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Abstract
Let M be a compact Riemannian manifold equipped with
a parallel differential form ω. We prove a version of Kähler
identities in this setting. This is used to show that the de
Rham algebra of M is weakly equivalent to its subquo-
tient (H∗

c (M), d), called the pseudocohomology of M .
When M is compact and Kähler and ω is its Kähler form,
(H∗

c (M), d) is isomorphic to the cohomology algebra of M .
This gives another proof of homotopy formality for Kähler
manifolds, originally shown by Deligne, Griffiths, Morgan
and Sullivan. We compute H∗

c (M) for a compact G2-
manifold, showing that Hi

c(M) ∼= Hi(M) unless i = 3, 4.
For i = 3, 4, we compute H∗

c (M) explicitly in terms of the
first order differential operator ∗d : Λ3(M)−→ Λ3(M).
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1 Introduction

1.1 Holonomy groups in Riemannian geometry

Let M be a Riemannian manifold equipped with a differential form ω. This
form is called parallel if ω is preserved by the Levi-Civita connection: ∇ω =
0. This identity gives a powerful restriction on the holonomy group Hol(M).

The structure of Hol(M) and its relation to geometry of a manifold is
one of the main subjects of Riemannian geometry of last 50 years. This
group is compact, hence reductive, and acts, in a natural way, on the tan-
gent space TM . When M is complete, Georges de Rham proved that unless
this representation is irreducible, M has a finite covering, which is a product
of Riemannian manifolds of smaller dimension ([R]). Irreducible holonomies
were classified by M. Berger ([Ber]), who gave a complete list of all irre-
ducible holonomies which can occur on non-symmetric spaces. This list is
quite short:

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

Berger’s list also included Spin(9) acting on R16, but D. Alekseevsky
later observed that this case is impossible ([A]), unless M is symmetric. If
an irreducible manifold M has a parallel differential form, its holonomy is
restricted, as SO(n) has no invariants in Λi(TM), 0 < i < n. Then M is
locally a product of symmetric spaces and manifolds with holonomy U(n),
SU(n), Sp(n), etc.
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In Kähler geometry (holonomy U(n)) the parallel forms are the Kähler
form and its powers. Studying the corresponding algebraic structures, the
algebraic geometers amassed an amazing wealth of topological and geometric
information. In this paper we try to generalize some of these results to other
manifolds with a parallel form, especially the G2-manifolds. The results thus
obtained can be summarized as “Kähler identities for G2-manifolds”.

1.2 G2-manifolds in mathematics and physics

The theory of G2-manifolds is one of the places where mathematics and
physics interact most intensely. For many years after Berger’s groundbreak-
ing results, this subject was dormant; after Alekseevsky showed that Spin(9)
cannot be realized in holonomy, there were doubts whether the other two
exceptional entries in Berger’s list (G2 and Spin(7)) can be realized.

Only in 1980-ies were manifolds with holonomy G2 constructed. R.
Bryant ([Br1]) found local examples, and then R. Bryant and S. Salamon
found complete manifolds with holonomy G2 ([BS]). The compact exam-
ples of holonomy G2 and Spin(7)-manifolds were produced by D. Joyce ([J1],
[J2]), using difficult (but beautiful and quite powerful) arguments from anal-
ysis and PDE theory. Since then, the G2-manifolds became a central subject
of study in some areas of string physics, and especially in M-theory. The
mathematical study ofG2-geometry was less intensive, but still quite fruitful.
Important results were obtained in gauge theory on G2-manifold (the study
of Donaldson-Thomas bundles): [DT], [T], [TT]. A. Kovalev found many
new examples ofG2-manifolds, using a refined version of Joyce’s engine ([K]).
N. Hitchin constructed a geometric flow ([Hi1], [Hi2]), which turned out to
be extremely important in string physics (physicists call this flow Hitchin’s
flow). Hitchin’s flow acts on the space of all “stable” (non-degenerate and
positive) 3-forms on a 7-manifold. It is fixed precisely on the 3-forms cor-
responding to the connections with holonomy in G2. In [DGNV], a unified
theory of gravity is introduced, based in part on Hitchin’s flow. From the
special cases of topological M-theory one can deduce 4-dimensional loop
gravity, and 6-dimensional A- and B-models in string theory.

In string theory, G2-manifolds are expected to play the same role as
Calabi-Yau manifolds in the usual A- and B-model of type-II string theo-
ries. These two forms of string theory both use Calabi-Yau manifolds, in a
different fashion. Duality between these theories leads to duality between
Calabi-Yau manifolds, and then to far-reaching consequences, which were
studied in mathematics and physics, under the name of Mirror Symmetry.
During the last 20 years, the Mirror Symmetry became one of the central
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topics of modern algebraic geometry.
There are two important ingredients in Mirror Symmetry (in Strominger-

Yau-Zaslow form) - one counts holomorphic curves on one Calabi-Yau man-
ifolds, and the special Lagrangian cycles on its mirror dual. Using G2-
geometry, these two kinds of objects (holomorphic curves and special La-
grangian cycles) are transformed into the same kind of objects, called asso-
ciative cycles on a G2-manifold. This is done as follows.

A G2-structure on a 7-manifold is given by a 3-form (see Subsection
3.1). Consider a Calabi-Yau manifold X, dimM = 3, with non-degenerate
holomorphic 3-form Ω, and Kaehler form ω. Let M := X × S1, and let
dt denote the unit cotangent form of S1 lifted to M . Consider a 3-form
ω ∧ dt+ Re Ω on M . This form is obviously closed. It is easy to check that
it defines a parallel G2-structure on M . This way one can convert problems
from Calabi-Yau geometry to problems in G2-geometry.

A 3-form ϕ on a manifold M gives an anti-symmetric map

ϕ] : TM ⊗ TM −→ Λ1(M),

x, y −→ ϕ(x, y, ·). Using the Riemannian structure, we identify TM and
Λ1(M). Then ϕ] leads to a skew-symmetric vector product V : TM ⊗
TM −→ TM . An associative cycle on a G2-manifold is a 3-dimensional
submanifold Z such that TZ is closed under this vector product. Associa-
tive submanifolds are studied within the general framework of calibrated
geometries (see [HL]).

Given a Calabi-Yau threefold X, consider M = X × S1 with a G2-
structure defined above. Let Z ⊂ X be a 3-dimensional submanifold. It is
easy to check that Z is special Lagrangian if and only if Z×{t} is associative
in M . Also, given a 2-cycle C on X, C × S1 is associative in M if and only
if C is a holomorphic curve. This way, the instanton objects in mirror dual
theories (holomorphic curves and SpLag cycles) can be studied uniformly
after passing to G2-manifold. It was suggested that this correspondence
indicates some form of string duality ([L], [SS]).

However, the main physical motivation for the study of G2-manifolds
comes from M-theory; we direct the reader to the excellent survey [AG]
for details and further reading. M-theory is a theory which is expected (if
developed) to produce a unification of GUT (the Grand Unified Theory of
strong, weak and electro-magnetic forces) with gravity, via supersymmetry.
In this approach, string theories arise as approximations of M-theory. In
most applications related to M-theory, a G2-manifold is deformed to a com-
pact G2-variety with isolated singularities. One local construction of conical
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singularities of this type is based on Bryant-Salamon examples of complete
G2-manifolds (see [BS]). In this approach, the study of conical singularities
is essentially reduced to the 4-dimensional geometry.

An explicit mathematical study of these singular examples and their
connection to physics and theory of Einstein manifolds is found in [AW].
Also, Hitchin’s flow can be used to produce many such examples in a uniform
way (see [GYZ])

1.3 Structure operator on manifolds with parallel differential
form

Much study in Kähler geometry is based on the interplay between the de
Rham differential and the twisted de Rham differential dc := −I ◦ d ◦ I.
We construct a similar operator dc for any manifold with a parallel differ-
ential form. This operator no longer satisfies d2

c = 0; however, it satisfies
many properties expected from the twisted de Rham differential in Kähler
geometry. Most importantly, a version of ddc-lemma is true in this setting
(Proposition 1.1).

Just as in the usual case, this may lead to results in rational homotopy
theory (see Subsection 1.6 in the present introduction).

To simplify the exposition, we restrict ourselves presently to Rieman-
nian manifolds (M,ω) with a parallel 3-form. These include Riemannian
3-manifolds, Calabi-Yau threefolds and G2-manifolds. Just like it happens
in 3-dimensional case, such a 3-form defines a skew-symmetric cross-product
on Λ1(M):

x, y
Ψ−→ ω(x], y], ·)

((·)] denotes taking the dual with respect to the metric). Consider the
operator on differential forms

ξi1∧ξi2 ∧ ... ∧ ξik
−→

∑
16a<b6k

(−1)a+b−1Ψ(ξia , ξib) ∧ ξi1 ∧ ξi2 ∧ ... ∧ ξ̂ia ∧ ... ∧ ξ̂ib ∧ ... ∧ ξik

where ξi is an orthonormal frame in Λ1(M). Denote by

C : Λi(M)−→ Λi+1(M)

the dual operator (to identify Λi(M) with its dual, we use the natural metric
on Λi(M) induced from the Riemannian structure on M). Then C is called
the structure operator on (M,ω).
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In Section 2 we give another definition of C, which works for an arbitrary
parallel i-form ω. It is not difficult to check that this definition is compatible
to the one given above. When (M,ω) is Kähler, C becomes the complex
structure operator on M , and the identities we prove in general case become
the usual Kähler identities.

Denote by dc the anticommutator {C, d} = dC + Cd. We show that dc
commutes with d, d∗, and satisfies the following version of ddc-lemma

Proposition 1.1: Consider a compact Riemannian manifold equipped with
a parallel differential form. Let η be a differential k-form satisfying dη =
dcη = 0. Assume, moreover, that η is dc-exact: η = dcξ. Then η = ddcξ

′,
for some differential form ξ.

Proof: Follows immediately from Proposition 2.20 (see Remark 2.21).

Remark 1.2: The operator dc satisfies the Leibniz identity:

dc(a ∧ b) = dc(a) ∧ b+ (−1)ãd̃ca ∧ dc(b),

where ã, b̃ denotes parity of a form. However, d2
c 6= 0. Also, the ddc-lemma

is less strong than the usual ddc-lemma: given a d-exact, d, dc-closed form
η, we cannot show that η = ddcξ

′ (though this could be true in the case of
G2-manifolds).

1.4 Donaldson-Thomas bundles

The twisted de Rham operator has many uses in G2-geometry. In many
ways, dc defines the same kind of structures as known in algebraic geometry

from the study of the holomorphic structure operator ∂ = d−
√
−1 dc

2 .
Let M be a G2-manifold. The G2-action gives a decomposition

Λ2(M) = Λ2
7(M)⊕ Λ2

14(M)

onto a sum of irreducible representations of G2.

Definition 1.3: [DT] Let (B,∇) be a vector bundle with connection on a
G2-manifold M , and Θ ∈ Λ2(M) ⊗ End(B) its curvature. Then (B,∇) is
called a Donaldson-Thomas bundle if Θ lies inside Λ2

14(M)⊗ End(B).
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This is a natural generalization of the Hermitian-Einstein condition,
known from algebraic geometry. In fact, when M is constructed from a
Calabi-Yau threefold W , M = W × S1, the Donaldson-Thomas bundles
can be obtained as a pullback of Hermitian-Einstein bundles from W to M .
Also, the Donaldson-Thomas condition implies that the functional

(B,∇)−→
∫
M
||Θ||2 Vol(M)

has an absolute minimum at (B,∇). In other words, Donaldson-Thomas
bundles are always instantons.

Geometry of Donaldson-Thomas bundles is much studied in connection
with physics and algebraic geometry, see e.g. [L], [LL].

Given a Hermitian vector bundle (B,∇) on a Kähler manifold, the holo-
morphic condition can be written as Θ ∈ Λ1,1(M)⊗End(B). This equation
can be rewritten as {∇,∇c} = 0, where ∇c = −I ◦ ∇ ◦ I = [WI ,∇] (WI

denotes the Kähler-Weil operator, acting on Λp,q(M) as
√
−1 (p − q)). In

G2-geometry the role of WI is played by the structure operator C.
The Donaldson-Thomas bundles can be interpreted in terms of a struc-

ture operator, repeating the above desctiption for holomorphic bundles ver-
batim.

Proposition 1.4: Let M be a G2-manifold, C : Λi(M)−→ Λi+1(M) the
structure operator, and (B,∇) a vector bundle with connection,

∇ : B ⊗ Λi(M)−→B ⊗ Λi+1(M).

Consided an operator ∇c := {C,∇},

∇c : B ⊗ Λi(M)−→B ⊗ Λi+2(M).

Then (B,∇) is a Donaldson-Thomas bundle if and only if ∇, ∇c commute.

Proof: Using graded Jacobi idenity, we obtain

[C,∇2] =
1

2
[C, {∇,∇}] = [∇, [C,∇]] = [∇,∇c].

However, [C,∇2] = C(Θ), where Θ is the curvature form. In Proposition

3.13 we show that kerC
∣∣∣
Λ2(M)

is exactly Λ2
14(M), hence

C(Θ) = 0 ⇔ Θ ∈ Λ2
14(M)⊗ End(B).
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1.5 Localization functor and rational homotopy

The homotopy formality for Kähler manifold, observed by Deligne, Griffiths,
Morgan, Sullivan ([DGMS]), is one of the deepest and most powerful results
of Kähler geometry. Since [DGMS] appeared, there was a whole cornucopia
of research dedicated to this theme. Formality was used to study the defor-
mations and moduli spaces (see e.g. [GM], [BK], [V1]), in Mirror Symmetry
and topology. The reason for all these equations lies in the so-called Master
equation (also known as the Maurer-Cartan equation)

dγ = −1

2
[γ, γ].

in a differential graded (DG-) Lie algebra, which is responsible for deforma-
tion theory for most objects in algebraic geometry. Solutions of this equation
(up to a relevant equivalence) are homotopy invariants of the DG-Lie algebra
([BK]).

This equation can be solved recursively, if the relevant Massey products
vanish (in fact, Massey products can be defined as obstructions to finding
solutions of Maurer-Cartan equation - see e.g. [BT]). The homotopy for-
mality implies vanishing of Massey products, providing a way to solve the
Maurer-Cartan equation in various contexts.

In the proof of homotopy formality for Kähler manifolds ([DGMS]), the
key argument hinges on ddc-lemma; one should expect that the G2-version
of ddc-lemma (Proposition 1.1) will give us information about rational ho-
motopy of G2-manifolds.

The topological utility of rational homotopy is based on the Quillen-
Sullivan localization construction, [Q], [Su1]. The Q-localization functor in
homotopy category maps a simply connected cellular space X to a space
XQ = LocQ(X) with H i(XQ,Z) ∼= H i(X,Z)⊗Q and πi(XQ) ∼= πi(X)⊗Q.
The spaces which are homotopy equivalent to their localization are called
Q-local. We have LocQ(X) ∼= LocQ(LocQ(X)); in other words, all spaces of
form LocQ(X) are Q-local.

Given a cellular space, one could construct its de Rham complex, us-
ing piecewise smooth diferential forms. This construction maps homotopy
equivalent spaces to weakly equivalent differential graded (DG-) algebras
(see Definition 2.22). We obtain a functor DR : Hot −→ DG-Alg of the
corresponding categories. Moreover, this functor commutes with localiza-
tion, and gives an equivalence of homotopy category of Q-local simply con-
nected spaces and the category DG-Alg of DG-algebras. This reduces the
study of rational homotopies (homotopies of Q-local spaces) to the study of
DG-algebras.
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The localization construction (which is defined in many other contexts,
see [D]) is one of the key ideas of modern algebraic topology. Sullivan
needed localization in order to prove the Adams’ conjecture, and Quillen
used localization to give the definition of algebraic K-theory. Since then,
many other uses of the same construction were found; including Voevodsky’s
celebrated motivic homotopy theory.

Two DG-algebras are called quasi-isomorphic if there exists a quasi-
isomorphism (morphism, inducing isomorphism on cohomology) from one to
another. The equivalence relation generated by quasi-isomorphism is called
weak equivalence of DG-algebras (Definition 2.22).

Rational homotopy is a study of DG-algebras, up to weak equivalence.
A DG-algebra (A∗, d) is called homotopy formal if it is weakly equiv-

alent to its cohomology algebra (H∗(A), 0). A simply connected topological
space is called formal if its de Rham algebra is formal. The rational ho-
motopies of formal spaces (in particular, all rational homotopy groups) are
determined by the algebraic structure on cohomology.

Not all DG-algebras are formal; the best known obstruction to formality
is called the Massey product (see e.g. [BT]). However, there are more
obstructions to formality that just a Massey product. S. Halperin and J.
Stasheff ([HS]) constructed explicitly a complete set of obstructions

{On, n = 1, 2, 3, ...}

to homotopy formality, On defined if all Oi, i < n vanish.
Since homotopy formality of Kähler manifolds was established, many

people studied the influence of differential geometric structures on rational
homotopy. Much of this work was focused on the study of rational homotopy
of compact symplectic manifolds (there is a book [TO], dedicated especially
to this subject). Using Deligne-Griffiths-Morgan-Sullivan formality theorem,
one obtains all kinds of symplectic manifolds admitting no Kähler structures.

In physics, G2-manifolds appear as a generalization of Calabi-Yau three-
folds; formality is expected.

1.6 Formality for G2-manifolds

Homotopy formality for G2-manifolds was studied by Gil Cavalcanti in his
thesis (see [C]). The G2-structure gives certain constraints on the cohomol-
ogy ring of a manifold: the multiplication by the standartd 3-form ω gives
an isomorphism

H2(M)
∧ω−→ H5(M).
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and the 2-form

η −→
∫
M
η ∧ η ∧ ω

on H2(M,R) must be positive definite. Also, H1(M) = 0. Cavalcanti
constructed examples of non-formal 7-manifolds satisfying these constraints.
He also showed that for dimH2(M) 6 2, these constraints indeed imply
formality.

The G2-version of ddc-lemma (Proposition 1.1) should give information
about rational homotopy, in the same way that the usual ddc-lemma leads
to formality of Kähler manifolds. Indeed, (ker dc) is a subalgebra of Λ∗(M)
which is weakly equivalent to the de Rham algebra of M (Proposition 2.11),
and the quotient algebra

(H∗c (M), d) ∼=
ker dc

(ker dc) ∩ (im dc)

is also weakly equivalent to Λ∗(M). We call (H∗c (M), d) the pseudo-co-
homology of M (Definition 2.15). We don’t call it cohomology, because
d2
c 6= 0.

A form η ∈ Λ∗(M) is called pseudo-harmonic if η ∈ (ker dc)∩(ker∗ dc),
where d∗c is a Hermitian adjoint to dc. Just as happens for usual cohomol-
ogy, the space of pseudo-harmonic forms H∗c(M) is isomorphic to pseudo-
cohomology:

(H∗c (M), d) ∼= (H∗c(M), d)

(Proposition 2.19). All harmonic forms are also pseudo-harmonic. We con-
sider an orthogonal decomposition

H∗c(M) ∼= H∗(M)⊕H∗c(M)>0,

whereH∗c(M)>0 is the sum of all positive eigenspaces of the Laplacian acting
on H∗c(M). From the arguments given above, we immediately obtain the
following theorem.

Theorem 1.5: Let M be a compact G2-manifold, and H∗c(M)>0 the sum
of all positive eigenspaces of the Laplacian acting on H∗c(M). Assume that
H∗c(M)>0 = 0. Then M is formal.

Proof: This is Corollary 2.23.
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We were unable to show that H∗c(M)>0 = 0 for all G2-manifolds. How-
ever, this space was computed fairly explicitly, in terms of G2-action on
differential forms.

Proposition 1.6: Let M be a compact G2-manifold, and Hic(M)>0 = 0 the
vector space defined above. Then Hic(M)>0 = 0 unless i = 3 or 4. The space
H3
c(M)>0 is generated (over C) by the solutions of the following equation

dα = µ ∗ α, α ∈ Λ3
27(M), (1.1)

where µ ∈ C is a non-zero number, and Λ3
27(M) is the 27-dimensional ir-

reducible component of Λ3(M) under the G2-action (see (3.2)). Similarly,
H4
c(M)>0 is generated by the solutions of equation d ∗ η = µη, η ∈ Λ4

27(M).

Proof: See Theorem 4.2.

The formula (1.1) is suggestive of equations found in Hitchin’s paper on
hamiltionian flow, [Hi2]. One may hope that a careful study of Hitchin’s
flow in conjunction with (1.1) leads to some constraints on H3

c(M)>0, and,
possibly, its vanishing, which leads to formality of M . However, even now
Proposition 1.6 gives us some information about rational homotopy.

Corollary 1.7: Let M be a compact G2-manifold, and (H∗c (M), d) its pseu-
docohomology DG-algebra. Then (H∗c (M), d) is weakly equivalent to the de

Rham algebra of M , and, moreover, d
∣∣∣
Hi
c(M)

= 0 unless i = 3.

This result can be used to study the obstructions On to formality of
(H∗c (M), d), defined in [HS] (see Subsection 1.5). It turns out that only the
first obstruction O1 is relevant for rational homotopy, and if it vanishes, Oi,
i > 0 also vanish, and the DG-algebra (H∗c (M), d) and (Λ∗(M), d) is formal.
However, the same result can be obtained from Gil Cavalcanti’s work, for
all simply connected 7-manifolds.

In 1970-is, T. J. Miller showed that all simply connected orientable com-
pact manifolds of dimensions up to 6 are formal ([M]). Moreover, Miller has
shown that all (k−1)-connected orientable compact manifolds of dimension
up to 2k + 2 are formal. His arguments were simplified and generalized
by M. Fernandez and V. Munoz ([FM]), who defined a notion of k-formal
manifold, and shown that any orientable k-formal compact manifold of di-
mension up to 2k+ 2 is formal. They applied this theorem to obtain results
about formality of compact symplectic manifolds.
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G. Cavalcanti ([C]) studied 7-manifolds using the same conceptual frame-
work, obtaining essentially (but in completely different terms) that obstruc-
tions to 3-formality for simply connected 7-manifolds can be reduced to
vanishing of the first obstruction of Halperin-Stasheff.

It is unclear whether additional topological information might be gleaned
from Corollary 1.7. It may possibly happen that for any 7-manifold (com-
pact and oriented) its de Rham algebra is weakly equivalent to an algebra
with non-degenerate Poincare pairing and a differential which vanishes in
all dimensions except i = 3. In this case we don’t obtain much topological
information from Corollary 1.7.

2 Riemannian manifolds with a parallel differen-
tial form

2.1 Structure operator and twisted differential

Let M be a C∞-manifold. We denote the smooth forms on M by Λ∗(M).
Given an odd or even form α ∈ Λ∗(M), we denote by α̃ its parity, which is
equal to 0 for even forms, and 1 for odd forms. An operator f ∈ End(Λ∗(M))
preserving parity is called even, and one exchanging odd and even forms is
odd; f̃ is equal 0 for even forms and 1 for odd.

Given a C∞-linear map Λ1(M)
p−→ Λodd(M) or Λ1(M)

p−→ Λeven(M),
p can be uniquely extended to a C∞-linear derivation ρ on Λ∗(M), using
the rule

ρ
∣∣∣
Λ1(M)

= p, ρ
∣∣∣
Λ0(M)

= 0, ρ(α ∧ β) = ρ(α) ∧ β + (−1)ρ̃α̃α ∧ ρ(β).

Then, ρ is an even (odd) differentiation of the graded commutative algebra
Λ∗(M).

Definition 2.1: Let M be a Riemannian manifold, and ω ∈ Λk(M) a
differential form. Consider an operator C : Λ1(M)−→ Λk−1(M) mapping
ν ∈ Λ1(M) to ω y ν], where ν] is the vector field dual to ν. Alternatively,
C(ν) can be written as C(ν) = ∗(∗ω∧ ν). The corresponding differentiation

C : Λ∗(M)−→ Λ∗+k−2(M)

is called the structure operator of (M,ω). Parity of C is equal to that
of ω.

12
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Remark 2.2: When (M, I, g) is a Kähler manifold and ω is its Kähler
form, C(ν) = I(ν), and C is the standard Kähler-Weil operator, acting on
(p, q)-forms as a multiplication by (p− q)

√
−1 .

Definition 2.3: Let M be a Riemannian manifold, ω ∈ Λk(M) a differential
form, which is parallel with respect to the Levi-Civita connection. Denote
by dc the supercommutator

{d,C} := dC − (−1)C̃Cd

This operator is called the twisted de Rham operator of (M,ω). Being
a graded commutator of two graded differentiations, dc is also a graded
differentiation of Λ∗(M).
Remark 2.4: When (M, I, g) is a Kähler manifold and ω is its Kähler form,

dc is equal to the well-known twisted differential dc = I−1 ◦ d ◦ I, dc = ∂−∂√
−1

.

Of course, for a general form ω, d2
c can be non-zero.

Proposition 2.5: Let (M,ω) be a Riemannian manifold equipped with a
parallel form ω, and Lω the operator η −→ η ∧ ω. Then

dc = {Lω, d∗},

where {·, ·} denotes the supercommutator,

{Lω, d∗} = Lωd
∗ − (−1)ω̃d∗Lω,

and d∗ = − ∗ d∗ is the adjoint to d.

Proof: Denote by ∇ the Levi-Civita connection,

∇ : Λ∗(M)−→ Λ∗(M)⊗ Λ1(M).

Let η ∈ Λi(M). Clearly, d∗η is obtained from ∇η ∈ Λi(M) ⊗ Λ1(M) by
applying the isomorphism

Λi(M)⊗ Λ1(M) ∼= Λi(M)⊗ TM

induced by the Riemannian structure and then plugging the TM -part into
Λi(M):

d∗η = y (∇η). (2.1)

13
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Since ∇ω = 0, {Lω, d∗} is equal to the composition

Λi(M)
∇−→ Λi(M)⊗ Λ1(M)

C⊗Id−→ Λi+k−2(M)⊗ Λ1(M)
∧−→ Λi+k−1(M)

(the last arrow is exterior multiplication). Indeed, Lω commutes with ∇,
and therefore, by (2.1), {Lω, d∗} is written as a composition of ∇ and a
commutator of C∞-linear maps Lω and y , where

y : Λi+k(M)⊗ Λ1(M)−→ Λi+k−1(M)

maps η ⊗ ν to η y ν]. However, by definition,

{Lω, y }(η ⊗ ν) = C(η) ∧ ν.

This gives
{Lω, d∗}(η) = [Lω, y ](∇η). (2.2)

Similarly, [∇, C] = 0, hence dc is written as a composition of ∇ and a
C∞-linear map

C ⊗ Id ◦ ∧ − ∧ ◦C : Λi(M)⊗ Λ1(M)−→ Λi+k−1(M), (2.3)

where ∧ : Λ∗(M)Λ1(M)−→ Λ∗+1(M) denotes the exterior product. Since
C is a differentiation, the operator (2.3) is equal to

Id⊗C ◦ ∧ : Λi(M)⊗ Λ1(M)−→ Λi+k−1(M).

This gives
{d,C}(η) = Id⊗C ◦ ∧(∇η). (2.4)

However, by definition of C, we have [Lω, y ](η ⊗ ν) = η ∧ C(ν), hence the
right hand sides of (2.4) and (2.2) are equal. This proves Proposition 2.5.

Remark 2.6: In the Kähler case, Proposition 2.5 becomes the following
well-known Kähler identity: [Lω, d

∗] = dc.

2.2 Generalized Kähler identities and twisted Laplacian

Proposition 2.7: LetM be a Riemannian manifold equipped with a parallel
differential k-form ω, dc the twisted de Rham operator constructed above,
and d∗c its Hermitian adjoint. Then

14



Rational homotopy and parallel forms M. Verbitsky, February 23, 2005

(i) The following supercommutators vanish:

{d, dc} = 0, {d, d∗c} = 0, {d∗, dc} = 0, {d∗, d∗c} = 0,

(ii) The Laplacian ∆ = {d, d∗} commutes with Lω : η −→ ω ∧ η and its
Hermitian adjoint operator, denoted as Λω : Λi(M)−→ Λi−k(M).

(iii) Denote the supercommutator of dc, d
∗
c by ∆c. By definition, ∆c =

dcd
∗
c +d∗cdc when k is even, and ∆c = dcd

∗
c−d∗cdc when k is odd. Then

∆c = (−1)ω̃{d∗, [Hω, d]},

where Hω = {Lω,Λω}.

Proof: We use the following basic lemma

Basic Lemma: Let δ be an odd element in a graded Lie superalgebra
A satisfying {δ, δ} = 0. Then {δ, {δ, x}} = 0 for all x ∈ A, assuming that
the base field is not of characteristic 2.

Proof: Using the graded Jacobi identity, we obtain

{δ, {δ, x}} = −{δ, {δ, x}}+ {{δ, δ}, x}.

This gives 2{δ, {δ, x}} = 0.

Now, {d, dc} = {d, {d,C}} = 0 (by the Basic Lemma), and {d∗, dc} =
{d∗, {d∗, Lω}} = 0 (by Basic Lemma and Proposition 2.5). Taking Hermitian
adjoints of these identities, we obtain the other two equations of Proposition
2.7 (i). Proposition 2.7 (i) is proven.

Now, the graded Jacobi identity implies

[Lω,∆] = {Lω, {d, d∗}} = (−1)ω̃{d, {Lω, d∗}}. (2.5)

(we use {Lω, d} = 0 as ω is closed). This gives

[Lω,∆] = (−1)ω̃{d, dc} = 0,

as Proposition 2.7 (i) implies. Taking Hermitian adjoint, we also obtain
[Λω,∆] = 0. We proved Proposition 2.7 (ii).

Finally, Proposition 2.7 (iii) is proven as follows:

{{Lω, d∗}, {Λω, d}} = {{Lω, {d∗, d∗c}}+ (−1)ω̃{d∗, {Lω, {Λω, d}}} (2.6)

15
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by graded Jacobi identity. Also,

{Lω, {Λω, d}} = {Hω, d}+ (−1)ω̃{Λω, {Lω, d}}. (2.7)

However, {Lω, d} = 0 as ω is closed. Comparing (2.7) and (2.6), we obtain

∆c = (−1)ω̃{d∗, {Hω, d}}.

We proved Proposition 2.7 (iii).

Remark 2.8: When (M,ω) is a Kähler manifild, Proposition 2.7 (i) gives
the standard commutation relations between d, dc, d∗, (dc)∗, Proposition
2.7 (ii) is well known, and Proposition 2.7 (iii) gives

{dc, (dc)∗} = ∆c = {d∗, [H, d]} = ∆,

because [H, d] = d as Lefschetz theorem implies.

Corollary 2.9: Let (M,ω) be a Riemannian manifold equipped with a
parallel differential form, and η a harmonic form on M . Then ω ∧ η is
harmonic.

Proof: Follows from Proposition 2.7 (ii).

This statement seems to be well known.

Further on, we shall need the following trivial lemma.

Lemma 2.10: Let (M,ω) be a compact Riemannian manifold equipped
with a parallel differential form, and η a harmonic form on M . Consider the
twisted de Rham operator dc constructed above. Then dc(η) = 0.

Proof: Since M is compact, d∗η = 0. Then dcη = d∗Lωη. On the other
hand, Lωη is harmonic, by Corollary 2.9, hence satisfies d∗Lωη = 0.

2.3 The differential graded algebra (ker dc, d)

Let (M,ω) be a Riemannian manifold equipped with a parallel form, and
dc the twisted de Rham operator constructed above. By construction, dc
is a differentiation of Λ∗(M). Therefore, ker dc ⊂ Λ∗(M) is a subalgebra.
Since d and dc supercommute, d acts on ker dc. We consider (ker dc, d) as a
differential graded algebra (a DG-algebra).

16
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Recall that a homomorphism of DG-algebras is called a quasi-isomor-
phism if it induces isomorphism on cohomology.

Proposition 2.11: Let (M,ω) be a compact Riemannian manifold equipped
with a parallel form. Consider the natural embedding

(ker dc, d) ↪→ (Λ∗(M), d). (2.8)

Then this map is a quasi-isomorphism.

Proof: Let Λ∗(M)α be the eigenspace of ∆, corresponding to the eigen-
value α. Since ∆ is a self-adjoint operator with discrete spectrum, we have
a decomposition Λ∗(M) ∼= ⊕αΛ∗(M)α. Consider the subcomplex

...
d−→ Λ∗(M)α

d−→ Λ∗+1(M)α
d−→ ... (2.9)

corresponding to an eigenvalue α. Clearly, for α 6= 0, the complex (2.9) is
exact. Let

...
d−→ (ker dc)α

d−→ (ker dc)α
d−→ ... (2.10)

be the action of d on the α-eigenspace of ∆ on (ker dc) (∆ commutes with
dc as Proposition 2.7 implies).

For α = 0, (ker dc)α = Λ∗(M)α = H∗(M) as Lemma 2.10 implies. To
prove Proposition 2.11 we need only to show that (2.10) has zero cohomology
for α > 0. However, for any closed form η ∈ (ker dc)α, we have

η =
1

α
(dd∗ + d∗d)η =

1

α
dd∗η

and d∗η lies inside (ker dc)α as dc and d∗ commute (Proposition 2.7). There-
fore, η is exact. This proves Proposition 2.11.

The following claim is clear, as ∆c and ∆ commute, and {dc, d∗c}∗ =

{d∗c , dc} = (−1)1−d̃c{dc, d∗c}.

Claim 2.12: Let (M,ω) be a compact Riemannian manifold equipped with
a parallel form, and ∆c = {dc, d∗c} the operator constructed above. Let
Λ∗(M)α be the eigenspace of the Laplacian of eigenvalue α. Then ∆c pre-
serves Λ∗(M)α and acts on Λ∗(M)α as a self-adjoint or anti-self-adjoint
operator. In particular, ∆c is diagonalizable, on some dense subspace of
Λ∗(M)⊗R C
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Remark 2.13: Notice that ∆c is not a priori elliptic, hence it has no spectral
decomposition. However, it perserves the finite-dimensional eigenspaces of
the Laplacian, and is diagonalizable on these eigenspaces.

2.4 Pseudocohomology of the operator dc

Lemma 2.14: Let (M,ω) be a compact Riemannian manifold equipped with
a parallel form, and (ker dc, d) the differential graded algebra constructed
above. Consider the subspace

V = (ker dc) ∩ dc(Λ∗(M)) ⊂ (ker dc). (2.11)

Then V is a differential ideal in the differential graded algebra (ker dc, d).
In other words, ker dc · V ⊂ V and dV ⊂ V .

Proof: Given x ∈ ker dc, y ∈ V , y = dcz, we write

dc(x ∧ z) = (−1)d̃cx̃x ∧ dcz.

Therefore, V is an ideal. To prove that dV ⊂ V , we write v ∈ V as dc(w),

then dv = (−1)d̃cdcdw.

Definition 2.15: The quotient (ker dc)
(ker dc)∩(im dc) is called the pseudo-coho-

mology of dc. As Lemma 2.14 implies, pseudo-cohomology is a differential
graded algebra. We denote it by (H∗c (M), d).

Remark 2.16: We don’t call H∗c (M) cohomology of dc, because d2
c is not

necessarily zero. In the literature, the pseudo-cohomology of an operator is
known under the name twisted cohomology (see e.g. in [Va]).

Definition 2.17: Let η ∈ Λ∗(M) be a form which satisfies dcη = d∗cη = 0.
Then η is called pseudo-harmonic. The space of all pseudo-harmonic
forms is denoted by H∗c(M). By Proposition 2.7 (i), the de Rham differential
preserves H∗c(M).

Remark 2.18: From Lemma 2.10 it follows immediately that all harmonic
forms are pseudo-harmonic: H∗(M) ⊂ H∗c(M).

18
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Proposition 2.19: Let (M,ω) be a compact Riemannian manifold equipped
with a parallel form, and

H∗c(M)
i−→ H∗c (M) (2.12)

the natural projection map. Then i is an isomorphism, compatible with the
de Rham differential.

Proof: We represent Λ∗(M) as a (completion of) a direct sum of eigen-
values of the Laplacian. Using dc, d

∗
c-invariance of these eigenspaces, we may

work with the associated decompositions within these eigenspaces. Abusing
the language, we approach Λ∗(M) as if it were finite-dimensional, but in
fact we work with these eigenspaces, which are finite-dimensional.

From
(∆cα, α) = (dcα, dcα) + (d∗cα, d

∗
cα)

we obtain that ker ∆c = ker dc ∩ ker d∗c . From (dcα, β) = (α, d∗cβ), we find
that ker dc = (im d∗c)

⊥, ker d∗c = (im dc)
⊥, where (· · · )⊥ denotes the orthog-

onal complement. Therefore,

ker ∆c = (im dc)
⊥ ∩ (im d∗c)

⊥ = (im dc + im d∗c)
⊥.

Given α ∈ Λ∗(M), let Πα denote the orthogonal projection of α to ker ∆c.
Then α−Πα is orthogonal to ker ∆c, hence

α−Πα ∈
(

im dc + im d∗c

)
. (2.13)

Now assume that α ∈ ker dc. The form Π(α) also lies in ker dc, because
ker ∆c ⊂ ker dc. Therefore, α − Πα lies in ker dc, hence, is orthogonal to
im d∗c . Using (2.13), we obtain that α−Πα ∈ im dc.

Therefore,
ker dc = (ker dc) ∩ (im dc)⊕H∗c(M). (2.14)

From (2.14) Proposition 2.19 follows directly.

Proposition 2.20: Let (M,ω) be a compact Riemannian manifold equipped
with a parallel form, and

(ker dc, d)
π−→ (H∗c (M), d) (2.15)

the homomorphism of differential graded algebras constructed above. Then
π is a quasi-isomorphism.
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Proof: By definition, (2.15) is surjective. To show that it is a quasi-
isomorphism, we need to prove that any d-closed η ∈ kerπ is d-exact. How-
ever, kerπ ⊂ (ker dc) ∩ (im dc), and by (2.14) this space is orthogonal to
H∗c(M). Using Remark 2.18 we obtain that any η ∈ kerπ is orthogonal to
the space of harmonic forms. Using the spectral decomposition, we obtain
that η =

∑
ηαi , where ∆ηαi = αiηαi , and {αi} are positive real numbers.

Since ∆ commutes with dc and d∗c , the components ηαi also belong to kerπ.
This gives ηαi = 1

αi
dd∗ηαi , hence all the components ηαi are d-exact. We

obtain that η is d-exact. Proposition 2.20 is proven.

Remark 2.21: The standard (and completely formal) agrument is used
to produce the ddc-lemma from Proposition 2.20. Let η be a dc-exact, d-,
dc-closed form on M . We need to show that η = ddcξ. By definition, η
represents 0 in H∗c (M). Since (ker dc, d) is quasi-isomorphic to (H∗c (M), d),
η represents zero in the cohomology of (ker dc, d). Therefore, η = dν, for
some ν ∈ ker dc. Now, the class [ν] of ν in H∗c (M) satisfies d[ν] = 0. Using
Proposition 2.20 again, we find that [ν] − [ν ′] = 0, for some d-closed form
ν ′ ∈ ker dc. Therefore, ν−ν ′ = dcξ. Since dν ′ = 0, this gives ddcξ = dν = η.

Definition 2.22: Let (A∗, d), (B∗, d) be graded commutative differential
graded algebras (DG-algebras, for short). If (A∗, d) and (B∗, d) can be
connected by a sequence of quasi-isomorphisms

(A∗, d)−→ (A∗1, d), (A∗2, d2)−→ (A∗1, d), ... (A∗n, dn)−→ (B∗, d),

the DG (A∗, d) and (B∗, d) are called weak equivalent. A DG-algebra is
called formal if it is weak equivalent to a DG-algebra with d = 0.

Corollary 2.23: Let (M,ω) be a compact Riemannian manifold equipped
with a parallel form, and (H∗c (M), d) its pseudohocomology DG-algebra.
Then (Λ∗(M), d) is weak equivalent to (H∗c (M), d). Moreover, if every pseu-
doharmonic form is harmonic, then (Λ∗(M), d) is formal.

Proof: By Proposition 2.11, the DG-algebra (Λ∗(M), d) is quasi-iso-
morphic to (ker dc, d). By Proposition 2.20, the DG-algebra (ker dc, d) is
quasi-isomorphic to (H∗c (M), d). Finally, if all pseudoharmonic forms are
harmonic, the differential d vanishes onH∗c(M), and Proposition 2.19 implies
that d = 0 on (H∗c (M), d).
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Remark 2.24: When (M,ω) is a compact Kähler manifold, ∆ = ∆c as
the Kähler identities imply. In this situation, pseudoharmonic forms are the
same as harmonic. This implies the celebrated result of [DGMS]: for any
compact Kähler manifold, its de Rham DG-algebra is formal.

3 Structure operator for holonomy G2-manifolds

3.1 G2-manifolds

We base our exposition on [Hi1].

Claim 3.1: Consider the natural action of GL(7,R) on the space Λ3(V ∗)
of 3-forms on V , where V = R7. Then GL(7,R) acts on Λ3(V ∗) with two
open orbits.

Proof: Well known (see e.g. [Sa]).

Definition 3.2: A 3-form ω on V = R7. is called non-degenerate if it lies
in an open orbit.

The group GL(7,R) is 49-dimensional, and dimension of Λ3(V ∗) is 35.
Therefore, a stabilizer of a non-degenerate 3-form has dimension 14. This
stabilizer is a Lie group, of dimension 14, called G2. For one orbit it is a
compact form of G2, for another orbit a non-compact real form. We call a
non-degenerate 3-form ω on V = R7 positive if its stabilizer is a compact
form of G2.

Given a 3-form ω ∈ Λ3(V ∗), consider an Λ7(V ∗)-valued scalar product
V × V −→ Λ7(V ∗),

x, y
g̃−→ 1

6
(ω y x) ∧ (ω y y) ∧ ω.

It is easy to check that g̃ is non-degenerate when ω is non-degenerate, and
sign-definite when ω is positive. Consider g̃ as a section of V ∗⊗V ∗⊗Λ7(V ∗),
and denote by K its determinant, K ∈ Λ7(V ∗)9. Since 9 is odd, K gives an
orientation on V . Let k := 9

√
K be the corresponding section of Λ7(V ∗), and

g := k−1g̃ the R-valued bilinear symmetric form associated with g̃. Assume
that ω is positive. A direct calclulation implies that g is positive definite,
and in some orthonormal basis e1, ..., e7 ∈ V ∗, ω is written as

ω = (e1 ∧ e2 + e3 ∧ e4) ∧ e5 + (e1 ∧ e3 − e2 ∧ e4) ∧ e6

+(e1 ∧ e4 − e2 ∧ e3) ∧ e7 + e5 ∧ e6 ∧ e7.
(3.1)
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Definition 3.3: Let M be a 7-dimensional smooth manifold, and ω ∈
Λ3(M) a 3-form. (M,ω) is called a G2-manifold if ω is non-degenerate
and positive everywhere on M . We consider M as a Riemannian manifold,
with the Riemannian structure determined by ω as above. The manifold
(M, g, ω) is called a holonomy G2-manifold if ω is parallel with respect
to the Levi-Civita connection associated with g. Further on, we shall con-
sider only holonomy G2 manifolds, and (abusing the language) omit the
word “holonomy”.

Remark 3.4: Holonomy G2-manifolds have long and distinguished history.
They appear in M. Berger’s list of irreducible holonomies ([Ber]). Local
examples of holonomy G2-manifolds were unknown untill R. Bryant’s work
of mid-1980-ies ([Br1]). Then R. Bryant and S. Salamon constructed a
complete examples of holonomy G2-manifoldy ([BS]), and D. Joyce ([J1])
constructed and studied compact holonomy G2-manifolds at great length.
For details of D. Joyce’s construction, see [J2]. Since then, the G2-manifolds
become crucially important in many areas of string physics, especially in M-
theory.

Under the G2-action, the space Λ∗(M) splits into irreducible represen-
tations, as follows.

Λ2(M) ∼= Λ2
7(M)⊕ Λ2

14(M),

Λ3(M) ∼= Λ3
1(M)⊕ Λ3

7(M)⊕ Λ3
27(M)

(3.2)

where Λij(M) is an irreducible G2-representation of dimension j. Clearly,

Λ∗(M) ∼= Λ7−∗(M) as a G2-representation, and the spaces Λ4(M), Λ5(M)
split in a similar fashion. The spaces Λ0, Λ1 are irreducible.

The spaces Λij(M) are defined explicitly, in a following way. Λ2
7(M) is

Λ∗ω(Λ6(M)), where Λ∗ω is the Hermitian adjoint to L∗ω(η) = ∗ω ∧ η (see
Section 2). The space Λ2

14(M) is identified with g2 ⊂ so(TM) under the
standard identification Λ2(M) = so(TM). The space Λ3

1(M) is generated
by ω, Λ3

7(M) is equal to Λω(Λ6(M)), where Λω is the Hermitian adjoint of
Lω(η) = ω ∧ η (see Section 2). Finally, Λ3

27(M) is identified with (kerLω) ∩
(ker Λω) ⊂ Λ3(M).

Remark 3.5: Notice that the operators C, Lω, Λω from Section 2 are clearly
G2-invariant.
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From the construction, it is clear that the splitting (3.2) can be obtained
via the operators Lω, Λω, L∗ω, Λ∗ω. By Proposition 2.7 these operators
commute with the Laplacian. Therefore, harmonic forms also split:

H2(M) ∼= H2
7(M)⊕H2

14(M),

H3(M) ∼= H3
1(M)⊕H3

7(M)⊕H3
27(M)

(3.3)

and similar splitting occurs on H4(M) and H5(M).
The following result is well known and is implied by a Bochner-Lichne-

rowicz-type argument using Ricci-flatness of holonomy G2-manifolds.

Claim 3.6: Let M be a compact G2-manifold, and η ∈ Hi7(M) a harmonic
form. Then η is parallel. Moreover, if H1(M) = 0, then Hi7(M) = 0
(i = 1, 2, 3, 4, 5, 6).

Proof: See [J2].

Remark 3.7: A G2-manifold is Ricci-flat, as shown by E. Bonan ([Bo]).
Then π1(M) is finite, unless M has a finite covering which is isometric to
T×M ′, where M ′ is a manifold with special holonomy, and T a torus. When
π1(M) is finite, Hi7(M) = 0 as Claim 3.6 implies.

We shall also need the following linear-algebraic result, which is well
known. Let M be a G2-manifold, and

Λ2(M) ∼= Λ2
7(M)⊕ Λ2

14(M)

the decomposition defined above. Consider the operator

∗ ◦ Lω : Λ2(M)−→ Λ2(M).

This operator is G2-invariant, hence by Schur’s lemma acts on Λ2
7(M) and

Λ2
14(M) as scalars. These scalars are computed as follows

Claim 3.8: For any α ∈ Λ2
7(M), we have ∗Lωα = 2α. For α ∈ Λ2

14(M), we
have ∗Lωα = −α.

Proof: See e.g. [Br2], (2.32).

3.2 Structure operator for G2-manifolds

Let (M,ω) be a G2-manifold. We have two parallel forms on M : ω and ∗ω,
and the results of Section 2 can be applied to ω and ∗ω as well.
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We denote by C, C∗ω the corresponding structure operators, and by dc
the operator {C, d}.

This part of the paper is a pure linear algebra. We never use the holon-
omy property: throughout this subsection, there is no need to assume that
our G2-manifold has holonomy in G2.

Consider the operator C2 = 1
2{C,C}. Being a supercommutator of two

differentiations, this operator is a differentiation.

Claim 3.9: Under these assumptions,

C2 = 3C∗ω (3.4)

Proof: Both sides of (3.4) are differentiations, and vanish on Λ0(M).
Therefore, to prove (3.4) it suffices to check that C2 = 3C∗ω on Λ1(M). Both
C2 and C∗ω define G2-invariant map from Λ1(M) to Λ3

7(M). By Schur’s
lemma, these operators are proportional. To show that the coefficient of
proportionality is 3, we compute C2 and C∗ω on e1, using (3.1).

A similar argument gives the following claim

Claim 3.10: Under the above assumptions, we have

{Lω, C∗} = −3C∗ω. (3.5)

Proof: The operator C∗ takes a form

C∗(ei1 ∧ ei2 ∧ ...)

=
∑
k1<k2

(−1)(ik1
−1)ik2C∗(eik1

∧ eik2
) ∧ ei1 ∧ ei2 ∧ ... ∧ ěik1

∧ ... ∧ ěik2
∧ ...

(3.6)
where C∗(eik1

∧ eik2
) is the usual crossed product of vectors eik1

, eik2
on the

space equipped with a 3-form and a non-degenerate bilinear symmetric form.
From (3.6) it is clear that C∗ is a second order differential operator on the
algebra Λ∗(M) (differential operators on a graded commutative algebra are
understood in the sense of Grothendieck - see e.g. [V2]). Then {Lω, C∗} is
a first order differential operator. An elementary calculation gives C∗ω = 0.
Therefore, {Lω, C∗} is a differentiation. To compare {Lω, C∗} with −3C∗ω,
we need to check that {Lω, C∗} = −3C∗ω on Λ1(M). Both of these operators
are G2-invariant, and Schur’s lemma implies that they are proportional on
Λ1(M). To compute the coefficient of proportionality, it suffices to compute
{Lω, C∗}, C∗ω} on some vector, e.g. e1.
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Claim 3.11: Under the above assumptions, C : Λ3(M)−→ Λ4(M) is an
isomorphism. Moreover, Cω = 2 ∗ ω.

Proof: Clearly, C preserves the decomposition of Λ∗(M) onto G2-
invariant summands as in (3.2). We write ω in orthonormal basis as in (3.1).
The equation Cω = 2∗ω is given by a direct calculation. Given a 3-form θ ∈
Λ3

7(M) and applying (3.5), we obtain Λ∗(Cθ) = −3(C∗∗ω)θ. However, C∗∗ω :
Λ3

7(M)−→ Λ1(M) is an isomorphism, because C∗ω : Λ1(M)−→ Λ3
7(M) is

non-zero. To prove Claim 3.11, it remains to show that C is an isomorphism

on Λ3
27(M). By Schur’s lemma, for this it suffices to show that C

∣∣∣∣Λ3
27(M)

is

non-zero.
Consider the form η = e5 ∧ (e1 ∧ e2 − e3 ∧ e4). Clearly, Λωη = 0 and

Lωη = 0. Therefore, η ∈ Λ3
27(M).

From (3.6) we find that C∗(e1 ∧ e2− e3 ∧ e4) = 0, hence e1 ∧ e2− e3 ∧ e4

lies in Λ2
14(M). This gives

C(η) =C(e5 ∧ (e1 ∧ e2 − e3 ∧ e4))

= C(e5) ∧ (e1 ∧ e2 − e3 ∧ e4)

= (e1 ∧ e2 + e3 ∧ e4 + e6 ∧ e7) ∧ (e1 ∧ e2 − e3 ∧ e4)

= e6 ∧ e7 ∧ (e1 ∧ e2 − e3 ∧ e4)

(3.7)

We obtain that C(η) 6= 0. Claim 3.11 is proven.

Remark 3.12: The calculation (3.7) gives

C(η) = − ∗ η (3.8)

and by Schur’s lemma this equation holds for all η ∈ Λ3
27(M).

Proposition 3.13: Let (M,ω) be a G2-manifold, and C its structure oper-
ator. Then C induces isomorphisms

Λi7(M)
C−→ Λi+1

7 (M), (3.9)

(i = 1, 2, 3, 4, 5).

Proof: By Schur’s lemma, (3.9) is either an isomorphism or zero. For
i = 1, i = 2 (3.9) is non-zero as follows from Claim 3.9. For i = 3, (3.9) is
non-zero by Claim 3.11. Using

C(ϕ ∧ ψ) = C(ϕ) ∧ ψ + (−1)ϕ̃ϕ ∧ C(ψ),
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we find that ∗C∗ is Hermitian adjoint to C. On the other hand, (3.9) is an
isomorphism if and only if

Λi+1
7 (M)

C∗−→ Λi7(M),

is an isomorphism. Using C∗ = ∗C∗, we obtain that Proposition 3.13 i = k
is implied by Proposition 3.13 for i = 6− k. Therefore, the already proven
assertions of Proposition 3.13 for i = 1, 2, 3 imply Proposition 3.13 for i =
4, 5.

4 Pseudocohomology for G2-manifolds

4.1 De Rham differential on Λ∗7(M)

To study the pseudocohomology, we use the following well known lemma
(appearing in a different form in [FU1] and [FU2]).

Lemma 4.1: Let η ∈ Λk7(M) be a differential form on a holonomy G2-
manifold (not necessarily compact), where 0 < k < 5 is an integer. Fix
parallel G2-invariant isomorphisms

Λk7(M)
τi,k−→ Λi7(M), (4.1)

for all i = 1, 2, 3, 4, 5 (by Schur’s lemma, these isomorphisms are well defined,
up to a constant). 1 Denote by d7 : Λi7(M)−→ Λi+1

7 (M) the Λ∗7-part of the
de Rham differential. Then d7(η) = 0 if and only if d7(τk,iη) = 0 for any
i = 1, 2, 3, 4.

Proof: Consider the Levi-Civita connection

∇ : Λi7(M)−→ Λi7(M)⊗ Λ1
7(M). (4.2)

The operator d7 is obtained as a composition of (4.2) and a G2-invariant
pairing Λi7(M) ⊗ Λ1

7(M)−→ Λi+1
7 (M). Using an irreducible decomposition

of Λ1
7(M)⊗Λi7(M) (see e.g. [Br2]), we find that Λ1

7(M)⊗Λi7(M) contains a
unique irreducible summand isomorphic to Λ∗7(M) as a G2-representation.
It is clear that d7 : Λi7(M)−→ Λi+1

7 (M) is obtained as a composition of
(4.2) and the projection to this Λ∗7(M)-summand. Therefore, the following

1Using Proposition 3.13, we could use the powers of C to define the isomorphisms (4.1).
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diagram is commutative, up to a constant multiplier

Λk7(M)
d7−−−−→ Λk+1

7 (M)

τi,k

y τi+1,k+1

y
Λi7(M)

d7−−−−→ Λi+1
7 (M).

(4.3)

We obtain that τi+1,k+1d7(η) = 0 if and only if d7(τi,kη) = 0. This proves
Lemma 4.1.

4.2 Computations of pseudocohomology

Theorem 4.2: Let (M,ω) be a compact G2-manifold, H∗(M) the space of
harmonic forms, and H∗c(M) ⊃ H∗(M) the space of pseudoharmonic forms.
Then

(i) Hic(M) = Hi(M) for all i 6= 3, 4.

(ii) The orthogonal complement2 Hic(M)>0 to Hi(M) in Hic(M) lies in
Λi27(M).

(iii) ∗(H3
c(M)>0) = H4

c(M)>0. Moreover, H3
c(M)>0 is generated by all

solutions of the equation dη = µ ∗ η, for all µ ∈ C, µ 6= 0, η ∈ Λ3
27(M).

Proof: Consider the orthogonal decomposition H∗c(M) = H∗(M) ⊕
H∗(M)>0. Since ∆ preserves H∗c(M), ∆ acts diagonally on H∗c(M), and
H∗(M)>0 is generated by all eigenvectors of ∆ with non-zero eigenvalue.
Therefore, d preserves H∗(M)>0

By Corollary 2.23 H∗c(M) is quasi-isomorphic to H∗(M). Therefore,
cohomology of d on H∗(M)>0 is zero. Now, Theorem 4.2 (i) is implied by
the following claim

Claim 4.3: Let (M,ω) be a compact G2-manifold, and η ∈ Hic(M) a non-
zero exact pseudo-harmonic form. Then i = 4.

Proof: To prove Theorem 4.2 (i) suffices to prove Claim 4.3 for i 6 4.
Indeed, this will imply that Hi(M)>0 = 0 for i < 3, but the Hodge ∗-
operator preserves H∗c(M), and exchanges Hi(M)>0 and H7−i(M)>0, hence
Hi(M)>0 = 0 for i = 1, 2 implies Hi(M)>0 = 0 for i = 5, 6.

2This notation has the following meaning: Hi
c(M)>0 is a sum of all positive eigenspaces

of Laplacian acting on Hi
c(M).
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Now, Theorem 4.2 (i) is equivalent to Claim 4.3 as we have shown above.
The same argument shows that Claim 4.3 for i 6 4. implies Theorem 4.2
(i) and the full statement of Claim 4.3.

Let η = dα be a d-exact 1-form in H1
c(M), α ∈ H2

c(M). Then Cη =
Cdα = −dCα = 0 (the middle equation is implied by dcα = 0). Therefore,
Cη = 0. However, C is clearly injective on Λ1(M). This proves Claim 4.3
for i = 1.

Let now η = dα be a d-exact 2-form in H2
c(M), α ∈ H1

c(M). Using
dcη = 0, we obtain

0 = {d, c}α = Cη + dCα. (4.4)

Write the decomposition η = η7+η14 induced by Λ2(M) ∼= Λ2
7(M)⊕Λ2

14(M).
Then (4.4) gives dCη = dCη7 = 0. From Lemma 4.1 we infer that d7η7 = 0.
Consider the top degree forms

η7 ∧ dα ∧ ω = η7 ∧ η7 ∧ ω. (4.5)

(the equality holds by Schur’s lemma as η7 is the Λ2
7(M)-part of η = dα).

Since Λ2
7(M) is an irreducible representation of G2, by Schur’s lemma the

2-form η7 −→
∫
η7 ∧ η7 ∧ ω is sign-definite (negative definite, as Claim 3.8

implies). Then
∫
η7 ∧ η7 ∧ ω < 0 unless η7 = 0. However, by (4.5)∫

η7 ∧ η7 ∧ ω =

∫
η7 ∧ dα ∧ ω = −

∫
dη7 ∧ α ∧ ω =

∫
d7η7 ∧ α ∧ ω = 0

as d7η7 = 0. We obtain that η ∈ Λ2
14(M). Using Claim 3.8 again, we obtain

that
∫
η ∧ η ∧ ω > 0 unless η = 0. However, η is exact, hence this integral

vanishes, bringing η = 0. We proved Claim 4.3 for i = 2.
Now, let η = dα be a d-exact 3-form in H3

c(M), α ∈ H2
c(M). To finish

the proof of Claim 4.3, we need to show that η = 0.
Since d∗ commutes with dc, d

∗
c , we have d∗α ∈ H1

c(M). As we have
shown above, H1

c(M) = H1(M), and therefore d∗α is harmonic. A d∗-exact
harmonic form vanishes. Therefore, d∗α = 0.

Then 0 = dcα = d∗Lωα. Similarly, 0 = d∗cα = Λdα. Using

Λ2(M) ∼= Λ2
7(M)⊕ Λ2

14(M),

write the decomposition α = α7 +α14. Then Lωα = 2 ∗α7−∗α14 as follows
from Claim 3.8. Therefore, d∗Lωα = ∗d(2α7 − α14). We obtain that α
satisfies the following:

d∗α = 0, d(2α7 − α14) = 0, Λdα = 0. (4.6)
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Clearly, d∗α = 0 is equivalent to d ∗ α = 0. Also, {Lω, d} = 0 (ω is closed).
Using ∗α7 = 1

2α7 ∧ ω, ∗α14 = −α14 ∧ ω (Claim 3.8), we rewrite d ∗ α = 0
as Lω(dα14 − 1

2dα7) = 0. From (4.6) we obtain Lω(dα14 − 2dα7) = 0.
Comparing these equations, we find

Lω(dα14) = 0, Lω(dα7) = 0 (4.7)

Using Claim 3.8 again, we find that (4.7) implies d∗α14 = d∗α7 = 0.
Now, C∗Λ2

14(M) = 0 because C∗ is G2-invariant. Using d∗α = d∗α7 = 0,
we obtain

0 = d∗cα = {d∗, C∗}α = d∗C∗(α14 + α7) = d∗C∗α7 = d∗cα7.

This implies
d∗cα7 = d∗cα14 = 0 (4.8)

Applying d∗c = {d,Λω}, we find that (4.8) brings

Λωdα7 = Λωdα14 = 0. (4.9)

Comparing (4.9) and (4.7), we find that

dα7, dα14 ∈ Λ3
27(M). (4.10)

This gives η = dα ∈ Λ3
27(M). Since dcη = 0, we have dCdα = 0, and the

form Cη = Cdα is closed. Therefore,∫
η ∧ Cη =

∫
dα ∧ Cdα = 0. (4.11)

However, on Λ3
27(M), the form η −→

∫
η ∧ Cη is non-zero (Claim 3.11),

hence, by Schur’s lemma, sign-definite.3 Therefore, (4.11) implies that η =
0. This proves Claim 4.3 for i = 3. We finished the proof of Claim 4.3. The
proof of Theorem 4.2 (i) is also finished.

Let α ∈ Λ3(M), and α = α1 + α7 + α27 its decomposition induced by
(3.2). To prove Theorem 4.2 (ii), we use the following trivial observation:

α1 =
1

7
LωΛωα, α7 =

1

4
ΛωLωα. (4.12)

Similarly, for η ∈ Λ4(M), η = η1 + η7 + η27, we have

η1 =
1

7
ΛωLωη, η7 =

1

4
LωΛωη. (4.13)

3From Remark 3.12 it follows that this form is negative definite.
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Assume now that α ∈ H3
c(M)>0. Then d∗α = 0 as Theorem 4.2 (i)

implies. Therefore

0 = dcα = {Lω, d∗}α = d∗Lωα.

From (4.12), we obtain

d∗α7 =
1

4
d∗ΛωLωα = −Λωdcα = 0 (4.14)

This implies
d∗cα7 = {d∗, C∗}α7 = d∗C∗α (4.15)

(the last equation holds because

kerC∗
∣∣∣
Λ3(M)

= Λ3
1(M)⊕ Λ3

27(M)

as G2-decomposition implies). However,

d∗C∗α = d∗cα = 0

since d∗α = 0. Then (4.15) gives d∗cα7 = 0. Similarly,

dcα7 = d∗Lωα7 = d∗Lωα (4.16)

(here we use

kerLω

∣∣∣
Λ3(M)

= Λ3
1(M)⊕ Λ3

27(M)

also implied by G2-decomposition). Using

0 = dcα = {d∗, Lω}α = d∗Lωα,

we infer from (4.16) dcα7 = 0. This gives α7 ∈ H3
c(M)>0.

Now, by (4.12),

0 = dLωΛωα7 = LωΛωdα7 + Lωd
∗
cα7 = LωΛωdα7. (4.17)

Using (4.13), we obtain that (4.17) gives dα7 ∈ Λ4
1(M). This means that

dα7 = f ∗ω, where f ∈ C∞(M) is a function. Therefore, 0 = d2α7 = df∧∗ω.
This leads to df = 0, as the map

Λ1(M)
L∗ω−→ Λ5(M)

is clearly injective. Therefore, α7 is harmonic, hence α7 = 0.
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We have shown that

H3
c(M)>0 ⊂ Λ3

1(M)⊕ Λ3
27(M).

Taking adjoint, we obtain also that

H4
c(M)>0 ⊂ Λ4

1(M)⊕ Λ4
27(M). (4.18)

Take an arbitrary α ∈ H3
c(M)>0. Then dα ∈ H4

c(M)>0. Using (4.18) and
(4.13), we obtain that Λdα = 0. Then

0 = d∗cα = {Λω, d}α = dΛωα. (4.19)

Since Λωα is a function, (4.19) gives α1 = 0. Then α ∈ Λ3
27(M). We proved

Theorem 4.2 (ii).
Now, every α ∈ Λ3

27(M) satisfying dα = µ ∗α clearly belongs to H3
c(M).

Indeed, in this case
Lωα = C∗dα = C∗α = 0

because the operators C∗, Lω are G2-invariant, and

d∗α = ∗d ∗ α = ∗µ−1d2α = 0.

because d2 = 0. Taking commutators of d∗ with Lω and d∗ with C∗, we
find that dcα = d∗cα = 0. To see that such α generate H3

c(M), we use the
following lemma, which finishes the proof of Theorem 4.2 (iii).

Lemma 4.4: In assumptions of Theorem 4.2, H3
c(M)>0 is generated by all

α ∈ H3
c(M)>0 which satisfy dα = µ ∗ α, µ 6= 0.

Proof: Since dc, d
∗
c commute with the Laplacian, H3

c(M)>0 is gener-

ated by the eigenspaces H3
c(M)λ of ∆

∣∣∣
H3

c(M)>0
, which are finite-dimensional.

Moreover, ∗d : Λ3(M)−→ Λ3(M) also commutes with the Laplacian, hence
it acts on the finite-dimensional spaces H3

c(M)λ. Since

(∗dα, α′) =

∫
M
dα ∧ α′ = −

∫
M
α ∧ dα′ = −(∗dα′, α),

the operator ∗d is skew-Hermitian, hence semisimple. Therefore, H3
c(M)λ

is generated by its eigenspaces. By Theorem 4.2 (i), d∗ vanishes on H3
c(M),

hence dα 6= 0 unless α is harmonic. Therefore, ∗d acts on H3
c(M)λ with
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non-zero eigenvalues µi.
4 We proved Lemma 4.4. The proof of Theorem 4.2

is finished.
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