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generation of the quantum averages 〈a+p ap〉, 〈apa−p〉 and 〈a+p a+−p〉, which slowly change in

time. We show that this observation in particular means that loop corrections to correla-

tion functions in de Sitter space can not be obtained via analytical continuation of those

calculated on the sphere.

We find harmonics for which the particle number 〈a+p ap〉 dominates over the anoma-

lous expectation values 〈apa−p〉 and 〈a+p a+−p〉. For these harmonics the Dyson-Schwinger

equation reduces in the IR limit to the kinetic equation. We solve the latter equation,

which allows us to sum up all loop leading IR contributions to the Whiteman function.
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1 Introduction

There are large infrared (IR) loop contributions to the correlation functions even due

to massive fields in de Sitter (dS) space. The question is whether after the summation

over all leading IR loop contributions the correlation functions will be finite or will grow

unboundedly. If the correlation functions do grow in the IR limit, then this is the sign that

back-reaction of the quantum fluctuations on the background dS geometry is not negligible.

The literature on this subject is vast, see e.g. [1]–[51].

In general to sum the loop contribution one has to solve the Dyson-Schwinger equation

(DSE). However, the interest is in the solution of this equation in the extreme IR limit, i.e.

in the sum of the leading IR corrections. Colloquially speaking in the latter limit quantum

coherence is lost and the legs in the loops sit on mass-shell. The situation is analogous to

the one discussed in a similar context e.g. in [52]–[54]. As the result, known in condensed

matter physics, the DSE for non-stationary diagrammatic technic reduces to the Boltzmann

equation (see e.g. [55, 56]). In other words the classical Boltzmann kinetic equation (KE)

allows to sum up the leading IR corrections. We concisely review the relation between DSE

and KE in the appendix.
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Figure 1. Cauchy surfaces in Poincare patch.

In this note we derive the Boltzmann equation in the Poncare patch (PP) of dS space.

For the earlier papers on the KE in curved spaces in general and in dS space in particular

see e.g. [57–62]. Unlike the equations of those papers our equation does not really describe

the dynamics of the occupation numbers of particles in dS space, because in its derivation

we use the exact harmonics on dS background rather than the plain waves. It describes the

dynamics of the occupation numbers of the waves with wavelength comparable to the hori-

zon size. We would like to study the physics due to long wavelength fluctuations because IR

effects are dominated by such objects. Still we call them as particles throughout the paper.

Our eventual goal is to see whether the back-reaction from the quantum fluctuations in

dS space is negligible or not. But for the beginning we neglect back-reaction and consider

self-interacting massive QFT on the fixed dS background. We restrict our attention to the

behavior of the solution of the KE in the extreme IR limit.

The consideration of the exact harmonics in the background fields brings several com-

plications. The main one is generic for the curved space-times and is due to that even for

the fundamental questions in curved space-times it is necessary to specify boundary con-

ditions, so to say. This is because there is no any preferable reference frame in a general

curved space-time.

In dS space this complication reveals itself through the crucial difference between

Cauchy problems for the KE as defined in global dS and in PP. The main difference is

due to the different geometry of the Cauchy surfaces in these two situations. The PP of

dS space is the grey region in the rectangle shown on the figure 1 — Penrose diagram

of the dS space. The left and right sides of the rectangle are glued to each other. The

Cauchy surfaces in the PP are depicted as the lines close to the hyperbolas shown in this

figure. As we go to the past infinity the Cauchy surfaces degenerate to the boundary of the

PP. The Bunch-Davies (BD) vacuum means that there are no positive energy states on the

boundary of the PP. Complementary to the grey part of the diagram is the contracting PP.

The Cauchy surfaces in global dS space are depicted by the lines of the type shown

on the figure 2. E.g. the Euclidian vacuum means that there are no positive energy

states on such a surface going nearby the neck of dS space. In such a situation we have a

different state at the boundary of the PP. Thus, even despite that the Whiteman function

for BD vacuum state in PP coincides with the one for Euclidian vacuum in global dS, the
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Figure 2. Cauchy surfaces in global de Sitter.

QFT dynamics in both situations can be quite different. In particular, global dS space

contains as well the contracting PP. We point out that the behavior of solutions of the

KE in the contracting patch is quite different from the expanding one. Furthermore, from

the cosmological point of view one needs to study global dS because it sets up initial

conditions for the PP — for the inflation. But this issue demands a separate study and

will not be addressed in the present paper. Here we restrict our attention to the expanding

and contracting PP of dS space.

Another complication is peculiar for homogeneous time-dependent backgrounds with

horizons such as dS space. It comes from the fact that unlike Minkowski and AdS space

there is no unique choice of harmonic basis which diagonalizes free Hamiltonian once and

forever. To address this complication we do not specify harmonics in the general formulas.

We attempt to use formulas which have a generic application in dS space or even for more

general FRW space-times with flat spacial sections. At the end we of cause study physics

due to different specific choices of harmonics.

Yet another complication is as follows. The regular KE for particles describes the

change in time of the particle density np = 〈a+~p a~p〉. At the same time one assumes that the

anomalous quantum averages κp = 〈a~p a−~p〉 and κ∗p = 〈a+~p a+−~p〉 are vanishingly small. In

background fields in general this is not the case any more. Only if one finds the appropriate

equilibrium state he can neglect κp. In the paper [22] the KE of the type interesting for us

was derived. However in that paper the analysis of the presence of the anomalous quantum

averages κp and κ∗p was not done. As the result the wrong choice of the harmonics was

made there.

Furthermore, waggly speaking KE is valid if its solution np is slow function of time in

comparison with the corresponding harmonics. The consideration of the long wavelength

fluctuations poses the question about the existence of such a separation of scales in KE.

However, we check whether np is slow enough or not for every explicit solution of the

equation, which we find.

Finally, in this paper we discuss the scalar fields from the principle series, which have

masses m > 3/2 in units of the dS curvature. The dynamics of the light fields, m < 3/2,

i.e. from the complementary series, can be quite different. It goes without saying about

the massless fields.
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2 Specification of harmonics

The goal of this paper is to derive kinetic equation (KE) for the exact harmonics in de

Sitter (dS) space. To do that we have to specify which harmonics one should use. As we

explain in the next section the proper KE can be derived only in such circumstances when

one can neglect 〈ap a−p〉 in comparison with 〈a+p ap〉, where a and a+ are annihilation and

creation operators. Below we will be able to specify such harmonics for which 〈ap a−p〉 is
negligible in comparison with 〈a+p ap〉 at the low physical momenta pη → 0, where η is the

conformal time in the dS space.1

The way we will do that is as follows. The Keldysh propagator carries statistical

information about the theory and the state in question (see the discussion below). The

calculation of the one loop contribution to the Keldysh propagator will allow us to estimate

the behavior of 〈a+p ap〉 and 〈apa−p〉. For some harmonics 〈a+p ap〉 will be of the same order

as 〈ap a−p〉, while for the others 〈ap a−p〉 will be suppressed in the IR limit.

We would like to consider scalar field theory in the background space-time with the

metric:

ds2 = a2(η)
[

dη2 − d~x2
]

. (2.1)

In this paper we always consider (+,−,−,−) signature. Although all our formulas can be

straightforwardly generalized to arbitrary dimensions we restrict ourselves to 4D.

The choice a(η) = 1/η, 0 < η = e−t < +∞ corresponds to the PP of dS space. We put

the Hubble constant to one H = 1. Past infinity of the PP corresponds to η ≡ e−t → +∞,

while the future infinity is at η ≡ e−t → 0. We prefer the definition η = e−t > 0 instead

of the more standard one η = −e−t < 0 to avoid dealing with non-integer powers of

the negative quantity. The contracting PP corresponds as well to a(η) = 1/η, but now

η = et and past infinity corresponds to η = 0, while future infinity — to η = +∞. So

in contracting PP conformal time flows in the reverse direction with respect to (wrt) the

expanding PP. Below we always talk about either expanding or contracting PP of dS space,

but prefer to keep generic a(η) in those formulas which may be applied to more general

space-times.

We consider the theory of the real massive scalar particle with the cubic self-interaction:

S≡
∫

d3x

∫ 0

∞
dη
√

|g| L[φ]=
∫

d3x

∫ 0

∞
dη a4(η)

[

1

2 a2(η)
(∂µφ)

2 − m2

2
φ2 − λ

3
φ3

]

. (2.2)

Although the cubic potential has a run away instability we have chosen it to simplify all

our formulas. A short comment on how the instability of the cubic theory reveals itself in

the KE can be found in the first part of the appendix. Conceptually all our calculations are

valid as well for the theory with φ4 self-interaction term. In fact, it is not difficult to write

the answer for the latter theory once the answer for the cubic self-interaction is known.

1The extreme IR limit for the physical momentum corresponds to the future infinity for the fixed

comoving momentum in the expanding Poincare patch (PP) of dS space.
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2.1 Tree-level two-point function

To set up the notations we have to start with the tree-level two-point function. The

expansion of the free field in terms of the normalized harmonics is

φ(η, ~x) =

∫

d3k
[

ak gk(η) e
−i~k ~x + a+k g∗k(η) e

i~k ~x
]

, (2.3)

where φk(η, x) = gk(η) e
−i~k ~x are some solutions of the Klein-Gordon equation,

[

a−4 ∂η a
2 ∂η −

∆

a2
+m2

]

φ(η, x) = 0, (2.4)

in the metric under consideration. Concretely gk(η) = η3/2 h(kη)/
√
2, where h(kη) is some

properly normalized solution of the Bessel equation, a(η) = 1/η.

From the energy momentum tensor Tµν = ∂µφ∂νφ−gµν L[φ], we find the Hamiltonian:

H(η) = a2(η)
∫

d3xT00(η). The free Hamiltonian looks as:2

H0(η) =

∫

d3k
[

a+k ak Ak(η) + ak a−k Bk(η) + h.c.
]

,

Ak(η) =
a2(η)

2

{

∣

∣

∣

∣

dgk
dη

∣

∣

∣

∣

2

+
[

k2 + a2(η)m2
]

|gk|2
}

,

Bk(η) =
a2(η)

2

{

(

dgk
dη

)2

+
[

k2 + a2(η)m2
]

g2k

}

. (2.5)

The harmonics, which simultaneously solve the Klein-Gordon equation and Bk = 0 can

be found only in those regimes, when the background field is switched off and, hence, Ak

and Bk are time independent. Then the harmonics just coincide with the plain-waves.

In general the solutions of the equation Bk = 0 and of the Klein-Gordon one do not

coincide, because Bk is time dependent. Hence, the free Hamiltonian is not diagonal.

Furthermore, one can not choose the solutions of the equation Bk = 0 as gk, because then

the corresponding ak and a+k do not obey the Heisenberg algebra.

We do not specify harmonics in the formulas which have general application, but below

we are going to consider particular cases. Let us make a few comments about the standard

choice of the Bunch-Davies (BD) harmonics in the PP [63]:

gk(η) ≡
√
π η

3

2 e−
π µ
2

2
H(1)

i µ (k η), k =
∣

∣

∣

~k
∣

∣

∣
, µ =

√

m2 − 9

4
, (2.6)

where H(1)
iµ (x) is the Hankel function. We choose H(1)

iµ (x) as the positive energy harmonics

instead of H(2)
iµ (x) because of the reverse order of the time flow: ∞ → η → 0. It is not

hard to see that the harmonics in question diagonalize the Hamiltonian at the past infinity

2After the normal ordering of the free Hamiltonian one has to absorb the infinite vacuum energy into

the redefinition of the cosmological constant. Such a quantity is time independent if expressed in terms of

the physical momentum p/a(η) and attributed to the Hamiltonian conjugate to the time t rather than to

the conformal time η = e−t.
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η → ∞, because in this limit gk(η) → η√
k
ei k η and Bk → 0, while Ak → k. In the future

infinity η → 0 there is a solution of the Klein-Gordon equation, which only approximately

solves Bk = 0 for the very massive fields m ≫ 3/2.

The Keldysh propagator is defined as3 DK(η1, η2, |~x− ~y|) = 1
2 〈{φ(η1, ~x), φ(η2, ~y)}〉 .

Due to the spacial homogeneity of dS space we find it more convenient to make the Fourier

transform along the spacial directions — DK
p (η1, η2) ≡

∫

d3r DK(η1, η2, ~r) e
−i ~p~r. Further-

more, to simplify the formulas we define dK(pη1, pη2) ≡ (η1 η2)
− 3

2 DK
p (η1, η2). At tree-level

this quantity is equal to:

dK0 (pη1, pη2) =
1

2
[h(pη1)h

∗(pη2) + h∗(pη1)h(pη2)]
(

1 + 2
〈

a+p ap
〉)

+

+h(pη1)h(pη2) 〈ap a−p〉+ h∗(pη1)h
∗(pη2)

〈

a+p a+−p
〉

, (2.7)

if we average w.r.t. an arbitrary state. If the average is taken w.r.t. the vacuum state

ap |〉 = 0, then 〈ap a−p〉 =
〈

a+p a+−p
〉

= 0, and
〈

a+p ap
〉

= 0. Different choices of the

harmonics h(pη) correspond to the different choices of the vacuum state. Using Gradshtein

and Rizhik eq. 6.672.2, one can show that for the arbitrary choice of the solution of the

Bessel equation h(pη) the Keldysh propagator is equal to:

DK(η1, η2, |~x− ~y|) = C1

(

z2 − 1
)− 1

2 P 1
− 1

2
+i µ

(z) + C2

(

z2 − 1
)− 1

2 Q1
− 1

2
+i µ

(z), (2.8)

where P 1
ν and Q1

ν are associated Legendre functions; z = 1 + (η1−η2)2−|~x−~y|2
2η1 η2

is the hy-

perbolic distance between the two points in question on dS space; C1,2 are some complex

constants whose values depend on the particular choice of the Harmonics. E.g. for the BD

harmonics (2.6) C2 = 0 and the two-point function coincides with the one following from

the analytical continuation from the sphere and having proper Hadamard behavior.

2.2 One loop two-point function

In this subsection we basically repeat and generalize the calculations of [37] and [64]. We

would like to find the leading one loop contribution to dK(pη1, pη2) as p η1,2 → 0 and

η1/η2 = const when we start from the vacuum state at the past infinity. Using Schwinger-

Keldysh diagrammatic technic one obtains the leading answer:

dK1 (pη1, pη2)≈
1

2
h(pη1)h

∗(pη2)×

× λ2

2π2

∫ 1/η

p

dk

k

∫∫ 0

∞
dx1 dx2 (x1 x2)

1

2 h
[p

k
x1

]

h∗
[p

k
x2

]

h2(x1) [h
∗(x2)]

2 −

−h(pη1)h(pη2)× (2.9)

× λ2

2π2

∫ 1/η

p

dk

k

∫ 0

∞
dx1

∫ x1

∞
dx2 (x1 x2)

1

2 h∗
[p

k
x1

]

h∗
[p

k
x2

]

h2(x1) [h
∗(x2)]

2+c.c.

3Note that here we use a slightly different definition of the diagrammatic rules than in the appendix. The

difference is in the Keldysh rotation — instead of the one used in the appendix here we use φcl = (φ++φ−)/2,

φq = φ+−φ−. The rules in the main body of the text agree e.g. with [64], while those used in the appendix

agree with [56]. That is because here we would like to compare our formulas to [64], while the formulas in

the appendix should be compared to [56].
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where under the k integral it is assumed that η ≡ √
η1η2 ≫ k ≫ p. This formula reduces

to the one obtained in [37] when η1 = η2.

From the last expression we see that although we have started from the vacuum state,

where 〈ap a−p〉 = 0 and
〈

a+p ap
〉

= 0, these quantities are generated at one loop level. This

can be traced back to the pair creation in dS space. Indeed in the course of evolution

towards future infinity η → 0 the density of the created particles appears to be:

np(η) ≡ 〈a+p ap〉

=
λ2

4π2

∫ 1/η

p

dk

k

∫∫ 0

∞
dx1 dx2 (x1 x2)

1

2 h
[p

k
x1

]

h∗
[p

k
x2

]

h2(x1) [h
∗(x2)]

2 . (2.10)

At the same time the anomalous quantum average is given by

κp(η) ≡ 〈ap a−p〉 (2.11)

=
λ2

2π2

∫ 1/η

p

dk

k

∫ 0

∞
dx1

∫ x1

∞
dx2 (x1 x2)

1

2 h∗
[p

k
x1

]

h∗
[p

k
x2

]

h2(x1) [h
∗(x2)]

2 .

As the side remark let us point out that if one by mistake were using the standard Feyn-

man diagrammatic technic in the circumstances under consideration, he would never see

the appearance of the terms proportional to h(pη1)h(pη2) or h
∗(pη1)h∗(pη2) in loop con-

tributions to the Whiteman function.4 It is not hard to see that only terms proportional to

h∗(pη1)h(pη2) are generated in the loops within the standard Feynman technic. As well in

the stationary flat space case the Schwinger-Keldysh technic gives the same answer as the

Feynman one, which reveals itself through the cancelation of all terms contributing to κp.

Now let us calculate the leading one loop IR contributions for various choices of har-

monics h(pη). To start we choose BD harmonics (2.6). For this choice, the x1 and x2
integrals in (2.9) rapidly converge and are saturated around x1,2 ∼ µ, because in this case

h(x) ∼ eix as x → ∞. Hence, because p/k ≪ 1 we can Taylor expand the h(px/k) functions

around zero, using their leading IR behavior

h(x) ≈ A+ xiµ +A− x
−iµ, x → 0,

A+ =

√
π e

πµ
2

2iµ+
1

2 Γ (1 + iµ) sinh (πµ)
, A− =

√
π e−

πµ
2

2−iµ+
1

2 Γ (1− iµ) sinh (−πµ)
. (2.12)

Furthermore, expanding h(pη1,2) for small pη1,2 and then keeping only leading IR terms

in the x1 and x2 integrals, one can find the sum of the tree level and one loop leading IR

contributions

dK0+1 (pη1, pη2) ≈ coth (πµ)

2µ
siµ +A+A∗− (p η)2 i µ ×

×
{

1 +
λ2

2π2µ
log

(

1

pη

)
∫∫ 0

∞
dx1 dx2 (x1 x2)

1

2 h2(x1) [h
∗(x2)]

2 ×

×
[

θ(x1 − x2)

(

x1
x2

)iµ

− θ(x2 − x1)

(

x1
x2

)−iµ
]}

+ c.c., (2.13)

4From the Whiteman function one can construct Keldysh and/or Feynman propagator.
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where θ(x1 − x2) is the Heviside θ-function and s = η1/η2, η =
√
η1η2. In deriving this

result we have used that [37]

∣

∣

∣

∣

∫ 0

∞
dxx

1

2
+i µ h2(x)

∣

∣

∣

∣

2

= e−2π µ

∣

∣

∣

∣

∫ 0

∞
dxx

1

2
−i µ h2(x)

∣

∣

∣

∣

2

. (2.14)

Our result (2.13) reduces to the one obtained in [37] when s = 1. Thus, we see that

contributions to np ≡ 〈a+p ap〉 and κp ≡ 〈ap a−p〉 are of the same order. As we explain in

the next section this means that BD harmonics are not suitable to write the KE only for np.

Let us consider a different choice of harmonics — e.g. so called Jost functions at future

infinity

h(x) =

√

π

sinh(πµ)
Jiµ(x). (2.15)

They behave as h(x) ∼ xiµ, when x → 0. If one substitutes these harmonics into (2.9), he

should take into account that these harmonics behave at past infinity as

h(x) =

√

π

4 sinh(π µ)x

[

ei x + e−π µ−i x] , x → ∞. (2.16)

Hence, the x1 and x2 integrals in (2.9) have contributions around infinity due to the

interference terms between eix and e−ix. They do not converge fast enough: they are

saturated in the vicinity of px/k ∼ µ rather than at x ∼ µ. Hence, naively one can not

Taylor expand h(px/k) around zero inside the x1,2 integrals. However, let us subtract from

and then add to h2(x) and [h∗(x)]2 under the x1,2 integrals the values of the interference

terms, π e−πµ

4 sinh(π µ)x :

h2(x) = h2(x)− π e−πµ

4 sinh(π µ)x
+

π e−πµ

4 sinh(π µ)x
.

Then the x1,2 integrals of h2(x) − π e−πµ

4 sinh(π µ)x and of its complex conjugate are saturated

around x ∼ µ and one can Taylor expand h(px/k) around zero inside the corresponding

expressions. At the same time the contributions from the additional integrals of π e−πµ

4 sinh(π µ)x

are suppressed in the IR limit. Indeed, due to extra powers of q the momentum integrals,

dq, are not divergent in the limit pη → 0.

Thus, the leading IR contribution to the two-point function in this case is as follows:

dK0+1 (pη1, pη2) ≈ 1

2µ

[

siµ + s−iµ
]

× (2.17)

×
{

1 +
λ2

2π2 µ
log

(

1

pη

)
∣

∣

∣

∣

∫ 0

∞
dxx

1

2
+i µ

[

h2(x)− π e−πµ

4 sinh(π µ)x

]
∣

∣

∣

∣

2
}

.

We see that for this choice of the harmonics the particle number density np dominates over

κp in the extreme IR limit. As we explain in the next section this means that the harmonics

under consideration are suitable for the derivation of the KE in dS space at future infinity.
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2.3 de Sitter vs. sphere QFT

Before going on with KE let us make a few comments about the possibility to formulate the

dS QFT via analytical continuation from the sphere [33–36]. The IR limit of the tree-level

propagator for the BD harmonics is:

dK0 (pη1, pη2) ≈
coth (πµ)

2µ
siµ +A+A∗− (p η)2 i µ + c.c. (2.18)

Mass renormalization µ+∆µ would lead to the one loop contribution of the following form:

dK1 (pη1, pη2) =
coth (πµ)

2µ
siµ i∆µ log(s) +A+A∗− (p η)2 i µ 2 i∆µ log(pη) + c.c. . (2.19)

Note that one expects the correction ∆µ to be complex [64]. The last expression can not

reduce to the actual result (2.13) for any choice of ∆µ. In the light of what we have

been saying in the sections above it is conceptually misleading to interpret the one loop

contribution to the Whiteman or Keldysh propagator in dS space as the mass renormaliza-

tion, because its proper interpretation is in terms of particle creation — in terms of slow

functions np and κp of the average conformal time η =
√
η1 η2.

At the same time the one loop Feynman diagrammatic technic calculation on the sphere

can lead only to the mass renormalization: the authors of [33–36] expected that after the

appropriate subtraction of the UV divergences the remaining finite part would coincide

with the one obtained by the direct calculation in dS space. However, now one can see

that this can not happen. So it is not correct to define QFT on dS space via analytical

continuation from the sphere, even in the situations when the tree-level dS correlation

functions are indeed obtained via such a continuation.

Analytical continuation from the sphere may describe the stationary situation in dS,

if any, but not the approach to the stationarity. The stationary situation corresponds to

κp = 0 and np being independent of η. In fact, in the stationary situation the two-point

correlation function depends only on the time difference (on η1/η2 in terms of the conformal

time) rather than on both of the times (η1 and η2) independently. Such a situation can be

achieved in dS space only in the extreme IR limit. From the one loop calculation above

one may see that in BD state stationary situation can not happen in principle. However,

for the Jost functions at future infinity the stationary situation may happen if the result

of the summation of all loops — np(η) — becomes somehow independent of time in the

future infinity.

3 The physical meaning of κp

The one loop calculation of the previous section shows that the two-point function behaves

as

dK(pη1, pη2) =
1

2
[h(pη1)h

∗(pη2) + h∗(pη1)h(pη2)] [1 + 2np (
√
η1η2)] +

+h(pη1)h(pη2)κp (
√
η1η2) + h∗(pη1)h

∗(pη2)κ
∗
p (
√
η1η2) , (3.1)
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when pη1,2 → 0. Here np(η) and κp(η) are slow functions of their argument in comparison

with the harmonics h(pη). Note that they are functions of time only, i.e. homogeneous in

space. That is a natural situation in such a homogeneous space as dS, especially for the

small values of the physical momenta.

Such a situation allows to write a system of KE for both np ≡ 1
V

〈

a+p ap
〉

and κp ≡
1
V 〈ap a−p〉. Here V = δ(0) is the comoving volume of the spatial sections. From the

normalization of the harmonics it follows that then np is the density per physical volume —

per a3(η)V — because np appears in the expression for the total number density as follows:

N =
∫

d3p a−3(η)np(η). Here p is the comoving momentum, while p/a(η) is the physical

one. The particle number density per comoving volume is defined as n̄p = np/a
3(η).

The interaction Hamiltonian has the form (up to zero mode treatment, which is con-

cisely discussed in the appendix):

Hint =
λ

3

∫

d3k1 d
3k2 d

3k3 a
4(η)×

×
{

3 δ
(

−~k1 + ~k2 + ~k3

) [

g∗k1 gk2 gk3(η) a
+
k1
ak2 ak3 + gk1 g

∗
k2 g
∗
k3(η) ak1 a

+
k2
a+k3

]

+ δ
(

~k1 + ~k2 + ~k3

) [

gk1 gk2 gk3(η) ak1 ak2 ak3 + g∗k1 g
∗
k2 g
∗
k3(η) a

+
k1
a+k2 a

+
k3

]}

, (3.2)

Using this Hamiltonian one can find the evolution in time of 〈a+a〉 and 〈aa〉 and proceed

along the same lines as in the first part of the appendix. But now we have to take into

account, when perform Wick contractions, that not only
〈

a+p ap′
〉

= np δ(p − p′), but as

well
〈

ap ap′
〉

= κp δ(p+ p′) and
〈

a+p a+p′
〉

= κ∗p δ(p+ p′).
With the use of the following matrixes:

Np(η1, η2) =

(

np(η1) g
∗
p(η2) κp(η1) gp(η2)

κp(η1) gp(η2) np(η1) g
∗
p(η2)

)

, P =

(

0 1

1 0

)

(3.3)

the resulting system of KE can be written in a compact form. The real equation has the

form:

dnp(η)

dη
= [N → P N ] + 2λ2

∫

d3k1 d
3k2

(2π)6

∫ η

η0

dη′ Re Tr (3.4)

{

δ
(

~p− ~k1 − ~k2

)

Cpk1k2(η)

[

(

1 +N∗p
)

Nk1 Nk2
−N∗p (1 +Nk1) (1+Nk2)

]

(η′, η′)+

+2 δ
(

~k1 − ~k2 − ~p
)

Ck1k2p(η)
[

N∗k1(1 +Nk2) (1 +Np)−
(

1 +N∗k1
)

Nk2 Np

]

(η′, η′)+

+δ
(

~p+ ~k1 + ~k2

)

Dpk1k2(η)
[

(1 +Np) (1+Nk1) (1+Nk2) −NpNk1 Nk2

]

(η′, η′)
}

,

while the complex one is as follows:

dκp(η)

dη
= [N → P N ] + 2λ2

∫

d3k1 d
3k2

(2π)6

∫ η

η0

dη′ (~p → −~p) Tr (3.5)

{

δ
(

~p− ~k1 − ~k2

)

Cpk1k2(η)
[

(1 +Np) (1 +Nk1) (1 +Nk2) −NpNk1 Nk2

]

(η′, η′)+

+2 δ
(

~k1 − ~k2 − ~p
)

C∗k2k1p(η)
[

N∗k1 (1 +Nk2) (1 +Np) −
(

1 +N∗k1
)

Nk2 Np

]

(η′, η′) +

+δ
(

~p+ ~k1 + ~k2

)

D∗pk1k2(η)

[

(1 +Np) N
∗
k1 N

∗
k2
−Np

(

1 +N∗k1
) (

1 +N∗k2
)

]

(η′, η′)

}

,
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η0 is the moment of time when we switch on the interactions. The notation [N → P N ]

means that we have to add to the explicitly written expression the same one where every N

is substituted by the product P N ; Re Tr means that one has to take the real part and the

trace of the expression following after these signs; at the same time (~p → −~p) Tr means

that one has to take the trace and add to the expression following after these signs the same

one with the exchange ~p → −~p. Finally Ck1k2k3 = g∗k1 gk2 gk3 and Dk1k2k3 = gk1 gk2 gk3 .

To convert (3.4), (3.5) into a tractable form one has to assume that np(η
′) and κp(η

′)
are slow functions in comparison with the harmonics. The situation is similar to the one

discussed in the appendix. Then the first argument of the matrix Nk(η
′, η′) can be taken

to be η instead of η′. Furthermore, explicit check shows that one can extend the limits of

the η′ integration inside the collision integral (CI) to η → 0, η0 → ∞. This does not make

the η′ and k integrals divergent.

Expanding the terms under the CI in (3.4) one will encounter the standard expressions

which appear in the CI written in the appendix:

[(1 + np)nk1 nk2 − np (1 + nk1) (1 + nk2)] ,

[nk1 (1 + nk2) (1 + np)− (1 + nk1)nk2 np] ,

[(1 + np) (1 + nk1) (1 + nk2)− np nk1 nk2 ] (3.6)

These three contributions have the following physical meaning. The first term describes

the competition between two processes. One that the wave with the momentum p decays

into two waves ~k1 +~k2 = ~p. This process, corresponding to the term np (1+nk1) (1+nk2),

appears with the minus sign in the CI because it describes the loss of the wave with the

momentum p. The inverse gain process, corresponding to the term (1 + np)nk1 nk2 with

the plus sign, is that when two waves merge to create the wave with the momentum p.

The second term in (3.6) describes as well two competing processes. The first process

is that the wave with the momentum p can merge together with another wave (with the

momentum k2) to create a third one (with the momentum k1). This is the loss process.

The inverse gain process happens when a wave (with the momentum k1) decays in to two,

one of which is with the momentum p. The coefficient 2 in front of this term is just the

combinatoric factor because we can exchange ~k1 and ~k2.

The third term as well describes two processes. The gain process is when three waves,

one of which is with the momentum p, are created out of vacuum. The loss process is

when three waves are annihilated into the vacuum. All these processes are not allowed by

energy-momentum conservation for massive particles in flat space. However, in dS space

all these processes are allowed [22, 65–74], because there is no energy conservation.

Due to the presence of κp in (3.4) we have extra terms in CI. All of them can be

obtained from those listed in (3.6) via the simultaneous substitutions of (1 + nk,p)’s and

nk,p’s by κk,p’s or κ
∗
k,p’s. E.g. we encounter terms of the form:

[(1 + np)κk1 nk2 − np κk1 (1 + nk2)] (3.7)

which as well correspond to the two competing processes — one that the wave with the

momentum p lost (gained) in such a process that instead of the creation (annihilation) of

the two particles k1 and k2 we see single k2 and the missing momentum k1 is gone into
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(taken from) the background quantum state of the theory. Which should not be confused

with the background geometry.

Similarly we encounter terms of the form

[(1 + np)κk1 κk2 − np κk1 κk2 ] (3.8)

which describe the processes in which both k1 and k2 are coming from (going to) the

background state.

Thus, we find it natural to interpret the anomalous quantum average κp = 〈ap a−p〉 as
the measure of the strength of the backreaction on the background quantum state of the

theory of the various processes described by the standard terms (3.6) in CI. Then it should

be expected that in the vicinity of the equilibrium the backreaction is small. Which means

that κp is suppressed in comparison with np and can be neglected. In such a situation the

system of KE reduces to one equation for np only.

Rephrasing, if we start from an initial state, which is substantially different from the

eventual stationary one, the generated κp is comparable to np. But as the state of the theory

approaches the equilibrium, κp becomes suppressed, which signals the small backreaction.

The picture we have in mind is as follows. Note first of all that the in-state (say BD

one) looks as the coherent state from the point of view of our preferable out-state (specified

by the above out Jost harmonics). The situation is similar to the one for the QED in the

constant electric field background [77]. Now consider a flat space ordinary QFT, which has

the unique Poincare invariant vacuum state. Consider its evolution in time if the in-state

is some excited coherent state. Intuitively it is natural to think that the final state of the

theory will be build on the basis of the appropriate vacuum state under consideration. And

one can explicitly see that in the in-state the anomalous quantum average 〈aa〉 will be of

the same order as 〈a+a〉, while in the out-state the anomalous quantum average will be

suppressed. Here a+ and a are creation and annihilation operators corresponding to the

correct Poincare invariant vacuum state.

4 Kinetic equation in Poincare patch

Taking into account the one loop calculation above we conclude that if one starts from the

BD state at past infinity then he has to solve KE equation for np and κp together. At the

same time, we may assume that in the expanding PP of dS space there is a final state,

which is close to stationarity and is build on the basis of the Fock space corresponding

to the out Jost harmonics h(x) ∼ Jiµ(x). For the latter harmonics one can write the KE

equation containing only np.

Then, as η → 0, we can put κp = 0 in (3.4) to arrive at

dnp(η)

d log(η)
=

λ2

π2

∫ ∞

0
dk η (kη)

1

2

∫ 0

∞
dy′

(

y′
)

1

2 ×

×
{

Re

(

C

[

p

k
kη, kη,

|p− k|
k

kη

]

C∗
[

p

k
y′, y′,

|p− k|
k

y′
])

×

×
[

(1 + np)nk n|p−k| − np (1 + nk) (1 + n|p−k|)

]

(η) +
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+2Re

(

C

[

kη,
|k − p|

k
kη,

p

k
kη

]

C∗
[

y′,
|k − p|

k
y′,

p

k
y′
])

×

×
[

nk (1 + n|k−p|) (1 + np) − (1 + nk)n|k−p| np

]

(η) +

+Re

(

D

[

kη,
|p+ k|

k
kη,

p

k
kη

]

D∗
[

y′,
|p+ k|

k
y′,

p

k
y′
])

×

×
[

(1 + nk) (1 + n|p+k|) (1 + np) − nk n|p+k| np

]

(η)

}

, (4.1)

where C[x, y, z] = h∗(x)h(y)h(z), D[x, y, z] = h(x)h(y)h(z) and h(x) is the specified

above set of solutions of the Bessel equation. In deriving this equation we assumed that all

quantities under the integral over d3~k depend only on |~k|and changed the variables y′=kη′.
This is not yet the equation we are looking for. But before going on let us make a

few comments. First, it is not hard to see that for short periods of time t = − log η ≪ 1,

i.e. well within the cosmological horizon, and for m, k ≫ 1, the η′ integrals simplify and

the above equation reduces to the one in flat space presented in the appendix. However,

for cosmological times one has to use solutions of the Bessel equation instead of the flat

space plain waves. Then one does not obtain the δ-functions ensuring energy conservation

inside the CI. That is of cause should be the case in such a time dependent gravitational

background as dS space.

Second, the prefactors of the np dependent terms inside the CI can be considered as the

definitions of the rates of the six processes described by the CI. This can be a way to define

the rates in the circumstances when there is no well defined notion of the S-matrix [48–51].

For the small physical momenta (pη → 0) one should look for a solution of this equation

in the form of the function of the physical momentum p η — np(η) = n(pη). In fact, PP

brakes some part of dS isometry, but is invariant at least under the simultaneous rescaling

of η and ~x. Hence, even if we start with the non-invariant under this symmetry state one

can expect that due to the expansion, which smoothes everything out, unless backreaction

becomes strong, all physical quantities are going to be invariant under the symmetry in

question in the future infinity. In particular, that means that the distribution np(η) should

depend on the invariant quantity p η.

Indeed, for the small physical momenta the equation (4.1) reduces to:

dn(x)

d log(x)
=

λ2

4π2 µ

∫ ∞

0
dy (y)

1

2

∫ 0

∞
dy′

(

y′
)

1

2 ×

×
{

Re

{

y−iµ
[

h2 (y)− π e−πµ

4 sinh(π µ) |y|

]

(

y′
)iµ
[

(

h∗
(

y′
))2 − π e−πµ

4 sinh(π µ) |y′|

]}

×

×
[

(1 + n(x))n(y)2 − n(x) (1 + n(y))2
]

+

+2Re

{

yiµ
[

|h (y)|2 − π e−πµ

4 sinh(π µ) |y|

]

(

y′
)−iµ

[

∣

∣h
(

y′
)∣

∣

2 − π e−πµ

4 sinh(π µ) |y′|

]}

×

×
[

n(y) (1 + n(y)) (1 + n(x)) − (1 + n(y))n(y)n(x)
]

+

+Re

{

yiµ
[

h2 (y)− π e−πµ

4 sinh(π µ) |y|

]

(

y′
)−iµ

[

(

h∗
(

y′
))2 − π e−πµ

4 sinh(π µ) |y′|

]}

×

×
[

(1 + n(y))2 (1 + n(x)) − n(y)2 n(x)
]

}

, (4.2)
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where x = pη, y = kη and y′ = kη′. In the last expression we have neglected the contribu-

tion from the region k < p to the integral over k (i.e. over y), because the main contribution

to the integrals comes from k η ∼ µ, while p η ≪ µ.

5 Solution in the expanding Poincare patch

As we explain in the appendix in Minkowski space-time the Plankian distribution np =

1/(eω/T − 1) annihilates the first two contributions inside the CI (4.1). The last term in

the CI is just forbidden by the energy conservation in Minkowski space. However, neither

the first two terms nor the last term in (4.1) are annihilated by the Plankian distribution,

because there is no any restriction on the energy in dS space. Note that even for the case

np = 0 the CI does not vanish due to the particle creation out of vacuum.

Now we assume that in the future infinity of the expanding PP, or for the low physical

momenta, n(pη) is very small. At the same time the particle number density for the high

physical momenta should be even smaller, n(x) ≫ n(y) for y ≫ x. Hence, in this limit one

can approximate

(1 + n(x))n(y)2 − n(x) (1 + n(y))2 ≈ −n(x),

n(y) (1 + n(y)) (1 + n(x))− (1 + n(y))n(y)n(x) ≈ n(y),

(1 + n(y))2 (1 + n(x))− n(y)2 n(x) ≈ 1. (5.1)

Furthermore, the main contribution to the second term (4.2) comes from the region y ∼ µ,

while x ≪ µ. Hence, we can neglect the second term on the r.h.s. of (4.2) because it is

proportional to n(y ∼ µ) ≪ n(x). Then the KE reduces to:

dn(x)

d log(x)
= Γn(x)− Γ′,

Γ =
λ2

2π2 µ

∣

∣

∣

∣

∫ ∞

0
dy y

1

2
−i µ

[

h2 (y)− π e−πµ

4 sinh(π µ) |y|

]∣

∣

∣

∣

2

,

Γ′ =
λ2

2π2 µ

∣

∣

∣

∣

∫ ∞

0
dy y

1

2
+i µ

[

h2 (y)− π e−πµ

4 sinh(π µ) |y|

]∣

∣

∣

∣

2

. (5.2)

Which is a kind of renormalization group equation where the CI plays the role of the β-

function [22]. In fact, we obtain an equation which shows how the distribution of particles

n(pη) changes with the change of the scale pη. Moreover, as follows from the discussion in

the appendix the solution of the KE sums up bubble diagrams, which is exactly what the

renormalization group equations do. Similar situation is discussed in [31, 32].

The solution of the obtained differential equation is

n(pη) =
Γ′

Γ

[

C (p η)Γ + 1
]

, (5.3)

where C is the integration constant, which may depend on the initial conditions. The

obtained solution is valid because Γ′

Γ ≈ e−2πµ ≪ 1 for µ ≫ 1. Furthermore, at the leading
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order in λ2 we reproduce the one loop result of the previous section if C = −1. One should

recall here that n(pη) is the particle density per physical volume.

The obtained distribution has the stationary value e−2πµ, which approximately annihi-

lates the CI in the IR limit. It is reached when the production of particles is equilibrated by

their decay. In fact, from what we have mentioned above it is clear that Γ defines the decay

rate of the scalar particle into two, while Γ′ defines the particle production rate. Towards

the future infinity log x is decreasing, hence, indeed Γ′ corresponds to the gain, while Γ to

the loss in (5.2). Furthermore, obviously the loss in question should be proportional to the

particle density, while the gain should be just a constant for low distributions.

At the stationary point in question the theory in dS space can be described by the

analytical continuation from the sphere. But one can not describe the approach to the

equilibrium (5.3) via such an analytical continuation.

Finally, we have obtained the solution (5.3) assuming that n(pη) decays in the future

due to the expansion of the space and despite the constant rate of particle production. Such

an assumption is natural if we start with low particle density at past infinity. However,

there is a question if this situation would change or not once we will start with some different

state at past infinity? Of cause if we will start with a very high density of particles, in

comparison with the vacuum energy, then the situation will be much different, but what

will happen say at the intermediate densities? To address this issue one may look for other

solutions of the KE (4.1). But we find it more appropriate to study the problem in global

dS space, because global dS sets up initial conditions for the PP — for the inflation. This

will be done elsewhere.

6 Solution in contracting Poincare patch

In the contracting PP we do not expect stationary situation in the future infinity [37].

Hence, we do not expect KE to be applicable in this situation. The situation demands

the consideration of the KE for both 〈a+a〉 and 〈aa〉 simultaneously. But for the moment

let us assume that the KE is applicable and see what kind of solution it leads to. We

will explicitly see that for the obtained solution the approximation, which we have used to

derive the KE, brakes down for late enough times.

It is not hard to obtain the KE for the low physical momenta in the contracting patch

via direct derivation or via the time-reversal (t ↔ −t or η ↔ 1/η) from the equation in the

expanding patch. The only change w.r.t. the equation (4.1) is the relative sign between

the l.h.s. and r.h.s. For low physical momenta in the contracting PP we still can use

h(x) ∼ Jiµ(x), but now they play the role of the Jost functions at past infinity.

We are interested in the behavior of the solution at the future infinity η → ∞ and

expect that for low momenta the distribution grows with time, due to the contraction of

the space and constant particle production. As we will see in a moment the products

of C[x, y, z] and D[x, y, z] on their complex conjugates in (4.1) do not depend on p and

k for low enough x, y and z. That is related to the usual flatness of the spectrum in

dS background.
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Hence, it is natural to assume that np(η) for pη ≪ µ does not depend on p and can

be taken out from the integral over k on the r.h.s. of (4.1). Moreover, due to the expected

explosive growth of n(η) for the low momenta we can make the following approximations

(1 + np)nk np−k − np (1 + nk) (1 + np−k) ≈ −n2(η),

nk (1 + nk−p) (1 + np)− (1 + nk)nk−p np ≈ n2(η),

(1 + nk) (1 + np+k) (1 + np)− nk np+k np ≈ n2(η) (6.1)

if k and p are small enough.

The reason why the range of momenta for which our approximation is valid (pη ≪ µ)

narrows down as the time goes by (η → ∞) is as follows. Due to the contraction of the

space in question the long wave length fluctuations cross into the horizon with the growth

of time. But there are the horizon size modes which show the explosive behavior of their

distribution.

Having made these observations, let us split the integrals over y and y′ in the CI into

two parts: one due to the region where y, y′ ≪ µ and the other due to the region where

y, y′ ≫ µ. Then the KE reduces to:

dn(η)

d log(η)
=

λ2

4π2 µ3

∫ µ

0
dy (y)

1

2

{

−Re

[

y−i µ
∫ µ

0
dy′ (y′)

1

2
+i µ

]

n2(η) +

+2Re

[

y−i µ
∫ µ

0
dy′ (y′)

1

2
+i µ

]

n2(η) +

+ 3Re

[

y−3 i µ
∫ µ

0
dy′ (y′)

1

2
+3 i µ

]

n2(η)

}

+ . . . (6.2)

Dots on the r.h.s. of this equation stand for the terms which are suppressed in comparison

with the terms explicitly written in this equation, because n(y) for y ≫ µ should be small

as compared to n(η). Thus the integro-differential KE again reduces to the differential

equation of the renormalization group type:

dn(η)

d log(η)
= Γ̄n2(η), where Γ̄ ≈ λ2 µ2

2π2m2
(

m2 − 3
2

) > 0. (6.3)

The solution of this equation is:

n(η) ∼ 1

A− Γ̄ log η
∼ 1

Γ̄ log η0
η

, (6.4)

and is indeed independent of p. The solution under consideration is valid for η < η0 =

econst/λ
2 ≫ 1, A is an integration constant, which may depend on the previous history of

the evolution of the state and, in particular, on the initial state.

As we see this solution has a pole at some finite η0. The situation is similar to the

renormalization group Landau-Pomeranchuk pole if we consider the CI as the β-function.

In the vicinity of the point η0 the approximation in which we have derived the KE brakes

down, but in any case we already have to take into account backreaction both on the state

of the QFT in question and on the background.
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7 Conclusions

Several comments are in order at this point. First, in this note we have considered 4D φ3

QFT, but most of our conclusions and formulas can be easily extended to the arbitrary

dimensions and for φ4 theory. As well one can write the CI at higher orders in λ. In fact,

from the discussion in the main body of the text the structure and physical origin of all

terms in the CI should be clear: one should just include into CI all possible processes,

which are allowed by the momentum conservation, and substitute the plain waves ei ω t

(inside the expressions leading to the δ-functions establishing energy conservation) by the

out Jost harmonics.

Second, the term in the CI (4.1), which is responsible for the creation of particles out

of the vacuum, does not vanish as well for the odd dimensional dS space-times. Thus, there

is the particle production as well in the odd dimensional dS space-times. This observation

contradicts some earlier climes in the literature.

In conclusion, we have shown that the proper interpretation of the Schwinger-Keldish

one loop renormalization of the two point function is in terms of generation of the slow

functions np = 〈a+p ap〉 and κp = 〈ap a−p〉. Which signals the particle creation in dS space.

We have explicitly shown that the one loop contribution to the two-point function does

not reduce to the mass renormalization. Hence, loop corrections for the quantum fields in

dS space can not be obtained via analytical continuation from the sphere.

We have shown that for the BD harmonics the IR value of κp is of the same order as

np. Hence, these harmonics are not suitable for writing KE for np only: For BD state one

has to solve the system of KE for both np and κp. We derive such a system of KE as well.

However, for the Jost harmonics gp(η) ∼ η3/2 Jiµ(p η) the IR value of κp is suppressed in

comparison with the one for np. We suspect that this observation means that from whatever

homogeneous state at past infinity in PP we start eventually the state of the theory flows to

the one build with the use of the future Jost harmonics. In fact, as we explain in the main

body of the text, it is natural to interpret the anomalous quantum average κp = 〈ap a−p〉
as the measure of the strength of the backreaction on the background quantum state of

various processes described by the standard terms in CI. Thus, if we start from an initial

state, which is substantially different from the eventual stationary one, the generated κp is

comparable to np. But as the state of the theory approaches the equilibrium, κp becomes

suppressed, which signals the small backreaction.

We have derived the KE containing only np both in expanding and contracting PP

of dS space and found solutions of these equation. These solutions can be understood on

general physical grounds. In the expanding PP it looks like

n(pη) =
Γ′

Γ

[

C (p η)Γ + 1
]

, (7.1)

where C is the integration constant, which may depend on the initial conditions. The

obtained solution is valid because Γ′

Γ ≈ e−2πµ ≪ 1 for µ ≫ 1. It has a stationary Gibbons-

Hawking value e−2πµ, which approximately in IR limit annihilates the CI and is reached

when the production of particles is equilibrated by their decay. In fact, from what we have
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stated in the main body of the text it is clear that Γ defines the decay rate of the scalar

particle into two, while Γ′ defines the particle production rate.

Note that np(η) is the density per physical volume. The density per co-moving volume

decays to zero in the future infinity: n̄p ≈ η3 Γ′

Γ

[

C (p η)Γ + 1
]

(see the discussion above).

In the contracting PP the solution for low momenta p is

n(η) ∼ 1

A− Γ̄ log η
∼ 1

Γ̄ log η0
η

, (7.2)

and is independent of p. The solution under consideration is valid for η < η0 = econst/λ
2 ≫

1, A is an integration constant, which may depend on the previous history of the evolution

of the state and, in particular, on the initial state. As expected the distribution grows with

time, due to the contraction of the space and constant particle production, and moreover

has a pole at some finite η0.

The use of the expression “particle density” in this context demands some clarifications.

As we mentioned in the main body of the text one can not diagonalize the free hamiltonian

H0 in dS space once and forever. One can find harmonics which make H0 diagonal at

past infinity, but there are no harmonics which diagonalize H0 in the future, because Bk is

time dependent as η → 0. To deal with the appropriate notion of particles it is tempting

to find such harmonics which diagonalize the free Hamiltonian instantaneously at a fixed

moment of time η. This can be achieved via the time dependent Bogolyubov transform [77]:

bk = αk(η) ak + βk(η) a
+
−k, b+k = α∗k(η) a

+
k + β∗k(η) a−k. The harmonics are

ḡk(η) = α∗k gk − β∗k g
∗
k =

i

a(η) [k2 + a2(η)m2]
1

4

dgk
dη − i

√

k2 + a2(η)m2 gk
∣

∣

∣

dgk
dη − i

√

k2 + a2(η)m2 gk

∣

∣

∣

. (7.3)

Hence, it is tempting to derive the KE for 〈b+p bp〉 — appropriate particle density at the

given moment of time.

However, because we have made a time dependent canonical (Bogolyubov) transforma-

tion to arrive at these harmonics we have to take into account the explicit time dependence

of b’s on time. Then the problem is that the evolution equation closes w.r.t. 〈b+p bp〉 only

if α̇p βp − αp β̇p is negligible in comparison with the CI. However, this is not the case in

dS space. In the latter case the corresponding equation does not even close w.r.t. both

〈b+b〉 and 〈bb〉. Hence, in dS space it is more appropriate to use the above Jost harmonics.

Furthermore, if one knows 〈a+a〉, 〈aa〉 and 〈a+a+〉 as the solutions of the KE, then he can

find ∠b+b〉, 〈bb〉 and 〈b+b+〉 via Bogolyubov transformation (7.3).
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A Two ways to derive the kinetic equation

To make the paper self-contained in this appendix we present the derivation of the KE for

the flat space massless real scalar field theory with the cubic self-interaction:

S =

∫

d4x

[

1

2
(∂µφ)

2 − 1

3
λφ3

]

. (A.1)

For small λ this theory describes phonons in crystals with slight non-linearity.

A.1 Operator derivation

The general method of the derivation of the KE in the operator formalism can be found

in [75]. Here we concisely perform the calculations for the particular model in question.

We consider the case when the distribution function is homogeneous in space, i.e. depends

only on time, but not on spacial coordinates.

The normal ordered Hamiltonian for this theory looks as:

H =

∫

d3k k : a+k ak : +Hint, k =
∣

∣

∣

~k
∣

∣

∣
,
[

ak, a
+
q

]

= δ
(

~k − ~q
)

Hint =
λ

3

∫

d3k1 d
3k2 d

3k3√
k1 k2 k3

× (A.2)

[

3δ
(

−~k1+~k2+~k3

)(

e−i (−k1+k2+k3) t : a+k1 ak2 ak3 : +ei (−k1+k2+k3) t : ak1 a
+
k2
a+k3 :

)

+

+ δ
(

~k1 + ~k2 + ~k3

) (

e−i (k1+k2+k3) t : ak1 ak2 ak3 : +ei (k1+k2+k3) t : a+k1 a
+
k2
a+k3 :

)]

.

Usually one drops the last two terms in Hint due to energy-momentum conservation. How-

ever, we keep them to show the difference of the situation in flat space w.r.t. the curved one.

Consider this theory in some non-stationary initial state, characterized possibly by

some density matrix. We would like to find how the distribution function np =
1
V

〈

a+p ap
〉

evolves in time. Here V is the volume of space, which appears because
〈

a+p aq
〉

=

np δ (~p− ~q) and V = δ(0). The evolution equation in the interacting picture is:

dnp

dt
=

i

V

〈[

Hint, a
+
p ap

]〉

. (A.3)

Then:

dnp

dt
=

i λ

V

∫

d3k1 d
3k2√

k1 k2 p
× (A.4)

[

−δ
(

−~p+ ~k1+~k2

)(

〈

: a+p ak1 ak2 :
〉

e−i (−p+k1+k2) t −
〈

: ap a
+
k1
a+k2 :

〉

ei (−p+k1+k2) t
)

+

+2δ
(

−~k1+~k2+~p
)(〈

: a+k1 ak2 ap :
〉

e−i (−k1+k2+p) t −
〈

: ak1 a
+
k2
a+p :

〉

ei (−k1+k2+p) t
)

+

+ δ
(

~p+ ~k1 + ~k2

) (

〈: ap ak1 ak2 :〉 e−i (p+k1+k2) t −
〈

: a+p a+k1 a
+
k2

:
〉

ei (p+k1+k2) t
)]

.
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We dropped the zero modes here. Careful study of these modes reveals the classical in-

stability of the theory with cubic self-interaction. However, the terms in the CI which

are responsible for this instability are not universal. Such terms in the φ4 theory do not

present, because one always can choose the vacuum value of the scalar field, which respects

Z2 symmetry.

The equation (A.4) does not close w.r.t.
〈

a+p aq
〉

. So we have to find
〈

a+p a+q a+k
〉

(t),
〈

ap a
+
q a+k

〉

(t) and etc. Consider e.g.

d

dt

〈

: a+k1 ak2 ak3 :
〉

= i
〈[

Hint, : a
+
k1
ak2 ak3 :

]〉

(A.5)

After the calculation of the commutator in this expression we see that its r.h.s. depends on

such quantities as e.g.
〈

ak1 ak2 a
+
k3
a+k4

〉

. Hence, we have to derive the evolution equations

for them and so on. This way one obtains the so called Bogolyubov hierarchy. To truncate

the hierarchy one should decide what is the approximation he would like to consider. If

one would like to find the CI (the r.h.s. of (A.3)) at the order λ2 he has to truncate the

sequence of these equations already in (A.5). This can be done via the application of the

Wick’s theorem, e.g.:

〈

ak1 a
+
k2
ak3 a

+
k4

〉

=
〈

ak1 a
+
k4

〉 〈

a+k2 ak3

〉

+
〈

ak1 a
+
k2

〉 〈

ak3 a
+
k4

〉

(A.6)

and so on. The justification of such an anzats/approximation is given in the next subsection

of the appendix (see as well appendix of [76]).

So, if one uses the Wick’s theorem in the commutator
〈[

Hint, a
+
k1
ak2 ak3

]〉

, he obtains:

d

dt

〈

: a+k1 ak2 ak3 :
〉

= − i 2λ√
k1 k2 k3

δ
(

−~k1 + ~k2 + ~k3

)

ei (−k1+k2+k3) t ×

×
[

(1 + nk1)nk2 nk3
− nk1 (1 + nk2) (1 + nk3)

]

, (A.7)

where apart from
〈

a+p aq
〉

= np δ (~p− ~q) we have used that
〈

ap a
+
q

〉

= (1 + np) δ (~p− ~q).

Similarly we can find the equation for
〈

ak1 a
+
k2
a+k3

〉

. As the result:

e−i (−k1+k2+k3) t
〈

: a+k1 ak2 ak3 :
〉

(t)− ei (−k1+k2+k3) t
〈

: ak1 a
+
k2
a+k3 :

〉

(t) =

− i 2λ√
k1 k2 k3

δ
(

−~k1 + ~k2 + ~k3

)

Re

∫ t

t0

dt′e−i (−k1+k2+k3) (t−t′) ×

×
[

(1 + nk1)nk2 nk3
− nk1 (1 + nk2) (1 + nk3)

]

(t′). (A.8)

Here t0 is the moment of time when we switch on interactions.

Along the same lines, one can find the answer for e−i (k1+k2+k3) t 〈: ak1 ak2 ak3 : 〉 −
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ei (k1+k2+k3) t
〈

: a+k1 a
+
k2
a+k3 :

〉

. Thus, we obtain the following equation:

p
dnp

dt
=−4λ2

∫

d3k1 d
3k2

k1 k2
×

×
{

δ
(

−~p+ ~k1 + ~k2

)

∫ t

t0

dt′ cos
[

(−p+ k1 + k2) (t− t′)
]

×

×
[

(1 + np)nk1 nk2
− np (1 + nk1) (1 + nk2)

]

(t′)

+2 δ
(

−~k1 + ~k2 + ~p
)

∫ t

t0

dt′ cos
[

(−k1 + k2 + p) (t− t′)
]

×

×
[

nk1 (1 + nk2) (1 + np) − (1 + nk1)nk2 np

]

(t′)

+δ
(

~k1 + ~k2 + ~p
)

∫ t

t0

dt′ cos
[

(k1 + k2 + p) (t− t′)
]

×

×
[

(1 + nk1) (1 + nk2) (1 + np) − nk1 nk2 np

]

(t′)

}

. (A.9)

We assume that nk’s depend on t slowly and can be taken out from the integral over t′.
Then we take t → +∞ and t0 → −∞. The result of the integration over t′ is the minus

δ-function ensuring the energy conservation in the corresponding process. Hence, the last

term in (A.9) vanishes because it describes processes forbidden by the energy-momentum

conservation. In the case of massless theory the first two terms describe allowed processes

and the KE acquires the form:

p
dnp

dt
= 4λ2

∫

d3k1 d
3k2

k1 k2
× (A.10)

×
{

δ
(

−~p+ ~k1 + ~k2

)

δ (−p+ k1 + k2)

[

(1 + np)nk1 nk2
− np (1 + nk1) (1 + nk2)

]

+ 2δ
(

−~k1 + ~k2 + ~p
)

δ (−k1 + k2 + p)
[

nk1 (1 + nk2) (1 + np) − (1 + nk1)nk2 np

]}

.

Having understood the above equation and the physical meaning of all terms in it (see the

discussion in the main body of the text) it is not hard to write the KE for the massive real

scalar φ4 theory:

ω
dnp

dt
= 4λ2

∫

d3k1 d
3k2 d

3k

ω1 ω2 ω3
×

×
{

3 δ
(

−~p− ~k1 + ~k2 + ~k3

) sin [(−ω − ω1 + ω2 + ω3) (t− t0)]

−ω − ω1 + ω2 + ω3
×

×
[

(1 + nω) (1 + nω1
)nω2

nω3
− nω nω1

(1 + nω2
) (1 + nω3

)

]

+3 δ
(

−~k1 + ~k2 + ~k3 + ~p
) sin [(−ω1 + ω2 + ω3 + ω) (t− t0)]

−ω1 + ω2 + ω3 + ω
×

×
[

nω1
(1 + nω2

) (1 + nω3
)(1 + nω) − (1 + nω1

)nω2
nω3

nω

]
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+δ
(

−~p+ ~k1 + ~k2 + ~k3

) sin [(−ω + ω1 + ω2 + ω3) (t− t0)]

−ω + ω1 + ω2 + ω3
×

×
[

(1 + nω)nω1
nω2

nω3
− nω (1 + nω1

) (1 + nω2
)(1 + nω3

)
]

+δ
(

~k1 + ~k2 + ~k3 + ~p
) sin [(ω1 + ω2 + ω3 + ω) (t− t0)]

ω1 + ω2 + ω3 + ω
×

×
[

(1 + nω1
) (1 + nω2

) (1 + nω3
) (1 + nω) − nω1

nω2
nω3

nω

]}

, (A.11)

where ω2 = ~p2 + m2. As t − t0 → ∞ the function sin∆ω (t−to)
∆ω is reduced to the δ-

functions ensuring energy conservation. The only allowed by the energy-momentum con-

servation process is the scattering between the scalar particles, i.e. the CI contains only

δ (ω1 + ω2 − ω3 − ω) [nω1
nω2

(1 + nω3
) (1 + nω)− (1 + nω1

) (1 + nω2
)nω3

nω]. Two more

terms will stay in the CI for the massless φ4 theory: only the last term in the above

CI is forbidden by the energy-momentum conservation in the massless theory.

In the small density limit, nω ≪ 1, for all ω we can neglect nω in comparison with

1 in all expressions inside the CI.5 Then for the massive φ4 theory the CI will reduce

to its appropriate classical Boltzmann form δ (ω1 + ω2 − ω3 − ω) [nω1
nω2

− nω3
nω]. Now

one can immediately see that because of the energy conservation this expression vanishes

for the equilibrium Boltzmann distribution nω ∝ e−
ω
T , for some constant T . As well it

is not hard to see that all terms in the CI (A.10) and (A.11) (for (t − t0) → ∞) vanish

when nω = 1
eω/T−1 .

Finally, it is not hard to generalize the KE to the spatially inhomogeneous case by the

calculation of ∂µn = 1
V 〈[Pµ, a

+ a]〉, where Pµ = (H,Pi) is the momentum operator. Then

the l.h.s. of (A.10) and (A.11) will change to pµ ∂µnp(x). The r.h.s. will be the same.

A.2 Derivation from the Dyson-Schwinger equation

The general method to derive the KE from the DSE of the in-in (non-stationary or

Schwinger-Keldysh) formalism can be found in e.g. [55] or [56]. Here we concisely repeat

that derivation. The main reason to present this derivation here is to show the relation

of the KE to the summation of the loop diagrams in the IR limit. The technical expla-

nation of the relation between the Wick contractions, which were used in the derivation

of the Boltzmann equation, and the partial resummation of loop graphs can be found in

(appendix of [76]).

The reason for the Schwinger-Keldysh diagrammatic technic can be seen from the

following observation. Suppose we would like to calculate the expectation value of an

operator O at some moment of time t w.r.t. some state Ψ

〈O〉 (t) ≡
〈

Ψ
∣

∣

∣
Te

i
∫ t
t0

dt′H(t′)O Te
−i

∫ t
t0

dt′H(t′)
∣

∣

∣
Ψ
〉

, (A.12)

where H(t) is the full Hamiltonian of the system, which may depend on time due to the

presence of e.g. time dependent background fields, T is anti-time ordering, t0 is initial

5This is, in fact, proper classical limit, because otherwise due to high particle density quantum coherence

between particles is not destroyed.
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moment of time when we know the expectation value. Transferring to the interaction

picture, we get:

〈O〉 (t) =
〈

Ψ
∣

∣S+(t, t0)T [O0(t)S(t, t0)]
∣

∣Ψ
〉

=

=
〈

Ψ
∣

∣S+(t, t0)S
+(+∞, t)S(+∞, t)T [O0(t)S(t, t0)]

∣

∣Ψ
〉

=

=
〈

Ψ
∣

∣S+(+∞, t0)T [O0(t)S(+∞, t0)]
∣

∣Ψ
〉

, (A.13)

where S(t, t0) = Te
−i

∫ t
t0

dt′Hint(t
′)

and O0(t) is the time dependence of the operator O
in the interaction picture. Adiabatic switching off of the interactions is assumed in the

future infinity.

If we adiabatically switch on the interaction around the time t0, then we can write the

expectation value as:

〈O〉 (t) =
〈

Ψ
∣

∣S+(+∞,−∞)T [O0(t)S(+∞,−∞)]
∣

∣Ψ
〉

. (A.14)

Good question is that if one can take t0 to −∞. If the state of the theory does become

stationary (e.g. thermalizes), then t0 can be taken to the past infinity. However, if the state

does not get stationary, which may be the case if the background field is never switched

off, then t0 can not be taken to minus infinity because of the explosive behavior of the

correlation functions when (t− t0) → ∞.

Now if |Ψ〉 were the true vacuum state |vacuum〉 of the free theory, then by adi-

abatic switching on and off the interactions one could not disturb such a state, i.e.

〈vacuum |S+(+∞,−∞)| excited state〉 = 0, while |〈vacuum |S+(+∞,−∞)| vacuum〉| = 1

and

〈O〉 (t) =
∑

state

〈

vacuum
∣

∣S+(+∞,−∞)
∣

∣ state
〉

〈state |T [O0(t)S(+∞,−∞)]| vacuum〉 =

=
〈

vacuum
∣

∣S+(+∞,−∞)
∣

∣ vacuum
〉

〈vacuum |T [O0(t)S(+∞,−∞)]| vacuum〉=

=
〈vacuum |T [O0(t)S(+∞,−∞)]| vacuum〉

〈vacuum |S(+∞,−∞)| vacuum〉 . (A.15)

This way we arrive at the standard Feynman diagrammatic technic, which is based only

on the T-ordered quantities.

However, if |Ψ〉 is not a stable state one can not use the above machinery and has to

deal directly with (A.14). One has to expand both S and S+ in powers of the interaction

Hamiltonian and apply the Wick’s theorem. Then one will encounter two types of vertices

and four types of propagators. The vertices will be coming from S and S+. At the same

time propagators appear from the Wick contractions inside S (time ordered), from those

inside S+ (anti-time ordered) and from Wick contractions between S and S+. However,

there are only three independent propagators.

The functional integral in such a situation has the action, which schematically can be

written as [56]:

S =

∫

C
dt

∫

d3x

[

1

2
(∂µφ)

2 − λ

3
φ3

]

, (A.16)
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Figure 3. The solid line corresponds to φcl, while the dashed line — to φq.

where C is the Keldysh time contour running from −∞ to +∞ and back. That is due to

the presence of both S and S+ in (A.14). The exact expression for the action will be given

in a moment.

This action can be rewritten as:

S =

∫ +∞

−∞
dt

∫

d3x

[

1

2
(∂µφ+)

2 − 1

2
(∂µφ−)

2 − λ

3
φ3
+ +

λ

3
φ3
−

]

, (A.17)

where φ+ is the field on the direct part of the time contour, while φ− is the field on the

reverse part of it. The kinetic term in this equation again is written schematically [56].

After the Keldysh rotation of the fields:

φcl =
1√
2
[φ+ + φ−] , φq =

1√
2
[φ+ − φ−] (A.18)

the precise form of the action is as follows [56]:

S =

∫

d4x

∫

d4y
(

φcl(x) , φq(x)
)

(

0
[

DA
0

]−1
(x, y)

[

DR
0

]−1
(x, y)

[

D−10

]K
(x, y)

) (

φcl(y)

φq(y)

)

−

−2λ

∫

d4x

[

φ2
cl(x)φq(x) +

1

3
φ3
q(x)

]

. (A.19)

The vertices and propagators in this theory are shown in figure 3. Here DA
0 and DR

0 are

the advanced and retarded propagators, whose Fourier transforms look as

DR,A
0 (ω, k) =

1

(ǫ± i 0)2 − ~k2
. (A.20)

In the x-space they have the form
[

DR,A
0 (x, y)

]−1
= θ(±∆t) δ(4)(x− y)�, (A.21)

where � is the D’Alamber’s operator. The retarded and advanced propagators carry infor-

mation about the spectrum of the theory and have the following relevant for us properties:

DA
0 (x, y)D

R
0 (x, y) = 0, DR

0 (t, t) +DA
0 (t, t) = 0,

[

DA
0

]+
= DR

0 , (A.22)

which remain valid even for their quantum corrected versions [56].
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The Keldysh propagator
[

DK
0

]+
= −DK

0 carries statistical information about the

theory: it shows which levels from the spectrum are occupied. By definition DK
0 (ω, k) ≡

∫

d4x ei kµ xµ 〈{φ(x), φ(0)}〉, where {·, ·} means the anti-commutator. For the thermal state

it acquires the form:

DK
0 (ω, k) = coth

ω

2T

[

DR
0 (ω, k)−DA

0 (ω, k)
]

= coth
ω

2T
δ
(

ω2 − ~k2
)

, (A.23)

This propagator is present in the above action to regularize the functional integral [56].

The last expression allows to guess the ansatz for the full quantum Keldysh propaga-

tor [56], when one is close to the stationary situation:

DK(x, y) =

∫

d4z
[

DR
0 (x, z)F (z, y)− F (x, z)DA

0 (z, y)
]

≡
[

DR
0 ◦ F − F ◦DA

0

]

(x, y) (A.24)

with some unknown in general kernel F (x, y) which characterizes the statistical distribu-

tion. In the stationary situation the Fourier transform of F (x, y) is coth ω
2T = 1 + 2nω,

where nω is the Plankian distribution function. Furthermore,

[

D−10

]K
= −

[

DR
0

]−1 ◦DK
0 ◦

[

DA
0

]−1
=
[

DR
0

]−1 ◦ F0 − F0 ◦
[

DA
0

]−1
. (A.25)

One can write the DSE for the full quantum matrix propagator:

D̂ ≡
(

DK DR

DA 0

)

(A.26)

which, as can be shown [56], keeps the same form as D̂0. The equation looks as:

(

D̂−10 − Σ̂
)

◦ D̂ = 1, (A.27)

where

Σ̂ =

(

0 ΣA

ΣR ΣK

)

(A.28)

is the self-energy matrix. It can be shown that it has the same form and properties as D̂−10 .

Below we will see this fact at one loop level. In components of D̂ and Σ̂ the DSE can be

written as

�DR,A − ΣR,A ◦DR,A = 1,

[�, F ] = ΣK −
(

ΣR ◦ F − F ◦ ΣA
)

(A.29)

if one uses the ansatz DK = DR ◦ F − F ◦ DA and neglects
[

D−10

]K
in comparison with

ΣK , because it is just a regulator.

Let us derive explicitly the DSE in one loop approximation. Note that while considering

full DK we take the bare DA,R
0 . The justification of this approximation comes from the

observation that the only way renormalization appears inDA andDR is through the change

of the spectrum — renormalization of the mass and etc. So once we know the spectrum of
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Figure 4. The graph defining Σcl−cl.

Figure 5. The graph defining ΣA.

quasiparticles precisely it means that we know the retarded and advanced propagators as

classical objects. As well we substitute into the DSE the IR, i.e. renormalized, value of the

vertex in the theory. In such circumstances the DSE becomes an equation for DK only —

for the propagator containing statistical information about the state in the theory.

First we calculate the self-energy at one loop order:

• It is straightforward to see that Σcl−cl is zero (see figure 4):

Σcl−cl ∝ λ2DR
0 (x, y)D

A
0 (x, y) = 0, (A.30)

because of the presented above properties of DR
0 and DA

0 .

• At the same time (see figure 5)

Σcl−q ≡ ΣA(x, y) = 4 i λ2DA
0 (x, y)D

K(x, y) 6= 0 (A.31)

Since ΣA ∼ DA ∼ θ(ty − tx), this quantity is indeed of an advanced type and should,

as it does, stand in the upper triangular corner of the Σ̂ matrix. The prefactor 4

comes from 4 ways of choosing external legs, 2 internal permutations and 1/2! for

having two identical vertexes.

• Similarly (see figure 6)

Σq−cl ≡ ΣR(x, y) = 4 i λ2DR
0 (x, y)D

K(x, y) (A.32)

As well ΣR ∼ DR ∼ θ(tx − ty). Hence, at the one loop level ΣR =
[

ΣA
]+

.

• And finally (see figure 7):

Σq−q ≡ΣK(x, y) = 2 i λ2
[

DK(x, y)
]2

+ 6 i
λ

3
λ
[

DA(x, y)
]2

+ 6 i λ
λ

3

[

DR(x, y)
]2

=

= 2 i λ2
(

[

DK(x, y)
]2

+
[

DR(x, y)−DA(x, y)
]2
)

, (A.33)
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Figure 6. The graph defining ΣR.

Figure 7. The graphs defining ΣK .

where at the last step we have used the property DR(x, y)DA(x, y) = 0. Now one

can see that because
[

DR
]+

= DA and
[

DK
]+

= −DK we have that
[

ΣK
]+

= −ΣK .

Thus, as promised at one loop level Σ̂ has the same properties as D̂−10 . Now we

plague these expressions for the components of Σ̂ into the DSE for F and use the Wigner

transformation:

A (x, y) = A (X,χ) , X =
x+ y

2
, χ = x− y

A (X,χ) ≡
∫

d4k ei k
µχµ a (X, k) . (A.34)

Here a is the Wigner transform of A.

The Wigner transformation has the following properties [56]. If

A (X,χ) =

∫

d4k ei k
µχµ a (X, k) , B (X,χ) =

∫

d4k ei k
µχµ b (X, k) , (A.35)

and if C(x, y) = A(x, y)B(x, y), then

c (X, k) ≡
∫

d4χ e−i k
µ χµ C(X,χ)=

∫

d4k1 d
4k2 δ

(4)(k − k1 − k2) a (X, k1) b (X, k2) . (A.36)
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At the same time if C = A ◦B, then:

c (X, k) = a (X, k) e
−i

(←−
∂X
−→
∂k−
←−
∂k
−→
∂X

)

b (X, k) ≈ a (X, k) b (X, k) + . . . (A.37)

The last approximation is valid if a and b are relatively slow functions of X = (x + y)/2

and fast functions of χ = x−y. Thus, we should have a separation of scales in the problem

under consideration.

Using this approximation, the derived above expressions for the self-energy and defining

as dA, dR and f the Wigner transforms of DA
0 , D

R
0 and F , correspondingly, we obtain that:

ΣR ◦ F−F ◦ ΣA → 4 i λ2 f (X, k)

∫

d4k1 d
4k2 δ

(4) (k − k1 − k2) ∆d (X, k1) d
K (X, k2) ≈

2 i λ2f(X, k)

∫

d4k1 d
4k2 δ

(4) (k−k1−k2)∆d (X, k1)∆d (X, k2) [f(X, k2)+f(X, k1)] (A.38)

where ∆d =
[

dR − dA
]

and on the last step we have substituted the expression for dK

through dR, dA and f . At the end we performed the symmetrization of the argument of f

under exchange of k1 ↔ k2.

Similarly:

ΣK→ 2iλ2

∫

d4k1 d
4k2 δ

(4) (k−k1−k2)∆d (X; k1)∆d (X; k2) [f(X; k1) f(X; k2)+1] . (A.39)

And finally,

[F, �] → −2 i kµ
∂

∂Xµ
f (X; k) . (A.40)

Putting all this together, we obtain:

kµ ∂µ f (X, k) = 2λ2

∫

d4k1 d
4k2 δ

(4) (k − k1 − k2) ∆d(X, k1)∆d(X, k2)×

×
{

f (X, k1) f (X, k2) + 1− f (X, k) [f (X, k1) + f (X, k2)]
}

. (A.41)

Now due to the properties of the propagator DK , the Wigner transform of F obeys:

f (X, k) = −f (X,−k) (A.42)

Furthermore because ∆d(k) ∼ DR
0 (k) − DA

0 (k) ∼ δ
(

k20 − ~k2
)

the k1 and k2 legs are on

mass-shell. We as well put k on mass-shell — k0 = ±
∣

∣

∣

~k
∣

∣

∣
. Then the mass-shell distribution

function obeys:

f
(

X,~k
)

= sign(k0) f
(

X, sign(k0)~k
)

. (A.43)

Representing the f function through the distribution function, f (X; k) = 1+2n (X; k), we

see that equation (A.41) reduces to the spatially inhomogeneous form of the KE obtained

in the previous section of the appendix.

Note that the whole CI comes from imaginary contribution to Σ̂ [56]. Apart from that,

the positive contribution to the CI (the gain processes) comes from ΣK , while the negative

(the loss) one comes from ΣR ◦ F − F ◦ ΣA.
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[25] G. Pérez-Nadal, A. Roura and E. Verdaguer, Stress tensor fluctuations in de Sitter

spacetime, JCAP 05 (2010) 036 [arXiv:0911.4870] [INSPIRE].

[26] A. Roura and E. Verdaguer, Space-like fluctuations of the stress tensor for de Sitter vacuum,

Int. J. Theor. Phys. 38 (1999) 3123 [gr-qc/9904039] [INSPIRE].

[27] A. Higuchi, Decay of the free-theory vacuum of scalar field theory in de Sitter spacetime in

the interaction picture, Class. Quant. Grav. 26 (2009) 072001 [arXiv:0809.1255] [INSPIRE].

[28] A. Higuchi and Y.C. Lee, Conformally-coupled massive scalar field in de Sitter expanding

universe with the mass term treated as a perturbation, Class. Quant. Grav. 26 (2009) 135019

[arXiv:0903.3881] [INSPIRE].

[29] E. Alvarez and R. Vidal, Eternity and the cosmological constant, JHEP 10 (2009) 045

[arXiv:0907.2375] [INSPIRE].

[30] E. Alvarez and R. Vidal, Comments on the vacuum energy decay, JCAP 11 (2010) 043

[arXiv:1004.4867] [INSPIRE].

[31] C. Burgess, R. Holman, L. Leblond and S. Shandera, Breakdown of semiclassical methods in

de Sitter space, JCAP 10 (2010) 017 [arXiv:1005.3551] [INSPIRE].

[32] C. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter fluctuations and

the dynamical RG, JCAP 03 (2010) 033 [arXiv:0912.1608] [INSPIRE].

[33] D. Marolf and I.A. Morrison, The IR stability of de Sitter: loop corrections to scalar

propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].

[34] D. Marolf and I.A. Morrison, The IR stability of de Sitter QFT: physical initial conditions,

Gen. Rel. Grav. 43 (2011) 3497 [arXiv:1104.4343] [INSPIRE].

[35] A. Higuchi, D. Marolf and I.A. Morrison, On the equivalence between Euclidean and In-In

formalisms in de Sitter QFT, Phys. Rev. D 83 (2011) 084029 [arXiv:1012.3415] [INSPIRE].

[36] D. Marolf and I.A. Morrison, The IR stability of de Sitter QFT: results at all orders,

Phys. Rev. D 84 (2011) 044040 [arXiv:1010.5327] [INSPIRE].

[37] D. Krotov and A.M. Polyakov, Infrared sensitivity of unstable vacua,

Nucl. Phys. B 849 (2011) 410 [arXiv:1012.2107] [INSPIRE].

[38] P. Burda, Casimir effect for massless minimally coupled scalar field between parallel plates in

de Sitter spacetime, JETP Lett. 93 (2011) 632 [arXiv:1101.2624] [INSPIRE].

[39] S.B. Giddings and M.S. Sloth, Cosmological diagrammatic rules, JCAP 07 (2010) 015

[arXiv:1005.3287] [INSPIRE].

– 30 –

http://dx.doi.org/10.1016/j.nuclphysb.2008.01.002
http://arxiv.org/abs/0709.2899
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2899
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.021
http://arxiv.org/abs/0912.5503
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.5503
http://dx.doi.org/10.1088/0264-9381/25/15/154013
http://arxiv.org/abs/0806.2634
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2634
http://dx.doi.org/10.1103/PhysRevD.77.124033
http://arxiv.org/abs/0712.2282
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2282
http://dx.doi.org/10.1088/1475-7516/2010/05/036
http://arxiv.org/abs/0911.4870
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4870
http://dx.doi.org/10.1023/A:1026624603044
http://arxiv.org/abs/gr-qc/9904039
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9904039
http://dx.doi.org/10.1088/0264-9381/26/7/072001
http://arxiv.org/abs/0809.1255
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.1255
http://dx.doi.org/10.1088/0264-9381/26/13/135019
http://arxiv.org/abs/0903.3881
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3881
http://dx.doi.org/10.1088/1126-6708/2009/10/045
http://arxiv.org/abs/0907.2375
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2375
http://dx.doi.org/10.1088/1475-7516/2010/11/043
http://arxiv.org/abs/1004.4867
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.4867
http://dx.doi.org/10.1088/1475-7516/2010/10/017
http://arxiv.org/abs/1005.3551
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3551
http://dx.doi.org/10.1088/1475-7516/2010/03/033
http://arxiv.org/abs/0912.1608
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1608
http://dx.doi.org/10.1103/PhysRevD.82.105032
http://arxiv.org/abs/1006.0035
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0035
http://dx.doi.org/10.1007/s10714-011-1233-3
http://arxiv.org/abs/1104.4343
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4343
http://dx.doi.org/10.1103/PhysRevD.83.084029
http://arxiv.org/abs/1012.3415
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3415
http://dx.doi.org/10.1103/PhysRevD.84.044040
http://arxiv.org/abs/1010.5327
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5327
http://dx.doi.org/10.1016/j.nuclphysb.2011.03.025
http://arxiv.org/abs/1012.2107
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2107
http://dx.doi.org/10.1134/S0021364011110026
http://arxiv.org/abs/1101.2624
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.2624
http://dx.doi.org/10.1088/1475-7516/2010/07/015
http://arxiv.org/abs/1005.3287
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3287


J
H
E
P
0
1
(
2
0
1
2
)
0
6
6

[40] S.B. Giddings and M.S. Sloth, Semiclassical relations and IR effects in de Sitter and

slow-roll space-times, JCAP 01 (2011) 023 [arXiv:1005.1056] [INSPIRE].

[41] A. Riotto and M.S. Sloth, On Resumming Inflationary Perturbations beyond One-loop,

JCAP 04 (2008) 030 [arXiv:0801.1845] [INSPIRE].

[42] V. Onemli and R. Woodard, Superacceleration from massless, minimally coupled φ4,

Class. Quant. Grav. 19 (2002) 4607 [gr-qc/0204065] [INSPIRE].

[43] V. Onemli and R. Woodard, Quantum effects can render w < −1 on cosmological scales,

Phys. Rev. D 70 (2004) 107301 [gr-qc/0406098] [INSPIRE].

[44] E. Kahya and V. Onemli, Quantum stability of a w < −1 phase of cosmic acceleration,

Phys. Rev. D 76 (2007) 043512 [gr-qc/0612026] [INSPIRE].

[45] E. Kahya, V. Onemli and R. Woodard, A completely regular quantum stress tensor with

w < −1, Phys. Rev. D 81 (2010) 023508 [arXiv:0904.4811] [INSPIRE].

[46] W. Xue, K. Dasgupta and R. Brandenberger, Cosmological UV/IR divergences and de-Sitter

spacetime, Phys. Rev. D 83 (2011) 083520 [arXiv:1103.0285] [INSPIRE].

[47] A. Mironov, A. Morozov and T. Tomaras, Geodesic deviation and particle creation in curved

spacetimes, arXiv:1108.2821 [INSPIRE].

[48] E.T. Akhmedov and P. Buividovich, Interacting field theories in de Sitter space are

non-unitary, Phys. Rev. D 78 (2008) 104005 [arXiv:0808.4106] [INSPIRE].

[49] E.T. Akhmedov and P. Burda, A simple way to take into account back reaction on pair

creation, Phys. Lett. B 687 (2010) 267 [arXiv:0912.3435] [INSPIRE].

[50] E.T. Akhmedov, Real or Imaginary? (On pair creation in de Sitter space),

Mod. Phys. Lett. A 25 (2010) 2815 [arXiv:0909.3722] [INSPIRE].

[51] E. Akhmedov and E. Musaev, Comments on QED with background electric fields,

New J. Phys. 11 (2009) 103048 [arXiv:0901.0424] [INSPIRE].

[52] N. Tsamis and R. Woodard, Stochastic quantum gravitational inflation,

Nucl. Phys. B 724 (2005) 295 [gr-qc/0505115] [INSPIRE].

[53] A.A. Starobinsky and J. Yokoyama, Equilibrium state of a selfinteracting scalar field in the

de Sitter background, Phys. Rev. D 50 (1994) 6357 [astro-ph/9407016] [INSPIRE].

[54] M. van der Meulen and J. Smit, Classical approximation to quantum cosmological

correlations, JCAP 11 (2007) 023 [arXiv:0707.0842] [INSPIRE].

[55] L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol. 10: Physical Kinetics,

Pergamon Press, Oxford U.K. (1981).

[56] A. Kamenev, book to appear. The Book corrects the collision integral for the phonons derived

in the following review, Many-body theory of non-equilibrium systems, cond-mat/0412296.

[57] E. Calzetta and B. Hu, Closed time path functional formalism in curved space-time:

application to cosmological back reaction problems, Phys. Rev. D 35 (1987) 495 [INSPIRE].

[58] E. Calzetta and B. Hu, Nonequilibrium quantum fields: closed time path effective action,

Wigner function and Boltzmann equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].

[59] E. Calzetta, S. Habib and B. Hu, Quantum kinetic field theory in curved space-time:

covariant Wigner function and Liouville-Vlasov equation, Phys. Rev. D 37 (1988) 2901

[INSPIRE].

– 31 –

http://dx.doi.org/10.1088/1475-7516/2011/01/023
http://arxiv.org/abs/1005.1056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1056
http://dx.doi.org/10.1088/1475-7516/2008/04/030
http://arxiv.org/abs/0801.1845
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1845
http://dx.doi.org/10.1088/0264-9381/19/17/311
http://arxiv.org/abs/gr-qc/0204065
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0204065
http://dx.doi.org/10.1103/PhysRevD.70.107301
http://arxiv.org/abs/gr-qc/0406098
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0406098
http://dx.doi.org/10.1103/PhysRevD.76.043512
http://arxiv.org/abs/gr-qc/0612026
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0612026
http://dx.doi.org/10.1103/PhysRevD.81.023508
http://arxiv.org/abs/0904.4811
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4811
http://dx.doi.org/10.1103/PhysRevD.83.083520
http://arxiv.org/abs/1103.0285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.0285
http://arxiv.org/abs/1108.2821
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2821
http://dx.doi.org/10.1103/PhysRevD.78.104005
http://arxiv.org/abs/0808.4106
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.4106
http://dx.doi.org/10.1016/j.physletb.2010.03.040
http://arxiv.org/abs/0912.3435
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3435
http://dx.doi.org/10.1142/S0217732310034043
http://arxiv.org/abs/0909.3722
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.3722
http://dx.doi.org/10.1088/1367-2630/11/10/103048
http://arxiv.org/abs/0901.0424
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0424
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.031
http://arxiv.org/abs/gr-qc/0505115
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0505115
http://dx.doi.org/10.1103/PhysRevD.50.6357
http://arxiv.org/abs/astro-ph/9407016
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9407016
http://dx.doi.org/10.1088/1475-7516/2007/11/023
http://arxiv.org/abs/0707.0842
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0842
http://arxiv.org/abs/cond-mat/0412296
http://dx.doi.org/10.1103/PhysRevD.35.495
http://inspirehep.net/search?p=find+J+Phys.Rev.,D35,495
http://dx.doi.org/10.1103/PhysRevD.37.2878
http://inspirehep.net/search?p=find+J+Phys.Rev.,D37,2878
http://dx.doi.org/10.1103/PhysRevD.37.2901
http://inspirehep.net/search?p=find+J+Phys.Rev.,D37,2901


J
H
E
P
0
1
(
2
0
1
2
)
0
6
6

[60] E. Calzetta and B. Hu, Dissipation of quantum fields from particle creation,

Phys. Rev. D 40 (1989) 656 [INSPIRE].

[61] E. Calzetta and B. Hu, Wigner distribution function and phase space formulation of quantum

cosmology, Phys. Rev. D 40 (1989) 380 [INSPIRE].

[62] H. Kitamoto and Y. Kitazawa, Boltzmann equation in de Sitter space,

Nucl. Phys. B 839 (2010) 552 [arXiv:1004.2451] [INSPIRE].

[63] T. Bunch and P. Davies, Quantum field theory in de Sitter space: renormalization by point

splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

[64] D.P. Jatkar, L. Leblond and A. Rajaraman, On the decay of massive fields in de Sitter,

arXiv:1107.3513 [INSPIRE].

[65] N.P. Myhrvold, Runaway particle production in de Sitter space, Phys. Rev. D 28 (1983) 2439

[INSPIRE].

[66] D. Boyanovsky, H.J. de Vega and N.G. Sanchez, Particle decay during inflation: self-decay of

inflaton quantum fluctuations during slow roll, Phys. Rev. D 71 (2005) 023509

[astro-ph/0409406] [INSPIRE].

[67] D. Boyanovsky and H.J. de Vega, Particle decay in inflationary cosmology,

Phys. Rev. D 70 (2004) 063508 [astro-ph/0406287] [INSPIRE].

[68] J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants,

three-point functions and particle stability on the de Sitter universe,

Commun. Math. Phys. 295 (2010) 261 [arXiv:0901.4223] [INSPIRE].

[69] J. Bros, H. Epstein and U. Moschella, Particle decays and stability on the de Sitter universe,
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