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Abstract. For a generic quantum integrable system, we describe the asymptotics of the
eigenstate density and of the trace of the evolution operator in all orders of the quantization
parameter. This is done by using quantum symplectic geometry, which makes the given
quantum system to be equivalent to a deformed classical system with arbitrary accuracy with
respect to the quantization parameter. The asymptotics is explicitly given via the deformed
symplectic form, deformed Liouville-Arnold tori, and deformed Maslov class.
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1. INTRODUCTION

In 1990, Max Planck theoretically discovered a fundamental fact of jump-like character of the
radiation energy and demonstrated that portions of energy are always proportional to the fre-
quency multiplied by a certain universal quantum of action (later called the “Planck constant”).
Planck’s intuitive conjecture, which was formulated in 1911, declared that the general quantization
phenomenon of physical quantities can be described mathematically in terms of discretization of
the “action” coordinates in the phase geometry. The importance of such an interpretation was
widely recognized after the work of A. Sommerfeld (1915), who successfully applied this idea to
the hydrogen atom model. Then K. von Schwarzschild (1916) and A. Einstein (1917) pointed out
that the discretization rule in Planck’s conjecture can be understood as a topological condition for
noncontractible cycles of invariant tori in the phase space. Later, H. Kramers (1926) and J. Keller
(1958) introduced half-integer corrections to this rule.

The importance of the phase space geometry in quantum mechanics was clarified from another
point of view by H. Weyl (1931) and E. Wigner (1932) who associated the operator trace with the
phase space integral and Planck’s quantum of action. Then, H. Groenewold (1946) and J. Moyal
(1949) rewrote the quantum product of operators in terms of functions on the phase space. Later,
P. Argyres (1965) noticed that the fact of spectrum nondegeneracy for one-dimensional systems,
together with the Weyl trace formula and the Groenewold-Moyal product, makes it possible to
compute the spectrum of such systems analytically with arbitrary power accuracy with respect to
the quantization parameter. Argyres’ formula represented a deformed discretization rule for one-
dimensional systems via an integral over the energy levels of the Hamiltonian, similarly to Planck’s
original idea.

For systems with many degrees of freedom, in the context of the general theory of global semi-
classical approximation, the quantization hypothesis was mathematically cleaned and significantly
clarified by V. Maslov [1] in the first two leading terms of the asymptotics in the quantization
parameter (and a new homotopic invariant was discovered, the index of paths on Lagrangian sub-
manifolds in the phase space). However, the problem of lower terms in spectral asymptotics for
many degrees of freedom remained open. In the note [2] (see [3] for details), it was suggested to
use quantum deformation of the classical “action” coordinates to construct higher semiclassical
approximations of the discrete spectrum for multidimensional integrable systems. This approach
was finally realized in [4], where the following basic statement was established:

The fibration of the phase space by Liouville-Arnold tori and the classical symplectic 2-form
can be deformed by means of the quantization parameter (preserving the property of tori to be
Lagrangian) in such a way that the usual geometric discretization rule, written out for the new tori
and new 2-form, represents the spectrum of the quantum integrable system with arbitrary power
accuracy in the quantization parameter.
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208 KARASEV

Let us clarify that, in the discretization rule, instead of the standard integer Maslov class, one
has to use here a certain special deformation of this class.

We also note that the deformation of the tori and the symplectic form mentioned in this statement
is produced by an explicit and geometrically invariant procedure, and it is unique up to a phase-
space diffeomorphism.

Thus, we obtain a universal algorithm for computing spectral asymptotics for multidimensional
integrable systems. At the same time, this approach eliminates the phenomenon of destruction
(diffusion) of the classical phase space fibration under the quantum evolution. Namely, if one
correctly deforms the fibration and preserves the fibers satisfying the discretization rule only, then
this new geometric object will not be destructed in the long-time quantum evolution, and only
state density diffusion along its fibers will be observed.

The results of [4] demonstrate that, for multidimensional integrable systems, the Planck hypoth-
esis can work not only in the leading two terms but also in all lower terms of the semiclassical
asymptotics if one replaces the classical phase space geometry by an appropriate quantum geome-
try. This deformed geometry is adapted to the original fibration by tori and depends on all higher
derivatives of the classical action-angle variables in a very complicated way. Up to arbitrary power
accuracy, it allows to distinguish the “a la classical mechanics” component from the given quan-
tum system, in the spirit of Bohr’s correspondence and complementarity principles, separating this
component from that for which the Heisenberg dispersion and uncertainty are dominating.

The present paper continues [4]. In the framework of multidimensional quantum integrable sys-
tems, we obtain two new asymptotic formulas which work in all orders of the semiclassical approx-
imation:

(A) the formula for the eigenstate density (the Wigner function) presented via distributions
concentrated on the deformed phase space tori;

(B) the formula for the trace of the evolution operator, presented as a sum over noncontractible
cycles on the deformed phase space tori.

Formula (A) demonstrates that the lower terms of the semiclassical asymptotics of the eigenstate
density of a quantum system depend on the global phase geometry and rather than on the local
properties of Hamiltonians only. Here we meet an essential distinction between the discrete and
continuous spectrum cases. The quantum geometry makes it possible to describe the asymptotics
of the eigenstate density in all lower orders in the quantization parameter simultaneously.

Formula (B) is somewhat similar to the Gutzwiller trace formula [5], but it makes no use of
any dynamical trajectories. Our approach generalizes the well-known work of Berry and Tabor [6]
by transforming the classical symplectic geometry to the quantum one. This makes it possible to
obtain a very simple geometric representation for the trace of the evolution operator (or for the
spectral density) in all orders of asymptotics in the quantization parameter simultaneously.

2. QUANTUM SYMPLECTIC GEOMETRY

In the present paper, we follow the notation introduced in [4]. By A = A(q,p) we denote the
Weyl symmetrized functions of the generators ¢ = (¢, ..., ¢") and p = —ihd/0q, where ¢’ stand for
the Euclidean coordinates on R™. The symbols A = A(q, p) are functions on T*R", which smoothly
depend on the quantization parameter A — 0 (this dependence is not indicated in the notation).

The quantum integrable system under consideration is determined by a set of commuting self-
adjoint operators H; (j =1,...,n), i.e.,

In the A = 0 limit, the functions
def
H) = Hjln—o, {H}, H]} =0, (2.2)
determine a classical integrable system on T*R"™ with action-angle coordinates

s=1(81,-..,5n) and = (..., 7", 0< 7 <2m.
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QUANTUM GEOMETRY AND QUANTUM MECHANICS ... . II 209

We assume that the symbols H; are real and satisfy the usual conditions at infinity [7] which

guarantee the self-adjointness of the operators ﬁj in L?(R™) and the discreteness of their joint
spectrum as h — 0 with i # 0.

Let D be an open nonempty domain in 7*R™ whose closure D is determined by the inequalities
05]<HJO(Q7P)<B] (]:1,,71)

We assume that D is connected and trivially fibered by the classical Liouville-Arnold tori
{s = const}. The last conditions are just technical and can be generalized; however, in any case,
the occurrence of a separatrix is forbidden.

The classical symplectic form on T*R™ is

(¢} ]- (S)
wE dp A dg = gJdX NdX, X L7 s), (2.3)

where X is regarded as a 2n-dimensional vector-function and J = ( _? 6) stands for the standard

symplectic 2n x 2n matrix with zero and identity n x n blocks.

The classical Poisson brackets in (2.2) correspond to the form (2.3). The quantum condition
(2.1) can also be represented via some deformed Poisson brackets. In [4], a deformation procedure
was described,

w—>wh7 {7}_> {'7'}h7

H — H" (s,7) — (Sh,Th), (24)

which produces mod O(i*°) a new closed 2-form and new Poisson brackets on the domain D, new
action-angle coordinates s”, 7, and new energy functions H Jh in involution with respect to the new

brackets:! e
{Hj,Hk} =0. (2.5)

The classical commutativity (2.5) mod O(h*°) is related to the quantum commutativity (2.1) in the
following way.

Denote by * the product operation AxB = Eﬁ, which is explicitly given by the Groenewold—
Moyal formula

A*B—Aexp{;ﬁDJD}B

Here D stands for the derivatives with respect to the Euclidean coordinates on T*R"™. The quantum
commutator determines the operation on the symbols

[A,B]*d:ef%(A*B—B*A), (2.6)

in such a way that condition (2.1) can be represented as
[H;, Hy), = 0. (2.7)

For a set of functions S = (S1,...,S5,) on D and a function k of n variables, one can define the
Weyl symmetrized *-composite function k(S)., as well as the usual composite function k(S). These
functions are related to each other by some transformation Vg, i.e.,

B(S). = Vs(k(S)). (2.8)

'n the equations below, we do not indicate the accuracy specially if these equations hold mod O(~°°) only; however,
we always mention the accuracy in the text.
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Using these *-product operations, we can represent explicit formulas for the quantum corrections
in (2.4) up to O(h*). First, we can write

Wl = w + W2 + O(hY),

2.9
H" = H° + r2L + O(?). (29)
The correcting 2-form s in (2.9) is given by
1 . 1 . )
= 5«8[, sihdrt Adrd + §<<7'l, Wds; A dsj + ((s5, T )ds; A dr, (2.10)

where the double angular brackets are taken from the expansion of the quantum commutator (2.6):
[A7 B]* = {A> B} - h2<<A> B>> + O(h4)a

namely,

(A, BY ‘i:ef—iD?’A-J@ J@.J-D3B. (2.11)
The correcting Hamiltonian L in (2.9) is given by
L=M+AH. (2.12)
Here M is taken from the expansion
H = H°+ 1*M + O(h*), (2.13)

and the quantum diffusion operator A is defined by

def 1 2 1, 03
— —D*s;- JJ®J- (D Ds,)——
+ 24 su-J@J - (Dsy @ Ds )aslﬁskasm

A, L

D?s;- J® J - D?sp -

2.14
16 05105y, 21

(the summation over repeated Latin indices ranges from 1 to n, here as well as in (2.10)). This is
the very operator standing in the general quantum composite function transformation (2.8),

Vs =1 —h*Ag + O(hY). (2.15)

After the symplectic deformed form w” and the deformed tori {H" = const} are obtained by
(2.9), the usual procedure generates the action coordinates

1
ho_ R c
5 = 5- zﬁw +¢j (j=1,...,n). (2.16)
J
Here the constants 1
cj = pdg
27T Fj

are defined by basic noncontractible cycles I'; in a fized torus. The “membrane” E? C D is stretched
on two cycles, namely, on the jth noncontractible cycle in the torus containing the given phase space
point and on the cycle (—I';) in the fixed torus (with opposite orientation). By the freedom in the
choice of I';, the action coordinate (2.16) is determined uniquely up to an additive constant.

Note that the integral on the right-hand side of (2.16) does not depend on the choice of membrane,
since the quantum symplectic form is closed (dw™ = 0) and the tori {H" = const} are Lagrangian
(i.e., annihilate w") in view of (2.5).
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In addition to the new actions, one can also define new angle coordinates 0 < 77 < 27, according

J
to the representation

wh = ds" A drh. (2.17)

The explicit h-expansion of these quantum action-angle coordinates is
sh=s+h2a+0nY), TP=14+h0+00", (2.18)

where .
OH®\ 1
= Ly — (L)) + — ¢, 2.19
aj; (83) j(l <l>1)+27r/29%+%> ( )
J

here a? are some constants,

o = [ (e = G ) a4 o),

. (2.20)
F(s) = / (7,71

(s6 + (1 — €))(s — Oy de + 22,

7=0 88]‘

s is a chosen point in the s-space, and 1) is an arbitrary function in s-coordinates. The membrane

E? in (2.19) spans the jth noncontractible cycle in the classical Liouville-~Arnold torus containing

the given phase space point and on the cycle I'; on the fixed torus (see the remark after (2.16)).

The freedom in the choice of the fixed torus generates the freedom in the choice of the constants
0 .

aj in (2.19).

One can call s", 7" the quantum action-angle coordinates since they obey mod O(h>) the canon-
ical commutation relations with respect to the quantum brackets (2.6):

[s",s)l =0, [, 7", =0, [ =0. (2.21)

The quantum actions also obey mod O(/*) the 27-periodicity condition for the *-exponent,

2me v
exp <h5?> = exp {2m?} . (2.22)
h

Here the real numbers m; are some constants on the domain D which determine the cohomology

0

class of the deformed tori {s" = const}. In the classical limit, the class m® coincides with the

integer Maslov class of the tori {s = const}.
The final formula matching the quantum-commuting symbols H; (2.7) with the classical-com-
muting energy functions H]h (2.5) is
Hj =V (H), (2.23)

where V;r is the transformation (2.8) corresponding to the quantum actions S = s”.

Let o < H™ < 8" be the range of the energy functions corresponding to the range o < H® < 8
of Hamiltonians on the classical Liouvill-Arnold fibration.

The main result of [4] is derived from (2.22) and (2.23).

Theorem 2.1. The eigenvalues E" € [a”, 3] of the set of commuting Hamiltonians H are
determined mod O(h™) by the dicretization rule

1 1
/ Wrre=R(N+-ml), N e Z, (2.24)
27 $h 4
where the membranes X" span arbitrary noncontractible cycles in the deformed tori {H" = &M},
and the set of constants c is taken from (2.16).

The discretization rule (2.24) fixes the “right” values of the quantum actions (2.16) taking into
account the global holonomy (2.22) of the quantum flow over the 27-period.
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3. DENSITY OF EIGENSTATES

~

Denote by £"[N] the asymptotic mod O(h*°) eigenvalues of the set of commuting operators H
obtained from the discretization rule (2.24). The corresponding mod O(h°°) eigenstates are the
L?-normalized eigenstates of the quantum action operators

shpy = s"[NJew, "IN < h (N + imh) (3.1)

The density (or the Wigner function) py of the asymptotic eigenstate ¥y is the phase space
distribution defined by the L2-scalar product:

/ pw AdL S (i, ).
T*Rn

Here we denote by dL = dqdp the classical Liouville measure on T*R". The distribution py is
concentrated mod O(A>) on the torus? {s = s"[N]} (see, e.g., [8, Chap. III]). The leading term of
the asymptotics of py is just the Dirac d-function on the torus. The following theorem presents all
lower terms.

Theorem 3.1. The eigenstate density has the representation mod O(h>),

1

o = (g Verdls” = " ND), (3.2)

where s" are the quantum actions (2.16) and the transformation V,n is defined as in (2.8) for

S = s". The first two terms of asymptotics of the eigenstate density are

1
(2m)"

PN = §(s — s"[N]) + i? <aj85(s—sE[N])—A35(s—sh[N])> +O(h4)] , (3.3)

88]'

where s are the classical action functions, the functions a; are the first quantum corrections (2.19),
and the third-order differential operator Ay is determined by (2.14).

Proof. Denote by U = ((71, o Un ) the set of commuting mod O(A) unitary operators gener-
ated by the quantum angles: Uy, = exp{wﬁk} or, if the transformation (28) is used,

Uk = V.rn (eXp{iThk}). (3.4)
It follows from (2.23) that
shOM = UM (sh + hM), M ez,

and therefore the function UM 1 is the eigenstate of the quantum actions corresponding to the
eigenvalues A(N + M + imh). Thus, this function is orthogonal to ¥y,

(UM, on) =0, M #0. (3.5)

Let us now define the action-angle pseudodifferential operators

d

9(37 S/}L)TﬁN el Z ﬁM,NﬁMl/JN, (3.6)

@m)" 7=,

2Note that mod O(~>°) all our objects are localized in the domain D, and thus the continuation of the quantum
action functions s~ in (3.1) outside D (needed for the operators s~ to be correctly defined) plays no role. The same

is true for the definition of the unitary operators U= exp{m”} generated by the quantum angles, see (3.4) below.
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where gar,n is the Fourier transform of the symbol g by the quantum angle coordinates:
Dy = [ exp(idrYg(r", s (N)) dr".

Then it follows from (3.5) that

- 1 1 1
(o7 ox) = sz = g [ 9 IND = o [ 06" — s ach,
3.7
where 1 37
deh = ds"dr" = =W A AW (3.8)

n

is the quantum Liouville measure generated by the quantum symplectic form w”.

By analogy with (2.8), let us introduce the transformation V,» ¢ relating the action-angle pseu-
dodifferential operators (3.6) to the usual (g, p)-operators,

—_ o~ —

g(th, sh) = Vo gn(g). (3.9)
Then .
(9(7—71’ Sh)¢Na Q;Z)N) = /pNVTFL,Sh (g) dL,

and (3.7) implies

/ pyAdL = (27lr>n / VLo (A4) - 6(s" — s[N]) dc”. (3.10)

Lemma 3.1. The transformation Vin ¢ (3.9) is mod O(h™) unitary on smooth functions local-
ized in D :

/VTh7Sh(g/) Von on(g") dL = /g/ g"dch, (3.11)

Proof of the lemma. The left-hand side of (3.11) coincides mod O(h*>°) with the trace

@rh)" tr (Ver on(g7)* - Vin (') = (2mh)" ta(g” (77, s7)" - g/ (77, 5))

~ —~ A~ A\" — =
= (2rh)" > (g (7", M) w, g (77, Py ) = () > G SN

2
N,M

N
=S [ SN ST
N

where, in the last two equalities, we have used (3.5), (3.6), and the Parseval identity for the Fourier
transform by angles. The last sum over N thus obtained can be rewritten mod O(h°°) by using the

Poisson summation formula, as the integral by s", and we obtain the right-hand side of (3.11). The
lemma is proved.

Now, by using (3.11), we transform (3.10) mod O(h>) as follows:

/pNAd£ = (21)11 /A Von gnd(s" — s"[N]) dL.
T

Since the function d(s" — s"[N]) does not depend on the angle coordinates, the transformation
Von gn coincides with Vin on this function, and we obtain (3.2).

The asymptotic expansion (3.3) immediately follows from (3.2) if we take expansions (2.15) and
(2.8) into account. The theorem is proved.
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Corollary 3.1. In the nondegenerate case

det 9H" /0s™ # 0, (3.12)
formula (3.2) is equivalent to
_ 1 h_ oh
v = i V" = '[N (3.13)
where .
e H" -
[N <" (27)" | det %Sh(shm)‘ = / S(H"™ — EMNY)) dLh. (3.14)

In view of (2.23), one can also obtain the following chain of identities:

L — —

Vig(H) = g(H) = g(H"(s")) = Virg(H"),
and thus, by mod O(h*), we have
Virg(H) = Vong(H")
for any function g localized inside the [a”, 3"] interval. Then (3.13) implies the following assertion.

Corollary 3.1a. In the nondegenerate case (3.12), the eigenstate density is given mod O(h™)
by the formula

1
= WVHé(H — EMNYD). (3.12a)

Note that, by (2.9) and (2.10), we obtain the asymptotics of the quantum Liouville measure,
AL = (14 B ((s;, 7)) + O(K")) dL. (3.15)

For the Hamiltonians H, one has the representation (2.13) and, for the transformation Vi, one can
use (2.15). Thus, using (3.12a) and (3.14) in the nondegenerate case, we can derive the asymptotics

1
(2m)"

PN =

S(H® — EMNY)) + K2 <7 + M% — AHO> S(H — EMN)) + O(hY) | . (3.16)

Here

i

def |: 0
s=sM[N]

5o} = {5 >}

where the angular brackets stand for the averaging over the classical angles, and the operator Ao
is given by (2.14) (s must be replaced by H?).

4. TRACE FORMULAS

The computations of trace for functions in commuting operators with discrete spectrum is made
by summing over the grid of eigenvalues. The basic instrument here is the Poisson summation
formula relating the sum to an integral with some oscillating factors. In our case, where the grid
of eigenvalues is represented by the grid of phase space tori obeying the discretization rule, the
Poisson formula can be represented via integration with respect to the Liouville measure and via
phase factors generated by the symplectic form over the tori. If one wants to apply this technique
up to O(h*°), then one needs to use quantum symplectic geometry (given by the quantum form
w" and the quantum Liouville measure d£") rather than the classical one. The summation formula
adapted to quantum geometry is expressed in the following lemma.
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Lemma 4.1. Let ¢ be a smooth function localized in D and constant along the deformed
Liouville-Arnold tori. Then

1 / { / n} 3
= exp w ac”, 4.1
Z v sh=sP[N] (27Th n Z *Rm oM v ( )

N Mem; (Tn)

where oy is a membrane in D spans the two closed curves M and (—M) provided that M is a cycle
in the homotopy group of the deformed torus containing the given phase space point and (—M) is
topologically the same cycle with opposite orientation that belongs to the fized torus {s" = s"[No|}
on which the discretization rule (2.24) holds.

Identifying the cycles M in the homotopy group 1 (T™) of the deformed torus with elements
M € Z™, one can say that the summation on the right-hand side of (4.1) is taken over membranes
whose boundaries wind around the torus generatrices M times.

Note that formula (4.1) is exact, i.e., it is not asymptotical. However, if the function ¢ in (4.1)
does not oscillate as i — 0, then all summands with M # 0 in (4.1) are of order O(A*°). In this
case, one obtains much more simple asymptotic formula

D o

N

_ (27r1h)n /T | pd! O (4.2)

sh=s"[N]

Let us now apply these formulas to our set of commuting operators H. Recall that the joint
spectrum of H is given mod O(/°) by the discretization rule (2.24),

EMN] = H"| ,_ (4.3)
Formulas (4.2) and (4.3) imply the following assertion.
Theorem 4.1. Let a smooth function g be localized in the [a”, 3] interval. Then
~ 1
trg(H) = ——— H"dch h>® 4.4
0(T) = o [ oH") 42"+ 00, (14)

where the symbols H" stand for the energy functions corresponding to the family of commuting
operators H = (Hy, ..., H,) and dC" for the quantum Liowville measure (3.8).

Note that the trace tr g(.FAI ) can also be computed in another way. By applying the quantum
composite function transformation (2.8), we obtain

~ —

g(H) = Vi (9(H)),

and therefore,

trg( /VH ))dch. (4.5)

This is actually an asymptotical formula rather than an exact one, since the transformation Vi is
known only asymptotically. For instance, (2.15) gives Vi = I — h?Ag + O(h*).

Now let us consider more complicated functions of the set of commuting operators H. For
instance, the multi-time Schrodinger dynamics is given by the exponential function exp(—#tH),
t € R™. Because of the presence of / in the denominator of the exponent, one cannot apply the simple

version (4.2) of the summation formula to this function. For such cases of oscillating functions, the
complete version (4.1) has to be applied.
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Theorem 4.2. The trace of the Schriodinger evolution generated by the quantum integrable
system is given by the following formula

tr(e FHg(M) = - 3 / exp{; / wh—;tHh} g(HM Ll + O(h®).  (4.6)
) o

n
(27Th) Mem (T

In this theorem, we use the same notation as in Lemma 4.1 and Theorem 4.1.

In the leading term as i — 0, formula (4.6) is reduced to the Berry and Tabor result [6]. The
use of quantum geometry makes it possible to write out the trace formula in all orders of the
quantization parameter A.

Of course, in (4.6), one can apply the stationary phase method in order to eliminate the integrals.
The stationary points are given by the equations

tOH" /95" = 21 M, (4.7)

where M is regarded as an element of Z". Equation (4.7) means that the trajectory of the Hamil-
tonian system generated by H" and by the quantum symplectic form w” is periodic. When M is
running over Z", we obtain all periodic trajectories of this Hamiltonian system by (4.7). Let us
stress that this is not the ordinary system generated by H® with respect to the classical form w;
this is a deformed Hamiltonian system. We refer to it as the quantum Hamiltonian system.

In each integral (4.6), the contribution of the phase fO'M w™ at the stationary point (4.7) is given
by the quantum symplectic area of the membrane ¢” spanning the periodic trajectories of the
quantum integrable system.

Thus, the stationary phase method transforms formula (4.6) as follows:

~ n/2 ; ; h\,—iTv
_i 25 2m { i g(HM)e "z
tr (e #tg(H)) = (> ex {/ wh — —tH" }
(7" g(m) = (3 Zd PR S T w0 /et Dz
periodic

trajectories Ao (48)
of the quantum

Hamiltonian
system

h

+ next stationary phase method terms.

The amplitudes in the leading terms of the asymptotics (4.8) are taken on the same periodic
trajectories, i.e., on the boundaries of the membranes o”. The index v = m" +index(t - D?H") in
(4.8) is given by the topological index m” from the discretization rule (2.24) plus the inertia index
of the matrix of second derivatives of the energy functions H".

In conclusion, note that, using the trace formula (4.8), one readily derives the formula for the
spectral density by applying the Fourier transform with respect to t.

Corollary 4.1. The asymptotics of the spectral density of the set of commuting operators H=
(Hy,...,H,) is given by

tr(€ — H) = (27r1h)"

> / et o “ha(g — H"ydLh + o(h>), (4.9)
M

where W stands for the quantum symplectic form, dC" for the quantum Liouville measure, and H"
for the energy functions corresponding to the Hamiltonians H.

In the leading term as h — 0, formula (4.9) is again reduced to the Berry and Tabor result [6].

The introduction of the quantum geometrical and dynamical objects w”, dC", and H" keeps the
structure of this result up to O(h>).
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