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Abstract—We study the mappings taking real intervals into metric spaces and possessing a
bounded generalized variation in the sense of Jordan–Riesz–Orlicz. We establish some embed-
dings of function spaces, the structure of the mappings, the jumps of the variation, and the
Helly selection principle. We show that a compact-valued multi-valued mapping of bounded
generalized variation with respect to the Hausdorff metric has a regular selection of bounded
generalized variation. We prove the existence of selections preserving the properties of multi-
valued mappings that are defined on the direct product of an interval and a topological space,
have a bounded generalized variation in the first variable, and are upper semicontinuous in the
second variable.

Key words: multi-valued mapping, bounded generalized variation, selection, Helly selection
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1. INTRODUCTION

A multi-valued mapping from a set E into a set X is a mapping F that to each element t ∈ E
assigns some (nonempty) set F (t) ⊂ X called the image of t . The graph of F is defined to be
the set Gr(F ) = {(t, x) ∈ E ×X | x ∈ F (t)} . Any single-valued mapping f : E → X such that
f(t) ∈ F (t) for all t ∈ E is called a selection of the multi-valued mapping F .

Many papers (e.g., [1–5]) deal with continuous and measurable selections under rather general
assumptions on E and X . As a rule, continuous selections exist for multi-valued mappings with
convex images. Examples [1, 6] show that if the image is not assumed to be convex, then continuous
selections need not exist even for continuous mappings from real intervals into compact subsets
of R2 or for Lipschitz mappings from R

3 into compact subsets of the space R3 . Selections
inheriting the global (i.e., depending on the entire domain of definition) typical properties of the
original multi-valued mapping are of independent interest. Such mappings will be called regular.

Let c(X) denote the family of all nonempty compact subsets of the metric space (X, d) . The
Hausdorff metric on c(X) is determined by the relation D(A, B) = max{e(A, B), e(B, A)} ,
where

e(A, B) = sup
x∈A

dist(x, B) and dist(x, B) = inf
y∈B

d(x, y), A, B ∈ c(X). (1)

The existence problem for regular selections of a multi-valued mapping of bounded variation leads
to mappings ranging in such a metric space. In what follows, we study the following properties
of these mappings: embeddings of functions spaces, the structure of mappings, the jumps of the
variation, and the Helly selection principle. In Theorem 10 we show that if the mappings are not
convex-valued and no restrictions are imposed on the graphs, then the multi-valued mappings F
from intervals of R into compact subsets of the metric space, having a bounded generalized Φ-
variation, possess selections preserving this property. This fact significantly generalizes the results
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about the selections of Lipschitz absolutely continuous mappings of bounded variation obtained
in [7–9] (where X is finite-dimensional), as well as in [10, D 1.8] and [11–15] (where X is a Banach
space and Gr(F ) is compact) and in [16, 17] (where X is an arbitrary metric space and Gr(F )
is arbitrary). In the last Theorem 15 we prove the existence of (continuous) selections inheriting
the properties of a compact-valued multi-valued mapping defined on the direct product of a real
interval and some topological space, possessing a bounded generalized Φ-variation in the first
argument, and being upper semicontinuous in the second argument.

The results of the present paper were described at the XXIII International Summer Symposium
on Real Analysis (June 21–26, 1999, Lódź, Poland) and were announced in [18].

2. ϕ-FUNCTIONS AND MAPPINGS OF BOUNDED Φ-VARIATION

A function Φ acting from R+ = [0,∞) into R+ is called a ϕ-function (e.g., [19, Sec. 2]) if it
is continuous, nondecreasing, and unbounded and if Φ(ρ) = 0 only for ρ = 0. We will say that
a ϕ-function Φ satisfies the Orlicz condition or Φ is an Orlicz ϕ-function if limρ→∞Φ(ρ)/ρ =∞ .
The set of all convex (down) Orlicz ϕ-functions will be denoted by N .

The right inverse of the ϕ-function Φ is defined by the rule [20, Chap. 1, Sec. 2]

Φ−1+ (r) = sup{ρ ≥ 0 | Φ(ρ) ≤ r}, r ∈ R+.

The function Φ−1+ maps R+ into R+ , is right-continuous, nondecreasing, and unbounded and

vanishes only if the following relations hold: Φ(Φ−1+ (r)) = r for r ≥ 0, Φ−1+ (Φ(ρ)) ≥ ρ for ρ ≥ 0,

and Φ−1+ (Φ(ρ)− ε) ≤ ρ for ρ > 0 and 0 < ε < Φ(ρ) . The function Φ is the right inverse of Φ−1+ .
For the Orlicz ϕ-function Φ we have

lim
r→+0 rΦ−1+

(
ϑ

r

)
= ϑ lim

ρ→∞
ρ

Φ(ρ)
= 0, ϑ ∈ R+. (2)

Any convex ϕ-function Φ is strictly increasing. Its inverse Φ−1 = Φ−1+ is hence continuous and
concave. Moreover, the functions ρ 
→ Φ(ρ)/ρ and ωΦ(ρ) = ρΦ−1(1/ρ) do not decrease for ρ > 0.
Hence the limits

lim
ρ→+0

Φ(ρ)

ρ
∈ R+ , [Φ] = lim

ρ→∞
Φ(ρ)

ρ
∈ (0,∞], ωΦ(0) = lim

ρ→+0ωΦ(ρ) ∈ R+

exist and ωΦ(0) = 0 if and only if Φ ∈ N .
Suppose that E is an unbounded subset of R , (X, d) is a metric space, and XE is the set of

all mappings f : E → X from E into X .
Let

T (E) = {T = {ti}mi=0 ⊂ E | m ∈ N, ti−1 < ti , i = 1, . . . , m}

be the set of all partitions of E by finite ordered sets of points from E . For a ϕ-function Φ,
f ∈ XE , and T = {ti}mi=0 ∈ T (E) , we define the variable

VΦ[f ; T ] =

m∑
i=1

U(ti , ti−1), where U(t, s) = Φ

(
d(f(t), f(s))

t− s

)
(t− s). (3)

A mapping f ∈ XE is called a mapping of bounded Φ-variation (in the sense of Jordan–Riesz–
Orlicz ) if there exists a constant C ≥ 0 such that VΦ[f ; T ] ≤ C for all T ∈ T (E) . The least
constant C possessing this property is called the (total) Φ-variation of the mapping f on E and
is denoted by VΦ(f , E) . If E = [a, b] is an interval, then T (E) in the definition of VΦ(f , E)
can be replaced by the set T b

a of all partitions T of the interval [a, b] , i.e., T = {ti}mi=0 , where
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m ∈ N and a = t0 < t1 < · · · < tm−1 < tm = b . The set of f ∈ XE such that VΦ(f , E) < ∞
will be denoted by BVΦ(E ; X) .

If Φ(ρ) = ρ , then the above definition of VΦ(f , E) implies the classical notion of variation in
the sense of Jordan [21, Chap. 8; 22, Chap. 4, Sec. 9]. In this case BVΦ(E ; X) is denoted by
BV1(E ; X) and VΦ(f , E) is denoted by V1(f , E) and called the (1-)variation of the mapping f
on E . If Φ(ρ) = ρq , where the constant q > 1, then VΦ(f , E) gives the notion of q-variation in
the sense of F. Riesz [23, Chap. 2, Sec. 3.36]. The case in which Φ is a convex Orlicz ϕ-function,
E = [a, b] is an interval, and X = R was studied in [24–26].

Recall that if for f ∈ XE there exists a constant C ≥ 0 such that d(f(t), f(s)) ≤ C|t− s| for
all t, s ∈ E , then f is said to be Lipschitzian (and is denoted by f ∈ Lip(E ; X)), while the least
such constant C is denoted by L(f) .

A mapping f ∈ XE is said to be absolutely continuous if there exists a function δ : (0,∞)→
(0,∞) such that for any ε > 0 and any finite set of points

{ai , bi}ni=1 ⊂ E, a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ,

the condition
∑n

i=1(bi − ai) ≤ δ(ε) implies that
∑n

i=1 d(f(bi), f(ai)) ≤ ε . The set of absolutely
continuous mappings from E into X will be denoted by AC(E ; X) .

Let us briefly discuss the case in which (X, ‖ · ‖) is a Banach space. In [27] it is shown that
a Lipschitzian mapping f : [a, b] → X may happen to be nondifferentiable either strongly (in the
norm of X) or weakly (on each functional from the strongly dual space of X) at all points of
the interval (a, b) . However, if X is reflexive, then any mapping f ∈ AC([a, b] ; X) is strongly
differentiable almost everywhere on (a, b) and can be represented as the indefinite Bochner integral
of its strong derivative f ′ . For a convex ϕ-function Φ, by L0Φ([a, b] ; X) we denote the space of all

(equivalence classes of) strongly measurable mappings f ∈ X [a,b] for which the Lebesgue integral∫ b
a

Φ(‖f(t)‖) dt is finite. In [14] the following theorem was proved.

Theorem 1. Let X be a reflexive Banach space, and let Φ be a convex ϕ-function. Any mapping
f ∈ BVΦ([a, b] ; X) has the weak derivative f• ∈ L0Φ([a, b] ; X) almost everywhere on (a, b) , and

∫ b

a

Φ(‖f•(t)‖) dt ≤ VΦ(f , [a, b]).

Moreover, if Φ ∈ N , then f ∈ BVΦ([a, b] ; X) if and only if f ∈ AC([a, b] ; X) and the strong
derivative f ′ ∈ L0Φ([a, b] ; X) exists; in this case the following integral formula holds:

VΦ(f , [a, b]) =

∫ b

a

Φ(‖f ′(t)‖) dt.

For X = R , the criterion given in this theorem is well known due to F. Riesz ([23, Chap. 2,
Sec. 3.36], where Φ(ρ) = ρq , q > 1), Medvedev [24], and Cybertowicz and Matuszewska [25] (for
Φ ∈ N ). In the last paper, a integral formula for the Φ-variation is also obtained. But if X is an
arbitrary metric space, Φ ∈ N , f ∈ X [a,b] , and ν(t) = V1(f , [a, t]) , t ∈ [a, b] , then the following
criterion (established in a somewhat more general form in [14]) holds: f ∈ BVΦ([a, b] ; X) if and
only if ν ∈ AC([a, b] ; R) and ν′ ∈ L0Φ([a, b] ; R) . Moreover,

VΦ(f , [a, b]) =

∫ b

a

Φ(|ν′(t)|) dt.

For an arbitrary metric space X , the last criterion implies

AC([a, b] ; X) =
⋃
Φ∈N

BVΦ([a, b] ; X).
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In fact, a more general assertion holds. Recall that a function Φ ∈ N satisfies the ∆′-condition if
there exist constants C > 0 and ρ0 > 0 such that

Φ(ρ1ρ2) ≤ CΦ(ρ1)Φ(ρ2) ∀ρ1 ≥ ρ0 , ∀ρ2 ≥ ρ0

(see [20, Chap. 1, Sec. 5]). From the last criterion and [20, Chap. 2, Sec. 8.1], we obtain: if X is
a metric space, then f ∈ AC([a, b] ; X) if and only if one can find a function Φ ∈ N satisfying
the ∆′-condition and the condition f ∈ BVΦ◦Φ([a, b] ; X) . Here Φ ◦ Φ stands for the repeated
composition of the function Φ.

Throughout the paper (unless otherwise specified), (X, d) is a metric space.
We list the main properties of the Φ-variation, which we shall use below. We set E−t =

E ∩ (−∞, t] , E+t = E ∩ [t,∞) , and Et
s = E ∩ [s, t] , where t, s ∈ E , s ≤ t .

Lemma 2. Suppose that Φ is a ϕ-function and f : E → X . We have

(a) if ∅ �= A ⊂ B ⊂ E , then VΦ(f , A) ≤ VΦ(f , B) ;
(b) if t, s ∈ E and s < t , then d(f(t), f(s)) ≤ (t− s)Φ−1+ (VΦ(f , E)/(t− s)) ;

(c) if t ∈ E , then VΦ(f , E−t ) + VΦ(f , E+t ) ≤ VΦ(f , E) ; moreover, if Φ is a convex ϕ-
function, then VΦ(f , E−t ) +VΦ(f , E+t ) = VΦ(f , E) ;

(d) if the subsequence {fn}∞n=1 is contained in XE and limn→∞ d(fn(t), f(t)) = 0 for all
t ∈ E , then VΦ(f , E) ≤ lim infn→∞VΦ(fn , E) ;

(e) VΦ(f , E) = sup{VΦ(f , Et
s) | s, t ∈ E , s < t} ;

(f) if s = supE ∈ R ∪ {∞} and s /∈ E , then VΦ(f , E) = limE	t→sVΦ(f , E−t ) ;
(g) if i = inf E ∈ R ∪ {−∞} and i /∈ E , then VΦ(f , E) = limE	t→iVΦ(f , E+t ) ;
(h) if s and i are the same as in (f) and (g), s /∈ E and i /∈ E , then we also have

VΦ(f , E) = lim
E	a→i
E	b→s

VΦ(f , Eb
a) = lim

E	b→s
lim

E	a→i
VΦ(f , Eb

a) = lim
E	a→i

lim
E	b→s

VΦ(f , Eb
a).

Proof. Assertions (a) and (b) follow from the definition of Φ-variation.

(c) For the partitions T1 ∈ T (E−t ) and T2 ∈ T (E+t ) , we set T̃i = Ti ∪ {t} , i = 1, 2. Then

T̃1 ∪ T̃2 ∈ T (E) and the inequality in (c) is satisfied, since

VΦ[f ; T1] + VΦ[f ; T2] ≤ VΦ[f ; T̃1] + VΦ[f ; T̃2] = VΦ[f ; T̃1 ∪ T̃2] ≤ VΦ(f , E).

To establish the equality, we use the fact that the function Φ is convex. Let us consider
the partition T = {ti}mi=0 ∈ T (E) . For t ∈ T , t < t0 or tm < t , it is clear that we have
VΦ[f ; T ] ≤ VΦ(f , E−t ) +VΦ(f , E+t ) . Now if tk−1 < t < tk for some k ∈ {1, . . . , m} , then

VΦ[f ; T ] =

( k−1∑
i=1

U(ti , ti−1)
)

+ U(tk , tk−1) +

( m∑
i=k+1

U(ti , ti−1)
)

(4)

(here the first sum vanishes for k = 1 and the last sum vanishes for k = m). Using the triangle
inequality for d , the fact that Φ is increasing, and the Jensen inequality for sums, we obtain

U(tk , tk−1) ≤ U(tk , t) + U(t, tk−1). (5)

Hence relations (4) and (5) imply

VΦ[f ; T ] ≤ VΦ[f ; {ti}k−1i=0 ∪ {t}] + VΦ[f ; {t} ∪ {ti}mi=k] ≤ VΦ(f , E−t ) +VΦ(f , E+t ).
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560 V. V. CHISTYAKOV

(d) Taking into account the fact that the metric d and the function Φ are continuous and fn
converges to f pointwise, for any partition T = {ti}mi=0 of the set E , it suffices to pass to the
lower limit as n→∞ in the inequality VΦ[fn ; T ] ≤ VΦ(fn , E) and to note that

lim
n→∞VΦ[fn ; T ] = VΦ[f ; T ].

(e) Assertion (a) implies that the expression on the left is larger than or equal to that on the
right. Conversely, for any number α < VΦ(f , E) there exists a partition T = {ti}mi=0 ∈ T (E)
such that VΦ[f ; T ] ≥ α , but T ∈ T (Etm

t0
) . Therefore, we have VΦ(f , Etm

t0
) ≥ VΦ[f ; T ] ≥ α .

(f) Since s /∈ E , the point s is a limit point of the set E . Assertion (a) implies that the function
t 
→ VΦ(f , E−t ) from E into [0,∞] does not decrease. Hence the limit written in item (f) exists
in [0,∞] and does not exceed VΦ(f , E) . On the other hand, it follows from assertion (e) that, for
any number α < VΦ(f , E) , there exist numbers a, b ∈ E , a < b < s , such that VΦ(f , Eb

a) ≥ α .
Whence, for any t ∈ E ∩ [b, s) �= ∅ , by virtue of (a), we obtain VΦ(f , E−t ) ≥ VΦ(f , Eb

a) ≥ α .
Assertion (f) is thus proved.

Assertion (g) and the first relation in (h) can be proved similarly to assertion (f). For the second
relation, we have

VΦ(f , E) = lim
E	b→s

VΦ(f , E−b ) = lim
E	b→s

lim
E	a→i

VΦ(f , (E−b )+a )

= lim
E	b→s

lim
E	a→i

VΦ(f , Eb
a).

The last relation in (h) can be proved in the same way. �
The inequality in Lemma 2(d) can be strict: the sequence of functions

fn(t) =
1

2πn
cos(2πnt)

converges as n → ∞ to the function f ≡ 0 uniformly in t ∈ [0, 1] , and the integral formula for
the Φ-variation implies

VΦ(fn , [0, 1]) =
2

π

∫ π/2

0

Φ(sin t) dt > 0,

where n ∈ N and Φ is a convex ϕ-function.

Lemma 3. Suppose that Φ and Ψ are convex ϕ-functions. If the set E is bounded and the
∆ΦΨ-condition

lim sup
ρ→∞

Ψ(ρ)

Φ(ρ)
<∞

is satisfied, then BVΦ(E ; X) ⊂ BVΨ(E ; X) . Conversely, if E = [a, b] is an interval, (X, ‖ · ‖)
is a linear normed space, and BVΦ(E ; X) ⊂ BVΨ(E ; X) , then the ∆ΦΨ-condition is satisfied.

Proof. The ∆ΦΨ-condition is equivalent to that Ψ(ρ) ≤ CΦ(ρ) for all ρ ≥ ρ0 , where C > 0 and
ρ0 > 0 are some constants. Then, for f ∈ BVΦ(E ; X) and T ∈ T (E) , we have

VΨ[f ; T ] ≤ Ψ(ρ0)(supE − inf E) + CVΦ(f , E).

Recall that the convex ϕ-function Φ has the nondecreasing right-continuous right-hand deriv-
ative Φ′+(ρ) , ρ ≥ 0, and Φ′+(ρ) > 0 for ρ > 0. Hence we have

∃ρ(Φ) > 0 c(Φ) > 0 : ∀ρ ≥ ρ(Φ) Φ(ρ) ≥ c(Φ)ρ. (6)
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Now if the ∆ΦΨ-condition is violated, then there exists an infinitely increasing sequence of positive
numbers {ρn}∞n=1 such that Ψ(ρn) > 2nΦ(ρn) , n ∈ N . We define the sequence {an}∞n=0 in [a, b]
recurrently as follows:

a0 = a, an − an−1 = 2−n(b− a)
Φ(ρ1)

Φ(ρn)
, n ∈ N.

We set

f(t) =

{
(ρn(t− an−1) + Sn−1)x if an−1 ≤ t < an, n ∈ N,
S∞x if limn→∞ an ≤ t ≤ b,

where

S0 = 0, Sk =
k∑

i=1

ρi(ai − ai−1), k ∈ N ∪ {∞},

S∞ < ∞ by (6), x ∈ X , ‖x‖ = 1. We show that f ∈ BVΦ([a, b] ; X) , but f /∈ BVΨ([a, b] ; X) .
Indeed,

VΦ(f , [a, b]) =

∞∑
n=1

U(an , an−1) =

∞∑
n=1

Φ(ρn)(an − an−1) = (b− a)Φ(ρ1) <∞.

On the other hand, for an arbitrary m ∈ N and Tm = {an}mn=0 , we have

VΨ(f , [a, b]) ≥ VΨ[f ; Tm] =
m∑

n=1

Ψ(ρn)
(b− a)Φ(ρ1)

2nΦ(ρn)
≥ m(b− a)Φ(ρ1). �

Lemma 3 and assertions (6) for a convex ϕ-function Φ imply that the set BVΦ(E ; X) is embed-
ded in BV1(E ; X) . Moreover, if the value of [Φ] (equal also to the supremum supρ>0Φ(ρ)/ρ) is fi-
nite, then BVΦ(E ; X) = BV1(E ; X) , which follows from the inequality VΦ(f , E) ≤ [Φ]V1(f , E)
for f ∈ BV1(E ; X) .

3. SPACE OF MAPPINGS OF GENERALIZED Φ-VARIATION

Let (X, d) be a metric space, and let E ⊂ R . For λ > 0 and a convex ϕ-function Φ, we set
Φλ(ρ) = Φ(ρ/λ) , ρ ∈ R+ . For brevity, we write BVΦ instead of BVΦ(E ; X) if this does not lead
to ambiguity. It follows from Lemma 3 that BVΦλ ⊂ BVΦ for 0 < λ ≤ 1 and BVΦ ⊂ BVΦλ for
λ > 1. In general, the last inclusion is strict. For instance, if Φ(ρ) = eρ− 1, f(t) = t(1− log t) for
0 < t ≤ 1, and f(0) = 0, then, using the integral formula for the Φ-variation in Theorem 1, we
obtain VΦλ(f , [0, 1]) = 1/(λ−1) for λ > 1 and VΦλ(f , [0, 1]) =∞ for 0 < λ ≤ 1. By Lemma 3,
the opposite inclusion BVΦλ ⊂ BVΦ for λ > 1 holds if and only if Φ satisfies the ∆2-condition
(see [20, Chap. 1, Sec. 4; 19, Sec. 3]): lim supρ→∞Φ(2ρ)/Φ(ρ) <∞ . This condition is equivalent to
the following one: for any number λ > 1 there exist constants C(λ) > 0 and ρ0(λ) > 0 such that
Φ(ρ) ≤ C(λ)Φ(ρ/λ) for all ρ ≥ ρ0(λ) . (Note that if [Φ] <∞ , then Φ satisfies the ∆2-condition.)

In the general case, for any convex ϕ-function Φ, the space of mappings of bounded general-
ized Φ-variation is the set

GVΦ(E ; X) =
⋃
λ>0

BVΦλ(E ; X). (7)

It follows from the above that if a convex ϕ-function Φ satisfies the ∆2-condition, then GVΦ =
BVΦ . Conversely, if E = [a, b] , X is a linear normed space, and GVΦ = BVΦ , then Φ satisfies
the ∆2-condition: by virtue of Lemma 3 and the embedding BVΦ2 ⊂ BVΦ , there exist C > 0 and
ρ0 > 0 such that Φ(ρ) ≤ CΦ(ρ/2) , ρ ≥ ρ0 .
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If Φ and Ψ are convex ϕ-functions, the set E is bounded, and there exist constants C > 0
and ρ0 > 0 such that Ψ(ρ) ≤ Φ(Cρ) for ρ ≥ ρ0 , then GVΦ ⊂ GVΨ , since for λ > 0, f ∈ BVΦλ ,
and T ∈ T (E) , we have VΨµ [f ; T ] ≤ Ψ(ρ0)| supE − inf E| +VΦλ(f , E) , where µ = λC . The
converse statement for E = [a, b] and a linear normed space X is established in [15].

For a reflexive Banach space X and Φ ∈ N , it follows from Theorem 1 that f ∈ GVΦ([a, b] ; X)
if and only if f ∈ AC([a, b] ; X) and f ′ ∈ LΦ([a, b] ; X) , where LΦ([a, b] ; X) stands for the Orlicz
space [20, 19] of mappings f ∈ X [a,b] such that λf ∈ L0Φ([a, b] ; X) for some λ > 0.

Since the function Φ is convex, the variable

pΦ(f , E) = inf{λ > 0 | VΦλ(f , E) ≤ 1}, f ∈ GVΦ(E ; X), (8)

is well defined. The following lemma describes the main properties of pΦ(f , E) .

Lemma 4. For a convex ϕ-function Φ and f ∈ GVΦ(E ; X) , we have

(a) d(f(t), f(s)) ≤ ωΦ(|t− s|)pΦ(f , E) for all t, s ∈ E ;
(b) if pΦ(f , E) = λ > 0 , then VΦλ(f , E) ≤ 1;
(c) if λ > 0 , then pΦ(f , E) ≤ λ if and only if VΦλ(f , E) ≤ 1;
(d) if λ > 0 and VΦλ(f , E) = 1 , then pΦ(f , E) = λ ;
(e) if {fn}∞n=1 ⊂ GVΦ(E ; X) and limn→∞ d(fn(t), f(t)) = 0 for all t ∈ E , then

pΦ(f , E) ≤ lim infn→∞ pΦ(fn , E) ;
(f) if t ∈ E , then pΦ(f , E) ≤ pΦ(f , E−t ) + pΦ(f , E+t ) .

Proof. (a) For any t, s ∈ E , s < t , the definitions imply

Φ

(
d(f(t), f(s))

(t− s)λ

)
(t− s) ≤ VΦλ(f , E) ≤ 1 for λ > pΦ(f),

whence, dividing by t− s and calculating the inverse function Φ−1 , we obtain (a).
(b) Let pΦ(f) = λ > 0. We choose numbers λ(n) > λ , n ∈ N , such that

lim
n→∞λ(n) = λ.

Since VΦλ(n)(f , E) ≤ 1 for all n ∈ N , we find

VΦλ(f , E) = lim
n→∞VΦλ(n)(f , E) ≤ 1.

(c) It suffices to show that if 0 < pΦ(f) < λ , then VΦλ(f , E) < 1, which readily follows from
the convexity of Φ and assertion (b): by setting µ = pΦ(f) , we obtain

VΦλ(f , E) ≤ (µ/λ)VΦµ(f , E) ≤ µ/λ < 1.

(d) It should be only noted that, by (c) and the statement just proved, the cases pΦ(f) > λ
and pΦ(f) < λ are impossible.

(e) We assume that λ = lim infn→∞ pΦ(fn) < ∞ . Then pΦ(fnk) → λ as k → ∞ for some
subsequence {fnk}∞k=1 of the sequence {fn}∞n=1 . Hence, for any ε > 0, there exists a number
k0(ε) ∈ N such that pΦ(fnk) < λ + ε for all k ≥ k0(ε) . It follows from the definition of pΦ(fnk)
that VΦλ+ε(fnk) ≤ 1 for k ≥ k0(ε) . Since fnk converges to f pointwise on E as k → ∞ ,
Lemma 2(d) implies VΦλ+ε(f) ≤ lim infk→∞VΦλ+ε(fnk) ≤ 1, whence pΦ(f) ≤ λ + ε for any
ε > 0.

(f) We set λ = pΦ(f , E−t ) and µ = pΦ(f , E+t ) . If at least one of the numbers λ or µ is zero,
then, by virtue of (a), the inequality (in fact, the equality) is obvious. Let λ > 0, and let µ > 0.
It follows from (b) that VΦλ(f , E−t ) ≤ 1 and VΦµ(f , E+t ) ≤ 1. The inequality pΦ(f , E) ≤ λ+µ ,
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by virtue of (c), is equivalent to the inequality VΦλ+µ(f , E) ≤ 1. To prove the last inequality, we
consider the partition T = {ti}mi=0 of the set E such that tk−1 ≤ t ≤ tk for some k ∈ {1, . . . , m}
(the cases t < t0 and t > tm can be considered similarly). By Uλ(t, s) we denote the expression
U(t, s) in (3) corresponding to the function Φλ . For the variable VΦλ+µ [f ; T ] in (3), we have
relation (4) with U replaced by Uλ+µ . Taking into account the fact that the function Φ is convex,
we obtain the inequalities

Uλ+µ(ti , ti−1) ≤
λ

λ + µ
Uλ(ti , ti−1), i = 1, . . . , k − 1,

Uλ+µ(tk , tk−1) ≤ Uλ+µ(t, tk−1) + Uλ+µ(tk , t) ≤
λ

λ + µ
Uλ(t, tk−1) +

µ

λ + µ
Uµ(tk , t),

Uλ+µ(ti , ti−1) ≤
µ

λ + µ
Uµ(ti , ti−1), i = k + 1, . . . , m,

which, together with (4), imply

VΦλ+µ [f ; T ] ≤ λ

λ + µ
VΦλ(f , E−t ) +

µ

λ + µ
VΦµ(f , E+t ) ≤ 1. �

One of the advantages of passing to the space GVΦ(E ; X) is that the notion of a mapping
f ∈ GVΦ(E ; X) of bounded generalized Φ-variation depends on the metric topology on X rather
than on a concrete metric. Indeed, if d and d0 are equivalent metrics on X , i.e., if C0d(x, y) ≤
d0(x, y) ≤ C1d(x, y) for some constants C0 > 0 and C1 > 0 and for all x, y ∈ X , and if
f ∈ GVΦ(E ; X) in the metric d , then f ∈ GVΦ(E ; X) in the metric d0 and the following
inequalities hold:

C0p
d
Φ(f , E) ≤ pd0Φ (f , E) ≤ C1p

d
Φ(f , E),

where pdΦ(f , E) denotes the value of (8) calculated in the metric d .
It follows from the above that we have the following embeddings of function spaces for a bounded

set E and a convex ϕ-function Φ:

Lip(E ; X) ⊂ BVΦ(E ; X) ⊂ GVΦ(E ; X) ⊂ BV1(E ; X). (9)

If, in addition, Φ ∈ N , then GVΦ(E ; X) ⊂ AC(E ; X) . (Note that if Φ is not necessarily a
convex Orlicz ϕ-function, then, by Lemma 4(a) and relation (2), any mapping f ∈ GVΦ(E ; X) is
continuous.) Moreover, the following Jensen inequalities for variation hold:

Φ

(
V1(f , E)

|E|

)
≤ VΦ(f , E)

|E| , f ∈ BVΦ(E ; X), (10)

V1(f , E) ≤ ωΦ(|E|)pΦ(f , E), f ∈ GVΦ(E ; X), (11)

where |E| = supE− inf E <∞ . Indeed, if f ∈ BVΦ(E ; X) and T is a partition of E of the form
{ti}mi=0 , then, using the symbol U from (3), by virtue of the Jensen inequality for sums, we have

Φ

(∑m
i=1 d(f(ti), f(ti−1))∑m

i=1(ti − ti−1)

)
≤
∑m

i=1 U(ti , ti−1)∑m
i=1(ti − ti−1)

≤ VΦ(f , E)∑m
i=1(ti − ti−1)

.

Whence, taking into account the fact that
∑m

i=1(ti − ti−1) = tm − t0 ≤ |E| , we obtain (10). But
if f ∈ GVΦ(E ; X) , then, by setting λ = V1(f , E)/ωΦ(|E|) and assuming that λ > 0, by virtue
of (10), we have VΦλ(f , E) ≥ |E|Φλ(V1(f , E)/|E|) = 1. Therefore, the argument used in the
proof of Lemma 4(c) implies pΦ(f , E) ≥ λ .
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Structurally, the mappings of bounded Φ-variation are closely related to Lipschitzian mappings
and to real functions of bounded (generalized) Φ-variation. Let a function ν : E → R satisfy
the conditions: J = ν(E) is the image of ν , g ∈ Lip(J ; X) , L(g) ≤ 1, and f = g ◦ ν , where
(g ◦ ν)(t) := g(ν(t)) , t ∈ E . The following assertions hold for a convex ϕ-function Φ: if ν ∈
BVΦ(E ; R) , then f ∈ BVΦ(E ; X) and VΦ(f , E) ≤ VΦ(ν , E) ; if ν ∈ GVΦ(E ; R) , then f ∈
GVΦ(E ; X) and pΦ(f , E) ≤ pΦ(ν , E) . In Lemma 5 we show that the converse statements also
hold.

A mapping g : J → X is said to be natural if V1(g, J
t
s) = t − s for all s, t ∈ J , s ≤ t .

Such a mapping is Lipschitzian and L(g) ≤ 1, since d(g(t), g(s)) ≤ V1(g, J t
s) by Lemma 2(b) for

Φ(ρ) = ρ .

Lemma 5. Suppose that f ∈ BV1(E ; X) , ν(t) = V1(f , E−t ) , t ∈ E , and J = ν(E) . Then there
exists a natural mapping g : J → X such that f = g ◦ ν on E and V1(g, J) = V1(f , E) . If E is
bounded and Φ is a convex ϕ-function, we have, in addition, the following assertions:

(a) if f ∈ BVΦ(E ; X) , then ν ∈ BVΦ(E ; R) and VΦ(ν , E) = VΦ(f , E) ;
(b) if f ∈ GVΦ(E ; X) , then ν ∈ GVΦ(E ; R) and pΦ(ν , E) = pΦ(f , E) .

Proof. By (9) and Lemma 2(a), the function ν is well defined and does not decrease on E . If
s ∈ J so that s = ν(t) for some t ∈ E , then we set g(s) = f(t) . Since d(f(t), f(s)) ≤ |ν(t)−ν(s)| ,
t, s ∈ E , the mapping g : J → X is well defined and satisfies all the assumptions of our lemma (for
detail, see [12, Sec. 3]). Under the assumptions of item (a) on the partition T = {ti}mi=0 ∈ T (E) ,
from Lemma 2(c) with Φ(ρ) = ρ and inequality (10) for i = 1, . . . , m , we obtain

ν(ti)− ν(ti−1) = V1(f , Eti
ti−1) ≤ (ti − ti−1)Φ−1

(
VΦ(f , Eti

ti−1)

ti − ti−1

)
,

whence, calculating VΦ[ν ; T ] by formula (3) and using Lemma 2(c) once more, we obtain the
inequality VΦ[ν ; T ] ≤ VΦ(f , E) . But the equality VΦ(ν , E) = VΦ(f , E) follows from the ex-
pansion f = g ◦ ν and the remarks preceding this lemma.

If f ∈ GVΦ(E ; X) , then we set λ = pΦ(f , E) (let λ > 0) and, by assertion (a) proved above
and Lemma 4(b), obtain VΦλ(ν , E) = VΦλ(f , E) ≤ 1, whence pΦ(ν , E) ≤ λ . The opposite
inequality follows from the remarks preceding this lemma. �

4. JUMPS OF FUNCTIONS OF Φ-VARIATION AND CONTINUITY

For t ∈ E , the sets of all limit points of E−t and E+t will be denoted by E−′t and E+′t ,
respectively. For the limits of the form limE	α→t±0 used below, we briefly write limα→t±0 . In this
section Φ is a convex ϕ-function such that [Φ] < ∞ , f ∈ BVΦ(E ; X) , and φ(t) = VΦ(f , E−t ) ,
t ∈ E , is the function of Φ-variation of the mapping f . We shall study the continuity properties
of f ; we show that the discontinuity points of f coincide with the discontinuity points of φ ; we
establish relations between the jumps of f and the jumps of φ and find formulas for the Φ-variation
of f on the set E without the limit point, which is removed.

If U is defined in (3), then, as was already noted (see (5) and Lemma 2(b,c)), for all α, β, γ ∈ E ,
α < β < γ , we have the inequalities

U(γ , α) ≤ U(γ , β) + U(β, α), U(β, α) ≤ φ(β)− φ(α). (12)

The monotonicity and the boundedness of the function φ imply that the finite right-hand and left-
hand limits φ(t±0) = limα→t±0 φ(α) exist at the points t ∈ E±′t , respectively. Since the function ν
in Lemma 5 possesses the same property, it follows from (3) that the following (one-sided) limits
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are finite:

U(t, t− 0) = lim
α→t−0U(t, α) = [Φ] lim

α→t−0 d(f(t), f(α)), t ∈ E−′t ,

U(t + 0, t) = lim
β→t+0

U(β, t) = [Φ] lim
β→t+0

d(f(β), f(t)), t ∈ E+′t ,

U(t + 0, t− 0) = lim
α→t−0
β→t+0

U(β, α) = [Φ] lim
α→t−0
β→t+0

d(f(β), f(α)), t ∈ E−′t ∩ E−′t .

Theorem 6. The following relations hold :

(a) U(t, t− 0) = φ(t)− φ(t− 0) = VΦ(f , E−t )−VΦ(f , E−t \ {t}) = limα→t−0VΦ(f , Et
α) ;

(b) U(t + 0, t) = φ(t + 0)− φ(t) = VΦ(f , E+t )−VΦ(f , E+t \ {t}) = limβ→t+0VΦ(f , Eβ
t ) ;

(c) U(t + 0, t− 0) = limα→t−0
β→t+0

VΦ(f , Eβ
α \ {t}) ;

(d) VΦ(f , E) = VΦ(f , E \ {t}) + φ(t + 0)− φ(t− 0)− U(t + 0, t− 0) ,

where a point t ∈ E−′t is considered in (a); a point t ∈ E+′t in (b); and a point t ∈ E−′t ∩ E+′t

in (c) and (d).

Proof. (a) Let us prove the first relation. Passing to the limit as α→ t−0 in the second inequality
in (12), where β = t > α ∈ E , we obtain U(t, t − 0) ≤ φ(t) − φ(t − 0) . The opposite inequality
follows in the limit as α→ t−0 from the following assertion: for any ε > 0 there exists a τ(ε) ∈ E ,
τ(ε) < t , such that φ(t)− φ(α) ≤ U(t, α) + ε for all α ∈ Et

τ(ε) \ {t} . From the definition of φ(t) ,

with respect to ε > 0, we find a ε-dependent partition T = {ti}mi=0∪{t} ∈ T (E−t ) , where tm < t .
For this partition we have φ(t) ≤ U(t, tm) + VΦ[f ; T ] + ε . Since T ∈ T (E−tm) , using the first
inequality in (12) and Lemma 2(b,c), we obtain

φ(t) ≤ U(t, α) +VΦ(f , Eα
tm

) +VΦ(f , E−tm) + ε = U(t, α) + φ(α) + ε

for all α ∈ E , tm < α < t . It remains to set τ(ε) = tm .
The other relations follow from Lemma 2(f) that implies

VΦ(f , E−t \ {t}) = lim
α→t−0VΦ(f , (E−t \ {t})−α ) = lim

α→t−0VΦ(f , E−α ) = φ(t− 0).

(b) The inequality U(t + 0, t) ≤ φ(t + 0) − φ(t) is obtained in the limit as β → t + 0 from
the second inequality in (12), where E � β > t = α . It remains to show that, for any ε > 0,
there exists a t0 = t0(ε) ∈ E , t0 > t , such that φ(β) − φ(t) ≤ U(β, t) + ε for all β ∈ Et0

t \ {t} .
Since VΦ(f , E+t ) < ∞ , for ε > 0, there exists a T = {ti}mi=0 ∪ {t} ∈ T (E+t ) with t0 > t such
that VΦ(f , E+t ) ≤ U(t0 , t) + VΦ[f ; T ] + ε . Since T ∈ T (E+t0) , for β ∈ E , t < β < t0 , the first
inequality in (12) implies

VΦ(f , E+t ) ≤ VΦ(f , Et0
β ) + U(β, t) +VΦ(f , E+t0) + ε = VΦ(f , E+β ) + U(β, t) + ε.

Whence, by Lemma 2(c), we obtain

φ(β)− φ(t) = VΦ(f , E−β )−VΦ(f , E−t ) = VΦ(f , E+t )−VΦ(f , E+β ) ≤ U(β, t) + ε.

The second and the third relations follow from Lemma 2(g,c). Hence we have

VΦ(f , E+t \ {t}) = lim
β→t+0

VΦ(f , (E+t \ {t})+β ) = lim
β→t+0

VΦ(f , E+β )

= VΦ(f , E)− lim
β→t+0

VΦ(f , E−β ) = VΦ(f , E+t ) + φ(t)− φ(t + 0).
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(c) First, we note that

lim
α→t−0
β→t+0

VΦ(f , Eβ
α \ {t}) = inf

α,β
VΦ(f , Eβ

α \ {t}),

where the infimum is taken over α ∈ E−t and β ∈ E+t , α < t < β . We show that for any ε > 0,
there exist α0 = α0(ε) and β0 = β0(ε) ∈ E , α0 < t < β0 , such that

VΦ(f , Eβ
α \ {t}) ≤ U(β, α) + ε ∀α ∈ Et

α0
\ {t}, ∀β ∈ Eβ0

t \ {t}. (13)

Using the definition of VΦ(f , E \{t}) , for ε > 0, we find a partition T = {ti}mi=0 of the set E \{t}
such that t0 < t1 < · · · < tk−1 < t < tk < · · · < tm−1 < tm for some 1 ≤ k ≤ m and

VΦ(f , E \ {t}) ≤
m∑
i=1

U(ti , ti−1) + ε.

We set T1 = {ti}k−1i=0 , T2 = {ti}mi=k , α0 = tk−1 , and β0 = tk . Now if α, β ∈ E satisfy the
inequalities α0 < α < t < β < β0 , then, taking T1 ∪ {α} ∈ T (E−α ) and T2 ∪ {β} ∈ T (E+β ) into

account, from the first inequality in (12) we obtain

VΦ(f , E \ {t}) ≤ VΦ[f ; T1] + U(α, tk−1) + U(β, α) + U(tk , β) + VΦ[f ; T2] + ε

≤ VΦ(f , E−α ) + U(β, α) +VΦ(f , E+β ) + ε.

This proves (13) if we take into account that Lemma 2(c) implies

VΦ(f , E \ {t}) = VΦ(f , E−α ) +VΦ(f , Eβ
α \ {t}) +VΦ(f , E+β ). (14)

It remains to pass to the limit as α → t− 0, β → t + 0 in (13) and in the inequality U(β, α) ≤
VΦ(f , Eβ

α \ {t}) , which holds for all α ∈ E−t and β ∈ E+t , α < t < β .
(d) From Lemma 2(c) and relation (14) for α, β ∈ E , α < t < β , we obtain

VΦ(f , E)−VΦ(f , E \ {t}) = φ(β) − φ(α) −VΦ(f , Eβ
α \ {t}).

Hence, passing to the limit as α→ t− 0, β → t + 0, we obtain relation (d). �
Corollary 7. A mapping f ∈ BVΦ(E ; X) is

(a) right-continuous at a point t ∈ E \ {supE} or left-continuous at a point t ∈ E \ {inf E} if
and only if its function φ of Φ-variation possesses the same property at the point t ;

(b) continuous on E except for some at most countable set of points.

Corollary 8. Let f ∈ BVΦ(E ; X) , t ∈ E , and let [Φ] = limρ→∞ Φ(ρ)/ρ <∞ . In this case,

(a) if t ∈ E−′t , then

VΦ(f , E−t ) = VΦ(f , E−t \ {t}) + [Φ] lim
α→t−0 d(f(t), f(α)) ;

(b) if t ∈ E+′t , then

VΦ(f , E+t ) = VΦ(f , E+t \ {t}) + [Φ] lim
β→t+0

d(f(β), f(t)) ;

(c) but if t ∈ E−′t ∩ E+′t , then, in addition to (a) and (b), we have

VΦ(f , E) = VΦ(f , E \ {t}) + [Φ]( lim
α→t−0

d(f(t), f(α))

+ lim
β→t+0

d(f(β), f(t))− lim
α→t−0
β→t+0

d(f(β), f(α))).
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In the case of a complete metric space X , the one-sided limits f(t± 0) = limα→t±0 f(α) exist
at the points t ∈ E±′t , respectively. Hence, the limit signs in Corollary 8 can be “pulled” under
the sign of the metric d .

For f ∈ GVΦ(E ; X) , formula (a) in Corollary 8 takes the form: if t ∈ E−′t , then

pΦ(f , E−t ) ≤ pΦ(f , E−t \ {t}) + [Φ] lim
α→t−0

d(f(t), f(α)).

This can be proved in the same way as Lemma 4(f). The other formulas in Corollary 8 can be
modified similarly.

Corollary 8 was established under different assumptions of generality in the papers [11, 12].

5. A GENERALIZED HELLY SELECTION PRINCIPLE

Here we generalize the Helly selection principle [28] to the space GVΦ(E ; X) . Special cases of
Theorem 9 considered below were studied in [21, 11, 12, 14] and [17].

Theorem 9. Suppose that Φ is a convex ϕ-function, X is a complete metric space, the family
F ⊂ X [a,b] is infinite, and for any t ∈ [a, b] the set {f(t) | f ∈ F} is precompact in X . If
supf∈F pΦ(f , [a, b]) <∞ , then F contains a sequence that converges pointwise on [a, b] to some
mapping from GVΦ([a, b] ; X) . If, in addition, Φ ∈ N , then in F this sequence can be chosen so
as it converges uniformly on [a, b] .

Proof. For f ∈ F and t ∈ [a, b] we set νf (t) = V1(f , [a, t]) . By (11), the family of nondecreasing
functions {νf | f ∈ F} is infinite and bounded. Hence it follows from the Helly selection principle
for monotone functions (see [28; 21, Chap. 8, Sec. 4]) that there exists a sequence {fn}∞n=1 ⊂ F
and a nondecreasing function ν : [a, b] → R+ such that limn→∞ νfn(t) = ν(t) for all t ∈ [a, b] .
Since the set of discontinuity points of the function ν is at most countable and, for any t ∈ [a, b] ,
the set {fn(t)}∞n=1 is precompact in X , without loss of generality, we can (if necessary, we choose
a subsequence {fn}∞n=1 by using the standard diagonal process) assume that fn(s) converges in X
to the element f(s) at all rational points s ∈ [a, b] , at all discontinuity points s of the function ν ,
and at the points s = a and s = b .

It remains to show that fn(t) has a limit in X at any irrational point a < t < b of continuity
of the function ν . For ε > 0, we find a rational number a < s < t such that 0 ≤ ν(t)−ν(s) ≤ ε/9
and choose a number N0 ∈ N so that |νfn(t)− ν(t)| ≤ ε/9 and |νfn(s)− ν(s)| ≤ ε/9 for n ≥ N0 .
Then we have

d(fn(t), fn(s)) ≤ |νfn(t)− ν(t)|+ (ν(t)− ν(s)) + |ν(s)− νfn(s)| ≤ ε

3
, n ≥ N0.

If N1 ∈ N is a number such that d(fn(s), fm(s)) ≤ ε/3 for n, m ≥ N1 , then for all n, m ≥
max{N0 , N1} we have

d(fn(t), fm(t)) ≤ d(fn(t), fn(s)) + d(fn(s), fm(s)) + d(fm(s), fm(t)) ≤ ε.

Thus the sequence {fn(t)}∞n=1 is fundamental in X . It remains to set f(t) = limn→∞ fn(t) and
to use Lemma 4(e).

If it is known that Φ ∈ N , then the interval [a, b] can be replaced by a compact set E in R . In
this case the uniform convergence of some sequence in F follows from the Arzellà–Ascoli theorem,
since, by Lemma 4(a) and relation (2), the family F is equicontinuous. �

We show that the assumptions of Theorem 9 cannot be weakened. For a convex ϕ-function ϕ ,
by 6ϕ we denote the space of all sequences x = {xn}∞n=1 ∈ RN such that there exists a number
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λ > 0 (depending on x) for which
∑∞

n=1 ϕ(λ|xn|) <∞ (see [19, Secs. 3, 10]). The space 6ϕ is an
infinite-dimensional Banach algebra with respect to the norm

‖x‖ϕ = inf

{
λ > 0

∣∣∣∣
∞∑

n=1

ϕ

(
|xn|
λ

)
≤ 1

}

and has the standard basis {en}∞n=1 , where en = {xi}∞i=1 with xi = 0 for i �= n and xn = 1. For
a convex ϕ-function Φ, f ∈ BVΦ([0, 1] ; R) , f �= 0, and n ∈ N , we set fn(t) = f(t)en , t ∈ [0, 1] ,
so that fn : [0, 1]→ 6ϕ and VΦ(fn , [0, 1]) = VΦ(f , [0, 1])/ϕ−1(1) . Thus we see that the sequence
{fn}∞n=1 has a uniformly bounded Φ-variation, but the sets {fn(t)}∞n=1 are not precompact in 6ϕ .
Hence the generalized Helly selection principle is violated: none of the subsequences of the sequence
{fn}∞n=1 converges in 6ϕ at any point t ∈ [0, 1] .

With the help of the standard diagonal method, the Helly selection principle can be generalized
to families of mappings whose domains are bounded or unbounded intervals, or half-intervals.

6. SELECTIONS OF MULTI-VALUED MAPPINGS
OF GENERALIZED Φ-VARIATION

A multi-valued mapping F : E → c(X) is called a Lipschitz mapping, or a mapping of bounded Φ-
variation, or a mapping of bounded generalized Φ-variation if it possesses this property (in the sense
of Sec. 2) with respect to the Hausdorff metric D generated by the metric d on X . So we write

F ∈ Lip(E ; c(X)), F ∈ BVΦ(E ; c(X)), F ∈ GVΦ(E ; c(X)).

Note that on the space c(X) the Hausdorff topology (i.e., the topology generated by the Hausdorff
metric) depends only on the topology on X (but not on the metric on X , e.g., see [4, Corollary II-
7]).

Recall that, without the assumption that the images of the multi-valued mapping F : I =
[a, b]→ c(Rn) , n = 1, 2, be convex, a continuous mapping F (see [1, 6, 29]) and even a mapping F
satisfying the Hölder condition D(F (t), F (s)) ≤ C|t − s|α , t, s ∈ I , for any 0 < α < 1, whose
images are compact in R2 (see [30]) may have no continuous selections. We also note that, for
multi-valued mappings F defined on an interval in R and ranging in a topological space so that
its connected values form a locally connected family of sets, continuous selections exist without
any metric restrictions: it only suffices that F be lower semicontinuous (see [5]).

Theorem 10. Let (X, d) be a metric space, and let Φ be a convex ϕ-function. Suppose that
F ∈ GVΦ([a, b] ; c(X)) is a compact-valued multi-valued mapping of bounded generalized Φ-varia-
tion, t0 ∈ [a, b] , and x0 ∈ X . Then F has a selection f ∈ GVΦ([a, b] ; X) such that

d(x0 , f(t0)) = dist(x0 , F (t0)), pΦ(f , [a, b]) ≤ pΦ(F , [a, b]),

V1(f , [a, b]) ≤ V1(F , [a, b]).

If, in addition, F is continuous, then this selection f can also be chosen to be continuous, and
if F ∈ Lip([a, b] ; c(X)) , then the selection f ∈ Lip([a, b] ; X) can also be chosen so as to have
L(f) ≤ L(F ) . Note that, in particular, if x0 ∈ F (t0) , then f(t0) = x0 .

Prior to proving this theorem, we establish the following lemma.

Lemma 11. If F ∈ BV1(E ; c(X)) , where ∅ �= E ⊂ R and (X, d) is a metric space, then the im-
age Im(F ) = F (E) of the mapping F , determined by the rule Im(F ) =

⋃
t∈E F (t) , is a completely

bounded separable subset of X ; if, in addition, X is complete, then Im(F ) is precompact.
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Proof. For ε > 0, x ∈ X , and a compact set K ⊂ X , we set Bε(x) = {y ∈ X | d(y, x) < ε}
and Oε(K) = {y ∈ X | dist(y, K) < ε} . To prove that Im(F ) is completely bounded, we must
show that, for any ε > 0, the set Im(F ) can be covered by finitely many balls Bε(·) centered
in Im(F ) , i.e., there exist a number N depending on ε and points tn ∈ E and xn ∈ F (tn) ,

n = 1, . . . , N , such that Im(F ) ⊂
⋃N

n=1Bε(xn) . Since the relation Oε(K) =
⋃

x∈K Bε(x) holds
for the compact set K ⊂ X , the condition that Im(F ) is completely bounded is equivalent to
the fact that, for any ε > 0, there exist a number N and points tn ∈ E , n = 1, . . . , N , such

that Im(F ) ⊂
⋃N

n=1Oε(F (tn)) . Assume the contrary. Then we can assume that ε > 0 is a
number for which the last statement is violated. We construct a sequence {xn}∞n=0 ⊂ Im(F ) by
induction as follows. We choose an arbitrary t0 ∈ E and an arbitrary x0 ∈ F (t0) . Then we
choose x1 ∈ Im(F ) so that x1 /∈ Oε(F (t0)) , and assume that x1 ∈ F (t1) for some t1 ∈ E . If
the points x0 , x1 , . . . , xn−1 ∈ Im(F ) , n ≥ 2, have been already determined, and xj ∈ F (tj) for

tj ∈ E , j = 0, 1, . . . , n − 1, then we choose a point xn ∈ Im(F ) \
⋃n−1

j=0 Oε(F (tj)) and assume

that xn ∈ F (tn) for some tn ∈ E . Since D(F (tn), F (tk)) ≥ dist(xn , F (tk)) ≥ ε for n > k , we
have tn �= tk . Hence, without loss of generality, we can assume that tn−1 < tn for all n ∈ N .
Then for the partition Tm = {ti}mi=0 of the set E , we have

V1(F , E) ≥
m∑
i=1

D(F (ti), F (ti−1)) ≥ mε.

Since m is arbitrary, we conclude that V1(F , E) = ∞ , which contradicts the assumption. It is
well known that a completely bounded set is separable in a metric space and is precompact in a
complete metric space. �
Proof of Theorem 10. First, we prove this theorem for F from the class BVΦ([a, b] ; c(X)) .
For n ∈ N , we consider the partition Tn = {tni }ni=0 ∈ T b

a with the following two properties:

1) t0 ∈ Tn , i.e., t0 = tnk(n) for some k(n) ∈ {0, 1, . . . , n} ;

2) if Ini = [tni−1 , tni ] and |Ini | = tni − tni−1 , i = 1, . . . , n , then limn→∞max1≤i≤n |Ini | = 0.

Since the set F (t0) is compact, we can choose an element y0 ∈ F (t0) so that d(x0 , y0) =
dist(x0 , F (t0)) . We determine elements xn

i ∈ F (tni ) , i = 0, 1, . . . , n , by induction as follows.
First, let a < t0 < b .

a) We set xn
k(n) = y0 .

b) If i ∈ {1, . . . , k(n)} and the element xn
i ∈ F (tni ) has already been constructed, we choose

an element xn
i−1 ∈ F (tni−1) so that d(xn

i , x
n
i−1) = dist(xn

i , F (tni−1)) .
c) If i ∈ {k(n)+1, . . . , n} and the element xn

i ∈ F (tni ) has already been constructed, we choose
an element xn

i ∈ F (tni ) so that d(xn
i−1 , xn

i ) = dist(xn
i−1 , F (tni )) .

For t0 = a , i.e., for k(n) = 0, we determine xn
i according to a) and c). For t0 = b , i.e, for

k(n) = n , we follow a) and b). Because of b), c), and (1), we have

d(xn
i , x

n
i−1) ≤ D(F (tni ), F (tni−1)), n ∈ N, i = 1, . . . , n. (15)

It follows from (9) that V1(F , [a, b]) < ∞ . Hence, by Lemma 11, the image Im(F ) of the
mapping F is (completely) bounded in X . By Y = Cb(Im(F ) ; R) we denote the Banach space
of all bounded continuous functions from Im(F ) into R . This space is equipped with the uniform
norm

‖y‖ = sup
x∈Im(F )

|y(x)|, y ∈ Y.

The mapping Im(F ) � x 
→ R(x) ∈ Y , where R(x)(x′) = d(x, x′) and x′ ∈ Im(F ) , determines
(according to Kuratowski) an isometric embedding of the set Im(F ) in the space Y so that, in
particular, ‖R(x) −R(x′)‖ = d(x, x′) for all x, x′ ∈ Im(F ) .
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For n ∈ N , we define the mapping fn : [a, b]→ Y by the rule

fn(t) = R(xn
i−1) +

(t− tni−1)(R(xn
i )−R(xn

i−1))
|Ini |

, t ∈ Ini , i = 1, . . . , n. (16)

Note that fn(t0) = R(y0) and fn(tni ) = R(xn
i ) , n ∈ N , i = 0, 1, . . . , n . Hence from Lemma 2(c),

relations (15) and (16), and the fact that R is isometric for all n ∈ N , we obtain

VΦ(fn , [a, b]) =

n∑
i=1

VΦ(fn , I
n
i ) =

n∑
i=1

Φ

(
d(xn

i , x
n
i−1)

|Ini |

)
|Ini |

≤
n∑

i=1

Φ

(
(D(F (tni ), F (tni−1))

|Ini |

)
|Ini | ≤ VΦ(F , [a, b]). (17)

Lemma 4(c) implies pΦ(fn , [a, b]) ≤ max{1,VΦ(F , [a, b])} , n ∈ N , and inequality (17) with
Φ(ρ) = ρ also implies V1(fn , [a, b]) ≤ V1(F , [a, b]) .

For t ∈ [a, b] , we will show that the sequence {fn(t)}∞n=1 is precompact in Y . First, let Φ ∈ N
so that F will be (absolutely) continuous on [a, b] with respect to D . For any n ∈ N , there
exists a number i(n) ∈ {1, . . . , n} (also depending on t) such that t ∈ Ini(n) . Hence condition 2)

implies that tni(n) → t and tni(n)−1 → t as n → ∞ . We choose an element xn(t) ∈ F (t) so that

d(xn
i(n)−1 , xn(t)) = dist(xn

i(n)−1 , F (t)) , n ∈ N . Since F (t) is compact, we can assume (choosing a

subsequence) that xn(t) converges in X to some element x(t) ∈ F (t) . Then, by (16) and (15), as
n→∞ , we have

‖fn(t)−R(x(t))‖ ≤ ‖fn(t)−R(xn(t))‖+ ‖R(xn(t))−R(x(t))‖
≤ ‖R(xn

i(n)−1)−R(xn(t))‖+ ‖R(xn
i(n))−R(xn

i(n)−1)‖+ ‖R(xn(t))−R(x(t))‖
≤ D(F (tni(n)−1), F (t)) + D(F (tni(n)), F (tni(n)−1)) + d(xn(t), x(t))→ 0,

which means that
fn(t)→ R(x(t)) in Y as n→∞ (18)

and proves that {fn(t)}∞n=1 is precompact. For [Φ] < ∞ , we renumber the set of discontinuity
points of F , since, by Corollary 7(b), this set is at most countable. To each partition Tn considered
above, we add the first n discontinuity points of F and again denote the partition thus obtained
by Tn . The new partition Tn again satisfies conditions 1) and 2). It follows from the preceding
argument that {fn(t)}∞n=1 is precompact at a point t , where F is continuous. But if t ∈ [a, b] is a
discontinuity point of F , then there exists a number N(t) ∈ N such that t ∈ Tn for all n ≥ N(t) ,
i.e., t = tn"(n) for some number 6(n) ∈ {0, 1, . . . , n} also depending on t . By construction, we have

xn
"(n) ∈ F (tn"(n)) = F (t) , n ≥ N(t) . Hence, since the set F (t) is compact, some subsequence of

{xn
"(n)}∞n=1 (for which we preserve the same notation) converges in X to some point x(t) ∈ F (t) .

Since fn(t) = R(xn
"(n)) for n ≥ N(t) , condition (18) is again satisfied.

Using the generalized Helly selection principle (Theorem 9), in F = {fn}∞n=1 we find a sub-
sequence that, in the space Y , converges pointwise on [a, b] to some mapping g : [a, b] → Y
of the form (see (18)) g(t) = R(f(t)) , t ∈ [a, b] , where f(t) ∈ F (t) for all t ∈ [a, b] , and
g(t0) = R(y0) , while Lemma 2(d) and inequality (17) guarantee that VΦ(g, [a, b]) ≤ VΦ(F , [a, b])
and V1(g, [a, b]) ≤ V1(F , [a, b]) . Since R is an isometry, we conclude that

f(t0) = y0 , VΦ(f , [a, b]) ≤ VΦ(F , [a, b]), V1(f , [a, b]) ≤ V1(F , [a, b]).

If it is known that F ∈ Lip([a, b] ; c(X)) , then, by (16) and (15), for n ∈ N and i = 1, . . . , n ,
it suffices, in addition, to take the inequalities

‖fn(t)− fn(s)‖ ≤
|t− s|d(xn

i , x
n
i−1)

|Ini |
≤ L(F )|t− s|, t, s ∈ Ini ,
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into account. Then the selection f ∈ Lip([a, b] ; X) of the mapping F satisfies the condition
L(f) ≤ L(F ) .

Let F ∈ BVΦ([a, b] ; c(X)) be continuous. By Lemma 5(a), we have the decomposition F =
G◦ ν , where the function ν(t) = V1(F , [a, t]) , t ∈ [a, b] , belongs to the space BVΦ([a, b] ; R) and
is continuous, while the multi-valued mapping G from Lip([0, 6] ; c(X)) possesses the properties:

6 = V1(F , [a, b]) = V1(ν , [a, b]), L(G) ≤ 1, VΦ(ν , [a, b]) = VΦ(F , [a, b]).

We set τ0 = ν(t0) ∈ [0, 6] so that G(τ0) = F (t0) . There exists a g ∈ Lip([0, 6] ; X) such that
d(x0 , g(τ0)) = dist(x0 , G(τ0)) , g(τ) ∈ G(τ) for all τ ∈ [0, 6] , and L(g) ≤ L(G) ≤ 1. We set
f = g ◦ ν and then see that f ∈ BVΦ([a, b] ; X) is continuous, f(t0) = g(τ0) , f(t) ∈ F (t) for all
points t ∈ [a, b] , and the following inequalities hold: V1(f , [a, b]) ≤ V1(F , [a, b]) and

VΦ(f , [a, b]) = VΦ(g ◦ ν , [a, b]) ≤ VΦ(ν , [a, b]) = VΦ(F , [a, b]).

Finally, let F ∈ GVΦ([a, b] ; X) . We set λ = pΦ(F , [a, b]) . Then, by Lemma 4(a), we
can assume that λ > 0 and thus VΦλ(F , [a, b]) ≤ 1 by Lemma 4(b). As was proved above,
there exists a selection f ∈ BVΦλ([a, b] ; X) such that VΦλ(f , [a, b]) ≤ VΦλ(F , [a, b]) . Hence,
pΦ(f , [a, b]) ≤ λ . �

Let us consider the Banach space 61 of summable sequences with the norm ‖x‖1 =
∑∞

n=1 |xn| ,
x = {xn}∞n=1 ∈ 61 . For t ∈ [0, 1] we introduce the multi-valued mapping

F (t) = {x ∈ 61 : ‖x‖1 = 1 and x1 = t}.

Then for the Hausdorff metric we have D(F (t), F (s)) = 2|t− s| for t, s ∈ [0, 1] , and any mapping
of the form

f(t) = (t, (1− t){xn}∞n=2), t ∈ [0, 1], where
∞∑

n=2

|xn| = 1,

is a Lipschitzian selection of F . Now if ν ∈ GVΦ([a, b] ; R) and ν([a, b]) = [0, 1] , then f ◦ ν is a
selection of F ◦ ν in the class of mappings GVΦ([a, b] ; · ) .

Corollary 12. Theorem 10 holds if in the closed interval [a, b] is replaced by R .

Proof. First, we assume that the multi-valued mapping F belongs to BVΦ(R ; c(X)) . Let
{tk}k∈Z ⊂ R be an increasing sequence such that tk → ∞ and t−k → −∞ as k → ∞ .
We set Ik = [tk , tk+1] for k ∈ Z , apply Theorem 10 on the interval I0 , and find a selec-
tion f0 ∈ BVΦ(I0 ; X) of the mapping F (more precisely, of the restriction F |I0 of the map-
ping F to the interval I0) such that d(x0 , f0(t0)) = dist(x0 , F (t0)) , VΦ(f0 , I0) ≤ VΦ(F , I0) and
V1(f0 , I0) ≤ V1(F , I0) . “Moving along the intervals Ik to the right” from the point t1 , we apply
Theorem 10 in succession on the interval I1 with the initial condition x0 = f0(t1) ∈ F (t1) , . . . ,
and on the interval Ik with the initial condition x0 = fk−1(tk) ∈ F (tk) , k ∈ N . As a result, for
any k ∈ N , we find a selection fk ∈ BVΦ(Ik ; X) of the mapping F |Ik such that

fk(tk) = fk−1(tk), VΦ(fk , Ik) ≤ VΦ(F , Ik), V1(fk , Ik) ≤ V1(F , Ik). (19)

In a similar way, we shall “move along the intervals Ik to the left” from the point t0 . Then, for
any k ∈ Z , on the interval Ik there exists a selection fk of the mapping F such that relations (19)
hold. If t ∈ R so that t ∈ Ik for some k ∈ Z , we set f(t) = fk(t) . Clearly, the mapping f : R→ X
is a selection of F on R , f(t0) = f0(t0) . By Lemma 2(h,c), we have

VΦ(f , R) = lim
k→∞

VΦ(f , [t−k , tk]) = lim
k→∞

k−1∑
i=−k

VΦ(fi , Ii)

≤ lim
k→∞

k−1∑
i=−k

VΦ(F , Ii) = lim
k→∞

VΦ(F , [t−k , tk]) = VΦ(F , R),
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and similarly, V1(f , R) ≤ V1(F , R) .
Now if F ∈ GVΦ(R ; X) , then for λ = pΦ(f , R) > 0, we have VΦλ(F , R) ≤ 1, and it remains

to apply the result we have just proved. �
A statement similar to Corollary 12 also holds for bounded and unbounded intervals and half-

intervals of the real line.
Note that Lipschitzian selections of Lipschitzian multi-valued mappings were established in

different contexts in [7, 8, 10–12, 16, 17, 31].
A mapping f : [a, b] → X is said to be regular if it has at most countably many discontinuity

points at which the left-hand and right-hand one-sided limits exist. A sequence fn : [a, b] → X ,
n ∈ N , is called the Castaing representation for a multi-valued mapping F : [a, b] → c(X) if, for
almost all t ∈ [a, b] , the sequence {fn(t)}∞n=1 is dense in F (t) . Recall [4, Theorem III.8] that
the measurability of a mapping F with closed images is equivalent to the fact that its Castaing
representation is contained in the sequence of measurable selections. The following corollary is
based on Theorem 10 and can be proved similarly to Theorem D 1.9 in [10].

Corollary 13. Suppose that X is a complete metric space, Φ is a convex ϕ-function, and F ∈
GVΦ([a, b] ; c(X)) . Then

(a) for any measurable selection f of the mapping F , there exists a sequence of regular selec-
tions of F that converges almost everywhere on [a, b] to f ;

(b) there exists a sequence of regular selections of F which is the Castaing representation for
the mapping F .

7. SELECTIONS OF MULTI-VALUED MAPPINGS
ON THE PRODUCT OF TWO SPACES

Let X and Y be two (Hausdorff) topological spaces. Recall that a multi-valued mapping Γ
from X into Y is said to be

lower semicontinuous (briefly, l.s.c.) on X if for any open set U ⊂ Y , its preimage Γ−(U) =
{x ∈ X | Γ(x) ∩ U �= ∅} is open in X ;

upper semicontinuous (briefly, u.s.c.) on X if Γ−(U) is closed in X for any closed U ⊂ Y ;
continuous on X if Γ is l.s.c. and u.s.c. on X simultaneously.
A multi-valued mapping Γ from X into a metric space Y is said to be weakly upper semicon-

tinuous if for any closed ball U in Y , the preimage Γ−(U) is closed in X . If the metric space Y
has the property that

the closure in Y of any open ball is a closed ball, (20)

then the weak upper semicontinuity of the multi-valued mapping Γ implies the upper semiconti-
nuity of this mapping. For example, any linear metric space has property (20).

We also recall that a topological space is said to be extremely nonclosed (see [32, Sec. 46. VI])
if the closure of any set open in this space is open.

We shall need the following result from [33] (another simpler proof of this result is contained
in [34]).

Lemma 14. Suppose that X is an extremely nonclosed Hausdorff topological space, Y is a regular
Hausdorff T3-space, and Γ is an upper semicontinuous multi-valued mapping from X into Y with
compact values. Then Γ has a continuous selection γ : X → Y .

Let I be an interval (a connected subset of R), and let H = H(t, x) be a multi-valued mapping
from I ×X into Y . For a chosen x ∈ X , we introduce a multi-valued mapping H( · , x) from I
into Y by the rule H( · , x)(t) = H(t, x) , t ∈ I . If t ∈ I is fixed, then we similarly set H(t, · )(x) =
H(t, x) , x ∈ X , so that H(t, · ) maps X into subsets of Y .

The main result of this section is the following assertion.
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Theorem 15. Suppose that I ⊂ R is an interval, X is an extremely nonclosed Hausdorff topo-
logical space, (Y , d) is a complete metric space satisfying condition (20), D is the Hausdorff
metric on c(Y ) generated by d , t0 ∈ I , η : X → Y is a continuous mapping, Φ ∈ N , and
H : I ×X → c(Y ) is a multi-valued mapping such that

(i) H(·, x) ∈ GVΦ(I ; c(Y )) for all x ∈ X ;
(ii) H(t, ·) : X → c(Y ) is upper semicontinuous for all t ∈ I .

Then there exists a selection h : I ×X → Y of the mapping H such that

(a) h(·, x) ∈ GVΦ(I ; Y ) for all x ∈ X ;
(b) pΦ

(
h( · , x), I

)
≤ pΦ(H(·, x), I) for all x ∈ X ;

(c) d(η(x), h(t0 , x)) = dist(η(x), H(t0 , x)) for all x ∈ X ;
(d) h(t, · ) : X → Y continuously for all t ∈ I .

If, in addition, supx∈X pΦ(H( · , x), I) <∞ , then the selection h is continuous on I ×X . More-
over, property (c) implies that, in particular, if η is a selection of H(t0 , · ) , then h(t0 , · ) = η .

Proof. Let C(I ; Y ) denote the space of all continuous mappings from I into Y with a compactly
open topology whose subbasis is formed by the sets {f ∈ C(I ; Y ) | f(J) ⊂ U} , where J ⊂ I is
compact and U ⊂ Y is open. We define a multi-valued mapping Γ from X into C(I ; Y ) by the
rule

Γ(x) = {f ∈ C(I ; Y ) | f(t) ∈ H(t, x) ∀t ∈ I , pΦ(f , I) ≤ pΦ(H( · , x), I),

d(η(x), f(t0)) = dist(η(x), H(t0 , x))}, x ∈ X.

For x ∈ X , we have Γ(x) �= ∅ by virtue of Theorem 10 and assumption (i). By Lemma 4(e), Γ(x)
is a closed subset of GVΦ(I ; Y ) . We show that Γ is an upper semicontinuous mapping from X
into c(C(I ; Y )) . Indeed, for any x ∈ X , the family Γ(x) is equicontinuous by Lemma 4(a) and
the condition Φ ∈ N , and, for any t ∈ I , the set {f(t) | f ∈ Γ(x)} is compact in Y , since the set
H(t, x) is compact. Hence, by the Arzellá–Ascoli theorem, Γ(x) is precompact in C(I ; Y ) and,
since the set Γ(x) is closed, it is compact in C(I ; Y ) . To prove that Γ is upper semicontinuous,
by the remarks preceding Lemma 14, it suffices to show that Γ is weakly upper semicontinuous.
For ε > 0, g ∈ C(I ; Y ) , and t ∈ I , we set

Uε(g) = {f ∈ C(I ; Y ) | sup
t∈I

d(f(t), g(t)) ≤ ε} and Bε(g(t)) = {y ∈ Y | d(g(t), y) ≤ ε}.

For x ∈ X , Γ1(x) denotes the (compact) set of mappings f ∈ C(I ; Y ) satisfying the first two
conditions in the definition of Γ(x) , and Γ2(x) denotes the set f satisfying the third condition in
the definition of Γ(x) . Note that

Γ−1 (Uε(g)) = {x ∈ X | Γ1(x) ∩ Uε(g) �= ∅} =
⋂
t∈I

H(t, ·)−(Bε(g(t))),

and, by condition (ii), any preimage under the intersection sign is closed in X . Hence Γ−1 (Uε(g)) is
closed in X so that the multi-valued mapping Γ1 : X → C(I ; Y ) is upper semicontinuous. Since all
the values of Γ1(x) are compact in C(I ; Y ) and the graph of the multi-valued mapping Γ2 is closed
in X×C(I ; Y ) , it follows from Theorem 3.1.8 in [35] that the mapping x 
→ Γ(x) = Γ1(x)∩Γ2(x)
is upper semicontinuous.

It follows from Lemma 14 that Γ has a continuous selection γ : X → C(I ; Y ) . Let us set
h(t, x) = γ(x)(t) , t ∈ I , x ∈ X . Relations (a)–(c) follow from the definition of Γ(x) and the
inclusion γ(x) ∈ Γ(x) , x ∈ X . Let us prove (d). If t ∈ I and U ⊂ Y is open, then, by setting
U(t) = {f ∈ C(I ; Y ) | f(t) ∈ U} , we obtain

{x ∈ X | h(t, x) ∈ U} = {x ∈ X | γ(x)(t) ∈ U} = {x ∈ X | γ(x) ∈ U(t)}.
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Since U(t) is open in C(I ; Y ) and γ is continuous, the latter set is open in X . Hence the mapping
h(t, ·) is continuous for any t ∈ I .

If, in addition, it is known that supx∈X pΦ(H( · , x), I) <∞ , then the selection h : I ×X → Y
constructed above is continuous. This follows from item (b), Lemma 4(a), the condition Φ ∈ N ,
and the following inequality for (t0 , x0) , (t, x) ∈ I ×X:

d(h(t, x), h(t0 , x0)) ≤ d(h(t, x), h(t0 , x)) + d(h(t0 , x), h(t0 , x0))

≤ ωΦ(|t− t0|)pΦ(H( · , x), I) + d(h(t0 , x), h(t0 , x0)). �

Note that the existence of selections h with the property h( · , x) ∈ Lip(I ; Y ) was estab-
lished in [16, Theorem 5] for the case in which condition (i) of Theorem 15 involves the set
H( · , x) ∈ Lip(I ; c(Y )) .
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