim W'

By Statement 5.1, any periodic point p is a maximum (respectively, minimum)
of the restriction of the Lyapunov function 1 to W' (W). Also, if an extremum is
non-degenerate, then the invariant manifold is transversal to all regular level sets
of ¢ in some neighbourhood of p. This local property is useful for constructing
a (global) Lyapunov function.

Definition 5.2. A Lyapunov function ¥: M"™ — R for a diffeomorphism f €
MS(M™) is called a Morse—Lyapunov function if any periodic point p is a non-de-
generate maximum (respectively, minimum) of the restriction of ¢ to the unstable
(stable) manifold W' (W).

Definition 5.3. A Morse-Lyapunov function ¢: M"™ — R for a diffeomorphism
f € MS(M™) is called an energy function if the set of its critical points coincides
with the non-wandering set €2¢.

The hyperbolicity of any periodic orbit & of a diffeomorphism f € MS(M™)
implies the existence of a Morse-Lyapunov function in some neighbourhood of this
orbit (see, for example, Lemma 2.2.1 in [34]). A global Morse-Lyapunov func-
tion for f can be constructed using the suspension trick with subsequent use of the
results in [44] on the existence of an energy function for a Morse-Smale flow. By con-
structing ‘Pixton’s example’, Pixton [61] showed that for n = 3 the so-constructed
function is not an energy function in general, thereby disproving the conjecture of
Shub [67] and Takens [72]| that there is an energy function for any Morse-Smale
diffeomorphism.

We give an argument due to Pixton (see Fig. 28 for clarification). For this
we assume that a Pixton diffeomorphism f has an energy function . Then by
assertion 2) in Statement 5.1, max{t(w1), ¥ (w2)} < (o) <9 (a). By assertion 4)
in the same statement together with the Morse lemma, any level curve 1 ~*(c) with

1By definition, the index of a critical point p of a Morse function ©: M™ — R is defined
2

as the number of negative eigenvalues of the Hessian matrix (p). By the Morse lemma

Ox; Ox;
(see, for example, [46]), in some neighbourhood V' (p) of a non-degenerate critical point p of 1) one
can choose local coordinates x1,...,zn (zj(p) =0 for j = 1,...,n) called Morse coordinates in
which 1 has the form ¢(z) = ¢ (p) — x% — = xg + I3+1 + .-+ 22, where ¢ is the index of
at p.
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Figure 28. Pixton’s arguments.

¢ € (¥(o),1(a)) is a two-dimensional sphere. Since o is a non-degenerate minimum
of the function MWS, there exist a two-dimensional disk D, C W/ containing o

and a value ¢y € (¢(0),%(a)) such that the set d. = {z € D,: ¥(x) < ¢} is
a two-dimensional disk and 1 ~*(¢)ND, = dd.. for any c € (1)(c), cp). By property 1)
of the definition of a Lyapunov function, f(d.,) C intd.,, and hence K = d., \
int f(dc,) is a fundamental domain of the restriction of f to W2\ o. Let us choose
¢ € (Y(0),co) such that d., C int f(de,). Then ¥(z) > ¢, for any z € K, and
further, by property 1) of the definition of a Lyapunov function, 1 (x) > ¢, for any
r € f7¥(K), k € N. Hence, the sphere ¢~!(c,) intersects W? in a single circle,
contradicting Statement 1.5.

5.1. Quasi-energy function. As we have already observed above, diffeomor-
phisms of the Pixton class & fail in general to have an energy function. In this
connection, we give the following definition.

Definition 5.4. A Morse-Lyapunov function ¢: M™ — R is a quasi-energy func-
tion for a Morse-Smale diffeomorphism f: M™ — M™ if it has the least number of
critical points among all Morse—Lyapunov functions for f.

For a Pixton diffeomorphism, the reason for the absence of an energy function
is the absence of some f~!-compressible 3-ball B (f~!(B) C int B) in W whose
boundary intersects W, in a single circle. On the other hand, Pixton’s example
contains a solid torus with the above properties and whose complement is also a solid
torus (see Fig. 29). We let &2, denote the set of diffecomorphisms f € & for which
there exists an f~!-compressible solid torus @~ C W whose boundary intersects
W in a single circle and is a Heegaard surface for S3. Let QT = S? \ int Q™.

Theorem 5.1. Fach quasi-energy function for a diffeomorphism f € &1 has pre-
cisely six critical points.

We describe a scheme for constructing a quasi-energy function for a diffeomor-
phism f € 2.
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Figure 29. A diffeomorphism in the class ;.

1. We construct an energy function ¢,: U, — R in a neighbourhood of each
fixed point p of f in such a way that ¢, (p) = dim W}

2. From the definition of the class &7; it follows that the set QT is an f-com-
pressible solid torus such that the intersection W5 N Q7 is a single 2-disk D,. We
choose a neighbourhood N(D*) of D, such that Q* \ N(D,) = P,, U P,,,, where
0P,,,i= 1,2, is a handlebody of genus i —1 for which w; € f(P,,) C int P,,, C W,
and OP,, is transversal to the regular part of the critical level C' = 1 1(1) of 1,.
Consequently, there exists an ¢ € (0,1/2) such that OP,, intersects each level set
of 1, with value in the interval [1 — &,1 + ] transversally in a single circle (see
Fig. 30).

For each ¢« = 1,2, we consider a handlebody }Bwi of genus i — 1 with the following
properties:

a) f(P,,) C P, CintP,,;
b) OP,, intersects any level set of ¢, with value in the interval [1 — ¢, 1 + €]
transversally in a single circle;
¢) P, \int P, is diffeomorphic to P, x [—¢,&] (below we identify these man-
ifolds so that P, = dF,,, x {e}).
3. For t € [—¢,¢] we set (see Fig. 30)

Py =P, UOP, x[—&,1], Hy={z€U,: hy(z) <1+t}
Qi =P UPy; UH;, E.=(Q:\intQ_ )N (H: \int H_.).

There is no loss of generality in assuming that e is so small that, for any t €
[—e, €], the surface OP; 4, i = 1,2, intersects the sets 0H; transversally in a single
two-dimensional disk and that f~!(E.) N H. = @ (this is possible because if 9, is
a Lyapunov function for f|U(,’ then ¢, (f~1(1;1(1)\ o)) > 1, and hence (Hy\ o) C
int f~1(Hp \ ¢)). Then on the set K = Q. \ int Q_. the relation ¢ (z) = 1 + t,,
x € Qy,, defines an energy function for f.
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Figure 30. Construction of a quasi-energy function for a diffeomorphism f € 2.

4. Since Py _. is a 3-ball such that w, € f(Py,_.) C int P _. C W3 , there
exists an energy function ¢¥p, _: P;_. — R of f which takes the value 1 — ¢
on 0P;,_. and agrees with %/Jwi in some neighbourhood of the sink wi. That such
a function exists follows from the fact that we can replace some already constructed
level curve S of the energy function in a manifold diffeomorphic to S x R by any
incompressible surface S’. Technically this is achieved by successive modifications
of the surface S that reduce the number of connected components in the intersection
SN (Ugez f¥(S)), k € Z. The theoretical justification of this process is based on
the annulus conjecture when S is a 2-sphere, and on Waldhausen’s theorem when
S is a surface of positive genus.'?

Since P . is a solid torus and wy € f(P, ) C int P, . C W;;,, there exists
a 3-ball B, such that f(Ps _.) C By, C int P, _. Such a ball can be constructed as
follows. We choose a meridian disk D of the torus P, _. such that wy ¢ D. Without
loss of generality it can be assumed that D is transversal to G = ;5 f¥(0P2,—c)
and that the intersection D NG does not contain curves that are homotopic to zero
on the torus f¥(0P, _.). Then there exists a curve ¢ C (DN f*(OP,,_.)) bounding

12 A smooth surface F' embedded in a manifold X is said to be compressible in X if either of
the following two conditions is satisfied:

1) there exist a non-contractible simple closed curve ¢ C int F' and a smoothly embedded 2-disk
D C int X such that DN F = 9D = ¢;

2) there exists a 3-ball B C int X such that F' = 0B.

A surface F is said to be incompressible in X if it is not compressible in X.

The annulus conjecture for n = 3 (see [47]). Let S? and S3 be two disjoint 2-spheres
that are tamely embedded in S®. Then the closure of the domain in S® bounded by Sf and Sg 18
a three-dimensional annulus.

Waldhausen’s theorem (see Proposition 3.1 in [75]). Let G be an orientable surface (possibly
with non-empty boundary 0G) that is not a 2-sphere. Then for any properly embedded (0X N
F = OF) incompressible surface F in G x [0, 1] satisfying OF C G x {1} there exists a surface
F1 C Gx{1} which is homeomorphic to F and such that OF = 0F1 and FUF; bounds a domain A
in G x [0, 1] whose closure is homeomorphic to F' x [0, 1].
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a 2-disk e, in D whose interior does not contain any curve in D NG. Two cases are
possible: (a) e, C f*(P,_.) and (b) inte. N f*(Py,_.) = @.

In case (a) the disk e, is a meridian disk in f¥(P _.), and hence d = f~*(e,.)
is a meridian disk in P, _. such that f(P2_.) Nd = &. Indeed, inte. NG = & by
construction, and thus intd N G = @. Consequently, we can find a required 3-ball
B, inside the open 3-ball int P, _. \ d.

In case (b) there exists a tubular neighbourhood V(e.) C int P> _. of the disk e,
such that G NintV(e.) = @ and By = f*(P,_.) U V(e.) is a 3-ball. Hence,
f¥(P2,_c) C By Cint f*=1(Py_.). Then B,, = f'~*(By) is the required 3-ball.

As above, there exists an energy function ¢p, : By, — R for f that assumes
the value 1/2 on 0B, and agrees with 1), in some neighbourhood of the sink ws.

5. It is known that a solid torus can be obtained from a 3-ball by identifying
a pair of disjoint 2-disks on its boundary. There exists a unique (up to isotopy)
3-ball interior to a solid torus, and hence on the manifold R = P, _. \ int B,,, there
exists a Morse function ¥z having precisely one critical point of index 1 and such
that ¥g(0B.,,) =1/2 and Yp(0P,_c) =1 —¢.

6. Consider the smooth function ™ : Q. — R defined by

Vi (), r e K,
Yp, _(x), xe P _.,
VB, (T), T € By,
Yr(x), z € R.

V(@) =

Then 1t is a Morse-Lyapunov function for f | 0 with one additional critical point.

7. By construction, Q7 is a solid torus such that o € f~1(Q7) Cint Q- C WX
Since « is a sink for f~!, it can be checked that, as in the previous item, there
exists a Morse—Lyapunov function Yo- for f~1 with precisely one critical point of

index 1 and such that 1, (0Q7) =2 — € and - (o) = 3.
Consider the smooth function ¢~ : Q7 — R defined by ¢~ (2) = 3 — ¢4 (2).
Then ¢~ is a Morse-Lyapunov function for f - with one additional critical point.
Finally, the function ¢: S? — R with 1/)‘@; =T and 1/"@; =)~ is the required
quasi-energy function for the diffeomorphism f.

5.2. Self-indexing energy function.

Definition 5.5. An energy function ¢ for a diffeomorphism f € MS(M") is said
to be self-indexing if 1(p) = dim W} for any point p € Pery.'?

It is easily verified that a Morse-Smale diffeomorphism f: M3 — M3 with
a self-indexing energy function is gradient-like. Indeed, assuming that f is not
gradient-like and has a self-indexing energy function ¢: M3 — R, we can find
points z,y € Pery (x # y) such that W' "W # & and dim Wy > dim W, Let
dim W' =k, dim Wy = m, and z € W NW,. Since n —k = dim W > dim W, =
n —m, we have k < m. By Statement 5.1, p(2) < p(z) = dimW* = k and
¢(2) > ¢(y) = dim W' =m, so k > m, a contradiction.

I3A function with similar properties was constructed by Smale [69] for gradient-like vector
fields.
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The next theorem gives necessary and sufficient conditions for the existence of
a self-indexing energy function in terms of a special Heegaard splitting of M?3. We
shall also need the following definition.

Definition 5.6. Let S, be a closed orientable two-dimensional surface of genus g.
A subset D of M3 is called an (f, S,)-compressible product if there exists a diffeo-
morphism ¢: S, x [0,1] — D such that ¢7!(S, x {t}) bounds an f-compressible
handlebody for any ¢ € [0, 1].

Theorem 5.2. A gradient-like diffeomorphism f: M? — M3 has a self-indexing
energy function if and only if M?> can be represented as a union of three sets with
disjoint interiors, M® = PT U N U P, where:

1) Pt and P~ are handlebodies of genus g¢ such that Ay C f(P*) C int P
and Ry C P~ Cint f~1(P7);

2) for any saddle point o1 € Qy (respectively, oo € Qg) the intersection W5 NP+
(W4, N P~) is a single two-dimensional closed disk;

3) N is an (f, Sy, )-compressible product.

5.3. Dynamically ordered energy function. In this subsection we introduce
for diffeomorphisms in MS(M™) the concept of a dynamically ordered energy func-
tion, which is closely related to the dynamics of a diffeomorphism, and we inves-
tigate conditions for its existence. A key role here is played by the characteristic
manifolds V; introduced in §3.2.

Definition 5.7. Let 01,..., 0k, be a dynamical ordering of the orbits of a dif-
feomorphism f € MS(M™). A Morse-Lyapunov function v for f is said to be
dynamically ordered if Y(0;) =i forie {1,...,ks}.

To get a better understanding of the three-dimensional case it will be instructive
to comment on Pixton’s result [61] on the existence of an energy function for any
Morse—Smale diffeomorphism on a surface. The construction is based on the fact
that for any cascade f € MS(M?) each connected component of the characteristic
manifold V;, i = 1,..., ks —1, is homeomorphic to S' xR and, for i = ko+1,..., k1,
it contains a non-contractible circle that intersects any stable separatrix of a saddle
point of the orbit &; in at most one point. This makes it possible to reduce the
construction of a global energy function to an inductive (with respect to i) process
of confluence of local Morse-Lyapunov functions. In view of the above, we give the
following definition.

Definition 5.8. Let f € MS(M?3). A two-dimensional stable (unstable) manifold
of a saddle orbit &;, i € {ko + 1,...,k1} (i € {k1 +1,...,k2}), is said to be
simply embedded if each connected component of the manifold V; (respectively,
V;_1) contains an incompressible closed orientable surface that intersects W7 (W)
in at most one closed curve.

Using Pixton’s arguments, one can show that for the existence of a dynamically
ordered energy function v for a diffeomorphism f € MS(M?) it is necessary that
two-dimensional manifolds of saddle orbits admit a simple embedding. Indeed, in
this case there exists an € > 0 such that the connected components of the level
curve ¢~ 1(i+¢) (respectively, 1 ~1(i+ 1 —¢)) are surfaces satisfying the conditions
of Definition 5.8.
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a /

Figure 31. Improperly embedded two-dimensional manifold of a saddle point.

As an example of a non-simple embedding of a two-dimensional manifold of
a saddle point we can take Pixton’s example with 0 = wy, Oy = wy, O3 = 0, and
Oy = «a. Here the characteristic space V3 coincides with the manifold W¥ \ «, and
hence is homeomorphic to S? x R. By Waldhausen’s theorem, any incompressible
surface in S? x R is a sphere. On the other hand, any such sphere in V3 intersects
W in more than one connected component (see Fig. 31), and hence W is not
simply embedded.

Theorem 5.3. Assume that any characteristic manifold of a diffeomorphism f €
MS(M?) is homeomorphic to the direct product of a closed orientable surface and
a line, and that the two-dimensional manifold of any saddle orbit is simply embed-
ded. Then f admits a dynamically ordered energy function.

Under the conditions of Theorem 5.3 the situation is similar to the two-
dimensional case, and the construction is in essence reduced by induction on 7 to
the confluence of local energy functions, as in §5.1 (see Fig. 30).

The next result extends Theorem 4.2 to any diffeomorphism f € MS(M?3).

Proposition 5.1. If a diffeomorphism f € MS(M3) has a dynamically ordered
energy function 1, then the ambient manifold M?> admits a Heegaard splitting of
genus gy

We note that the requirement that the characteristic manifold be homeomor-
phic to a direct product is not necessary for the existence of an energy function.
Accordingly, Fig. 32 shows a handlebody P* of genus 1 consisting of a 3-ball BT
and a l-handle CT. On PT there is a diffeomorphism F'T onto its image for
which the non-wandering set consists of two hyperbolic fixed points: a sink w and
a saddle o* with local stable manifold A*. Here the ball B is mapped onto the
ball Bt, and the handle C* onto a tubular neighbourhood of the arc LT. One
can show that W* = PT \ int F*(PT) is not homeomorphic to T? x [0,1]. Con-
sidering that the knots on LT are symmetric with respect to the midsphere of the

14The level set =1 (k1 + 1/2) is a Heegaard surface of genus g;.
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Figure 32. Construction of a diffeomorphism with characteristic manifold
that is not a direct product.

annulus BT \ int B*, we can glue PT together with a copy P~ of it on which the
diffeomorphism F~ = (F*)~! is defined in such a way that the manifold S? x S*
is obtained with a gradient-like diffeomorphism f on it. In this case one of the
characteristic spaces of f is homeomorphic to the space W*/FT  and hence the
corresponding characteristic manifold is not a direct producct. We note that for
the so-constructed diffeomorphism, the two-dimensional manifolds of saddle points
are simply embedded in the corresponding characteristic manifolds. Moreover, it is
not difficult to construct an energy function for this diffeomorphism.

In the class MS,(S?) of Morse-Smale diffeomorphisms with no heteroclinic curves
on the sphere S3, it is possible to prove, using Theorem 4.1, that the condition of
simple embedding of the two-dimensional manifolds of saddle orbits for a diffeomor-
phism f € MS,(S?) implies that any connected component of any characteristic
manifold of f is homeomorphic to S? x R. We therefore arrive at the following
criterion.

Theorem 5.4. A Morse-Smale diffeomorphism f: S* — S without heteroclinic
curves has a dynamically ordered energy function if and only if, for any i € {ko +
1,...,k1} (respectively,i € {ki+1,...,ka}), each connected component of the mani-
fold V; (V;_1) contains an incompressible two-dimensional sphere that intersects W}

(W) in at most one closed curve.

In particular, it follows from this theorem that the diffeomorphism f: S? — S?
whose phase portrait is shown in Fig. 26 has a dynamically ordered energy function.
Also, the frame of one-dimensional separatrices of f that contain a sink w in their
closures is not tame, but is rather a mildly wild Debrunner—Fox frame.

6. Embedding in a topological flow

The problem of embeddability of a Morse-Smale cascade in a topological flow
goes back to Palis [52], who gave the following necessary conditions for a diffeo-
morphism f € MS(M™) to be embeddable in a flow X*:
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1) the non-wandering set Q; coincides with the set Fixy of fixed points;

2) the restriction of f to any invariant manifold of any fixed point p € Qy
preserves its orientation;

3) if the intersection W, N is non-empty for distinct saddle points p, ¢ € Qy,
then it does not contain compact connected components.

We explain an easy proof of the necessity of these conditions. For this we assume
that f is the time-one map of the flow X*. If Q contains a periodic point of period
m > 0, then this point lies in a closed orbit v of X*. Hence all the points of this
orbit are periodic points of period m for f. However, this is impossible, because
1y is finite, and thus condition 1) holds. Condition 2) follows from the equality
1y = Qx+ of the non-wandering sets and the equality of the invariant manifolds of
the fixed points for the flow and the diffeomorphism. The latter means that the
restriction of f to any invariant manifold of any fixed point p € Qy is isotopic to
the identity map, and hence preserves its orientation. Condition 3) holds because
each connected component of the intersection W N W for distinct saddle points
P, q € Qy is a union of trajectories of the flow X*. In particular, condition 3) implies
that any Morse—Smale diffeomorphism embeddable in a flow is gradient-like.

In what follows, conditions 1)-3) will be called the Palis conditions. In [52] it is
also shown that for n = 2 these conditions are sufficient. The proof is based on the
fact that the frames of separatrices of a diffeomorphism f € MSg(M?) have an even
stronger embeddability property than tameness (see Definition 4.1). We describe
this property in the next definition.

Definition 6.1. Let w be a sink fixed point for a diffeomorphism f € MSy(M™).
A frame F, of one-dimensional unstable separatrices is said to be trivially embedded
if there exists a homeomorphism ,,: W5 — R™ such that f{WS = w;1a27+1¢w |WS
and v, (F,) is a frame of rectilinear rays. ) )

In a similar fashion we define a trivially embedded frame F|, of one-dimensional

stable separatrices for a source point a.

The triviality of an embedding of any frame F,, on a surface is explained by
the fact that the orbit space (WS \ w)/f is homeomorphic to the two-dimensional
torus, and the projection of F,, to it is a union of pairwise disjoint non-contractible
circles. The topology of the torus makes it possible to carry this union into a family
of curves of the form {z} x S! (see, for example, [65]). This enables us to embed the
diffeomorphism f ’ we i alinear flow in such a way that the separatrices of the frame

F,, become trajectories of the flow. By Statement 1.1, M? = Q; U (Uwer Ws)u
(UQEQQ Fa). Consequently, the flow on basins of sinks can be modified so that it
extends to trivial frames of stable separatrices, thereby proving the Palis result.

In dimension 3 there are non-trivial embeddings of frames of one-dimensional
separatrices. As we have already seen, such an effect is observed for a Pixton
diffeomorphism (see Fig. 4) and a Debrunner-Fox diffeomorphism (see Fig. 26).
However, as will follow from Lemma 6.1 below, the triviality of all frames of one-
dimensional separatrices is a necessary condition for embeddability of a diffeomor-
phism f € MS(M?) in a flow. We note that from results of Kuperberg [38] it follows
that a wild arc can be a trajectory of some topological flow on a 3-manifold.
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Figure 33. Phase portraits of MS (S%)-diffeomorphisms that do not
embed in a topological flow: a) a diffeomorphism for which all frames of

one-dimensional separatrices are tame, but the frame F, is non-trivial;
b) a diffeomorphism for which all frames of one-dimensional separatrices
are trivial.

Lemma 6.1. Assume that a diffeomorphism f € MS(M?) embeds in a topological
flow. Then all the frames of its one-dimensional separatrices are trivial.

A surprising fact here is that augmenting the Palis list by the condition that
all frames of one-dimensional separatrices of saddle points of an f € MS(M?) be
trivial does not lead to sufficient conditions for embeddability of it in a topological
flow. An example to illustrate this fact is given in Fig. 33, which shows the phase
portraits of diffeomorphisms that do not embed in any topological flow.

In effect, the key to the Palis problem of embeddability of a Morse-Smale dif-
feomorphism f: M3 — M? in a flow is the scheme of the diffeomorphism f (see
Definition 3.1) and the number gy = (| UQs| — | U Q3|+ 2)/2 introduced in § 4.

Let S;, denote a closed orientable surface of genus gy, and let @gf =Sy, X St

The set \ = cx X S, where ¢5, is a simple smooth closed curve on S, , will be called

gr»
a trivial torus on the manifold ng.

Definition 6.2. The scheme Sy of a diffeomorphism f € MS(M?) is said to be
trivial if there exists a homeomorphism ¢;: Vy — V. such that every connected
component of the sets f(fjf) and v f(i?) is a trivial torus on the manifold i\’g ;-
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Figure 34. Schemes of diffeomorphisms whose phase portraits are given in
Fig. 33.

Figure 34 depicts the schemes of diffeomorphisms whose phase portraits are given
in Fig. 33. It is readily checked that both these schemes are non-trivial.
The main result in this subsection is the following theorem.

Theorem 6.1. A diffeomorphism f € MS(M?) embeds in a topological flow if and
only if its scheme is trivial.

Lemma 6.1 and the necessity of the conditions in Theorem 6.1 are proved in the
same way. For definiteness, we show how the embeddability of a diffeomorphism
J € MS(M?) in a topological flow X implies that the scheme Sy is trivial.

We let Y* denote the restriction of X' to the set Vy. By the construction of
Vy it follows that lim; .. Y*(z) € Ay and lim;_,_o Y'(z) € Ry for any point
x € V. Thus, for any points p, g € V there exist neighbourhoods U,, U, C V; and
a constant 7' > 0 such that Y*(U,) N U, = @ for any ¢t with |t| > T. According to
the definition on p. 545 of [22], this means that the flow Y? is dispersive. Then it
follows from Theorem 3 in [22] that Y? is a parallelizable flow, that is, there exist
aset ¥y C Vy and a homeomorphism ¢ : Vy — By xR such that [, Y (2y) = Vy
and £7(Y'(2)) = (2,t) for any z € £y and ¢ € R.

From [36] it follows that the topological dimension of 3y is equal to two. Indeed,
dim Vy < dim X7 + dim R by virtue of Theorem II1.4 in [36], and hence dim X, > 2.
We have £y C V¢, so dim ¥y < 3. Assuming that dim Xy = 3, it would follow from
Theorem IV.3 in [36] that ¥ contains an open 3-ball U. But then f;l(U x R) would
be a four-dimensional subset of the three-dimensional manifold V/, a contradiction.
Thus, dim ¥; = 2. Hence, according to [76], 3 is a manifold without boundary
(in Theorem 2 in [76] it is shown that if the Cartesian product A x B of topological
spaces A and B is an n-manifold and if dim A = 1 or 2, then A is a manifold, and
it does not have a boundary if A x B does not have a boundary). Consequently, ¢
is a closed orientable surface. Let p; denote the genus of this surface. We assert
that Pf=9gf-

By construction, the surface ¥ splits the manifold into two parts. We denote
their closures by P4, and Pg, and assume that Ay C int P4, and Ry C int Pg,.
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Since Py, is a 3-manifold with boundary ¥z, we have x(Xy) = 2x(Pa,) (see, for
example, Corollary 8.7 in [21]). Further, x(¥y) = 2 — 2py, and hence x(Pa,) =
1-— Pf-

On the other hand, f is isotopic to the identity map, and therefore, by the
Lefschetz formula, the Euler characteristic x(Pa,) equals the sum of the indices of
the fixed points p € Fixy, where the index of p is (—1)3™ W', Therefore, x(A;) =
Q0| — [©1], and thus |Qg| — 21| = 1 — py. Applying similar arguments to the
attractor, we then get that |Q3] — Q2| = 1 — ps. Adding the last two equalities, we
have |Qo| =[] + Q5] — [Q2] = 2 = 2py, giving py = (|1 U Q2| — Qo U Q3| +2)/2,
and so py = gy.

Since every two-dimensional separatrix A of f is homeomorphic to S' x R and is
a union of trajectories of the flow Y, there exists a simple closed curve v, C Xy
such that {f(A) = vx x R. Also, there exists a homeomorphism hy: ¥y — S,
such that ¢y = hy(v,) is a simple smooth closed curve for any two-dimensional
separatrix A\. We define the flow Atg ; on the manifold V,, = §; x R by the
formula Atgf (s,7) = (8,7 +1), and we define the homeomorphism ty: Vy — V, by
Yr(Y'(2)) = A} (hs(2)), 2 € ¥, t € R. By construction, ¢y conjugates the flows

Yt and Az ;280 it also conjugates their time-one maps. Furthermore, 17(\) = c) xR.

By construction, @’gf = Vg, /A1 We let pg,: Vg, — ng denote the natural
projection. Then by Statement 1.7 the homeomorphism wf = Py; wfpf : Vf — V
satisfies the condition in Definition 6.2. Thus, the scheme Sy is trivial.

The sufficiency of the conditions in the theorem can be verified by constructing
a gradient-like flow X' using the trivial scheme Sy of the diffeomorphism f. Con-
ceptually, this construction generalizes the realization of Pixton diffeomorphisms.
The diffeomorphism f which is the time-one map of the flow Xt constructed has
a scheme S which is equivalent to Sy. Hence, by Theorem 3.1 the diffeomorphisms

f and f are topologically conjugate by some homeomorphism h: M 3 — M? such
that hf = fh. It follows that f embeds in the topological flow Xt = h=1X1h.

The authors are deeply grateful to D. V. Anosov for his support and his undivided
attention to this topic.
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