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PREFACE

There are three mathematical approaches to thermodynamics. One of them is based on the
Bogolyubov chain and on dynamical systems. This approach is developed by the school of N. N. Bo-
golyubov and by G. A. Martynov and his disciples. In this approach, the method of Poincaré and Gibbs,
brilliantly developed by V. V. Kozlov [1], is used.

Another approach is based on the Gibbs formula for Gibbs ensembles. This formula can be derived
rigorously, which was done by the author in previous papers. From the number of elements one computes
the asymptotics. They can be constructed for a small number of particles, say two. In this situation one
considers the set of identical systems. This approach is close to that of Kolmogorov (in his works on
what is now known as Kolmogorov complexity). If the interaction potential is given, the Gibbs formula
for a Gibbs ensemble for the potential can yield important results, for example, the correlation radius.
This problem was studied by many physicists. Similar results may help solve the very difficult inverse
problem, that of finding the interaction potential for a given gas. This problem was also studied by many
mathematicians involved in rigorous mathematical study of the properties of the so-called Gibbs fields
and related problems of statistical physics and quantum field theory. The best known ones are D. Ruelle,
J. Gallovotti, E. Presutti, G. Shpon, I. Frolich, M. Azenman, J. Leibowitz, R. Dobrushin, Ya. Sinai,
V. Malyshev, R. Minlos, and others.

Gibbs fields are random fields on a lattice of dimension ν (or on the continuous space R
ν) with values

in some space (usually called the “spin space”) and appearing in the so-called thermodynamical limit
V → R

ν from the Gibbs ensemble in a finite volume V ⊂ R
ν .

The most interesting mathematical results obtained in this direction during the last decade are:
(1) a criterion for the existence and uniqueness of Gibbs fields for a single interaction potential and

fixed temperature;
(2) the existence at low temperatures of several such fields (which it is natural to call phases) for one

and the same interaction potential;
(3) the description of the properties of a certain domain occupied by one phase and surrounded by

another one (the Wulff droplet);
and several other remarkable results.
We cannot omit mentioning the outstanding seminar that took place in the Mechanics and Mathe-

matics Department of Moscow State University from 1962 to 1994 under the leadership of R. Dobrushin,
Ya. Sinai, V. Malyshev, and R. Minlos, whose participants actively worked on the questions indicated
above (see [2]).

During the entire second half of the 20th century, mathematical statistical physics was developing
in the direction of the study of Gibbs fields, mostly on the lattice Z

ν . The Gibbs field is determined by
the potential, but not always uniquely. In the latter case, one says that different Gibbs fields determine
different phases. If the potential depends on one or several parameters, and for some of them the field is
the same, and for others is not, then one says that a phase transition of the first kind has occurred. A
phase transition of the second kind preserves uniqueness, but separates the domains of parameters with
fast or slow decrease of correlation. This direction of study appears in the papers [3], [4], and others.

In the present paper, we describe the third approach to thermodynamics. The author uses neither
Bogolyubov chains nor Gibbs ensembles. The asymptotics are written out directly for the number of
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particles. This asymptotics is of the type proposed in [5]. Such asymptotics are worthless when the
number of particles is small. Concerning the corrections required for a smaller number of particles, see
the author’s papers [6], [7]. In the present paper this question is addressed in Sec. 6.

The present paper shows the isotherms, isochores, and isobars of various pure gases, as well as
the binodals (i.e., the lines at which the gas becomes liquid) and the spinodals (the endpoints of
the isotherms). We study supercritical phenomena at temperatures and pressures above the critical
ones. We also pay a lot of attention to domains of negative pressure. The superfluid component
for supercritical phenomena, as well as the thermodynamics of nanostructures and superfluidity in
nanotubes is described.

The author mainly bases his study not on the interaction potential, but on four points that are easily
found experimentally: the critical point, the triple point, and the two Boyle points. It turns out that the
knowledge of these four points allows one determine the thermodynamics of the corresponding gases
with sufficient precision.

The main model of the supercritical state is related in spirit to contour theory, which was developed in
the papers [2]–[4] as well as in [8], [9], [10], and others. Contour cells bounded above by the number of
particles appear on lattice modules at temperatures Tcell < Tc, i.e., in liquid. It turns out that, in passing
through the critical point, they are preserved for temperatures close to Tc and determine a similar model
“cells–monomers.” Monomers are superfluid through the cellular structure of contours, i.e., they pass
through cells without collision, interaction, and without viscosity. Thus, fluids constitute the equilibrium
state of two phases: cellular structure and monomers.

Although this is a rigorously mathematical work, we have tried to write it so that it could be easily
read by physicists, explaining the derivation of our theorems in a simple language.

1. INTRODUCTION

1.1. The Force of Habit in Science

The word “science” (наука) in the Russian language, according to the monograph Constants:
a Dictionary of Russian Culture 1 has the same root as the word “habit” (привыкание). Yu.
S. Stepanov explains that the ancient meaning of the root “ук” corresponds, paradoxically, to the
modern understanding of the word “science” (наука): “to master a scientific theory” means “to get
used to (привыкнуть) and learn how to use” the theory, which, as Yu. S. Stepanov tells us, sometimes
is not an easy thing to do. In particular, in order to master the science of physics, one must get used to
it and learn how to use it. And then one does not need to understand it. We have often quoted the words
2 of the well know physicist Ya. I. Frenkel in this connection.

In physical considerations involving asymptotics in several parameters, there is a lot of confusion. For
example, in quantum physics, for the attraction of two molecules of noble gas we have asymptotics of
the form A/r6 as r → ∞. But the quantity A rapidly tends to zero in the quasi-classical approximation
even for a fixed value of r. In such cases, theoretical physicists simply guess the order of passage, and in
some cases actually get an answer that looks pretty true, especially if a few more errors are involved.

On the one hand, physicists are used to certain methods of analysis, on the other hand they disbelieve
rigorous proofs. Mathematicians only notice identical formulas and their consequences. A freshman
university student in physics cannot understand that

if
ˆ

x dx =
x2

2
, then

ˆ
t dt =

t2

2
,

because for a physicist these are different quantities: x is distance, t is time. Later they will get used to
this.

1Yu. S. Stepanov, Konstanty: Slovar’ Russkoy Kul’tury, Akademicheskii Proekt, Moscow, 2001, pp. 469–470 [in
Russian].

2“We easily get used to what is constant and monotonously repetitious, we stop noticing it. Whatever is customary seems
natural to us, while the unusual seems unnatural and non-understandable. Basically, we cannot understand, we can only
get used to [11, 63].”
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Similarly, theoretical physicists sometimes look at identical equations describing different processes
and using different notation for the variables, and cannot understand why a mathematician writes, say,
Diophantine equations of number theory such as∑

i=1

Ni = N,
∑
i=1

iNi = M, (1.1)

when considering a Bose condensate. The fact that the equations are the same, they are unable to see,
because the letters in them, just as in the above example of the freshman physics student, are different.

The Boltzmann approach, refuted by the Gibbs paradox, which 15 Nobel prize winners, including the
great physicist Fermi, as well as the great mathematicians Poincaré and Von Neumann, tried to settle,
did not have a sound mathematical foundation. I explain this by the fact that, at the time, experiments
were not fine enough to determine the appearance of dimers and clusters, so that the theory of clusters
was not adequately described. And so physicists got used to the old erroneous mathematical theory
(see [12], [13]) and could not explain a whole series of remarkable experimental effects. They tried to
find, using the computer, adequate modifications of the van der Waals model [14], [15].

What is most amazing, is that in the Landau–Lifshits book [16], in § 54 (devoted to the Bose con-
densate), there is a footnote which describes the well known situation from mathematical combinatorics
related to allocating identical balls to boxes and asserts that the number of different allocations (and
hence the entropy) is the same as for the quantum Bose gas. In the book, two relations for classical
gas appear in § 40, and the same two formulas (in the same notation!) for quantum gas are in § 54.
In both cases the problem of maximizing entropy with the same constraints is solved by the Lagrange
method. Nevertheless, in tons of books about classical gas, instead of the entropy correctly computed in
the footnote in the Landau book, it is the erroneous Boltzmann entropy − ln N ! which is given (see the
article “Boltzmann statistics” in the Mathematical Encyclopedia [17]).

When this error is indicated to theoretical physicists, they answer that they possess 50 tons of books
where this statement is proved, just like Panter from Anatole France’s novel Penguin Island who said:
“In my archives, they (the proofs) occupy seven hundred thirty two square meters so that, counting five
hundred kilos per square meter, this gives a total of three hundred sixty six thousand kilograms.”

And so the statistics of identical particles, the statistics of Bose–Einstein, Fermi, Dirac, and
Gentile [18] are only allowed in such an “unreal” world as quantum physics. The application of the
results in everyday life, economics, and sociology only frightens, just as does the sin of learning from the
biblical tree of knowledge. The Russian philosopher L. Shestov (1866-1938) wrote: “The great secret
of innocence is in that, at the same time, it is also fear,” the instinctive fear of the sin of acquiring new
knowledge.

The main mistake of theoretical physicists has the same philosophical aspect. Physicists consider as
indistinguishable (“absolutely” indistinguishable, of identical essence) only quantum particles. The fact
that in a “heap” they should also naturally be regarded as subjectively indistinguishable if the “heap” is
measured by a measure invariant with respect to the permutation of particles does not convince them of
their error. When I explain this to them and, finally, they understand, they are perplexed, like the driver
in the old anecdote, who, having passed the test and obtained his driver’s license, said: “I understand
everything, except that I can’t figure out where do they hide the horse in the machine?”

One of the brilliant experimental physicists, let’s call him NN, asked me: “In quantum mechanics, if
we fix a particle, then this affects all other particles, even if the particles have no interaction. But what
happens in your theory?” I answered that if in Moscow one person is arrested, from the point of view of
the city’s population density things hardly change: only 0.0 . . . 01% of the population has been sent to
prison. But if it is specifically him (NN) who is arrested, this will spoil the statistics related to the density
of people in Moscow, because we have to count and renumber all the city’s inhabitants in order to single
out precisely NN.

Thus the statistics of indistinguishable Muscovites (Muscovites of identical essence) changes
radically when we pass from percentages to personalities.
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1.2. History of the Question : the Heap Antinomy

The story behind the Gibbs paradox originates in ancient times.
The philosophical problem related to the “heap antinomy,” which was formulated in the 4th century

BC by the Ancient Greeks, is the following. We consider collections of grains of sand, at first a few
grains, then we add a few more, and so on. The question arises: At what moment does the collection
become a “heap”?

The difference between a small collection of grains of sand from a heap of sand is, first of all, in
various methods of measurement. In the first case (few grains), we simply count their number, while
in the second (a heap) we measure the heap in spoonfuls, cups, buckets, barrels, or grams, kilograms,
tons, etc. Thus these two types of collections differ by their “measure”. However, this does not mean
that, by means of present day computer techniques, we cannot count the number of grains in a heap or
measure a small collection in milligrams.

Thus the main difference between a small collection of grains of sand and a sand heap is that they
involve different “statistics”. Even if we have measured a small collection in milligrams, the total weight
of the collection will remain the same if we interchange some of the particles: the total weight does not
depend on the position of the grains. But if we are counting the grains, we must number the counted
grains so as not to lose count. The sum does not depend on the order in which we count. Therefore,
if we are counting, there is no difference in principle between a heap and a small collection. There is
another difference, which was apparently noticed by one of the ancient philosophers: if we interchange
grains, we must change the numbers assigned to them, and so we obtain a new state. The understanding
of this aspect was developed, in accordance to Aristotelian physics and neoplatonic philosophy, by the
famous religious thinker Saint Basil the Great (329–379), the Archbishop of Cappadocian Caesaria, in
his Hexaemeron, which had a considerable influence, in particular, on the Russian Orthodox Church.

First of all, in the very notion of “unique essence of Father and Son” that Saint Basil has left us, the
variativity and subjectivity of numeration is clearly established.

One of his followers, a theologian who interpreted the origins of the universe as arising from chaos in
six days, proposes, as an example of chaos, the pile of little colored pebbles from which the artist creates
the mosaic representing the visage of the Savior. In the heap of mosaic pebbles, the pebbles can be
interchanged, the heap will not change. But if, in the finished mosaic, we interchange some elements,
we will obtain another picture. Apparently, it is this very difference that the Greek philosopher Eubulidis
of Miletus (4th century BC) was stressing when the stated the question of comparing a collection of
grains of sand and a heap, and thus presented the “heap antimony”.

Thus we can say that, from the modern point of view, the difference between a heap and an non-heap
of sand lies in the choice of statistics, i.e., in the indistinguishability and “unique essence” of the grains
in a heap: we can interchange them, and the notion of heap (its identity) will not change.

So we speak of the Boltzmann or Shannon statistics whenever the interchange of two objects
changes the notion of heap, and speak of Bose–Einstein, or Fermi–Dirac, or Gentile statistics whenever
the interchange of two objects does change it.

As was already mentioned, the contemporary possibilities of the computer allow us to use both types
of statistics, and the final computation after averaging the Boltzmann statistics will give the same result.
But even with the most powerful computer the heap may be so big, that many years of computer time
will be needed.

Let us note once again that for a collection of grains of sand, we can always count them by using the
natural numbers, no matter how many grains there are. But we can also choose a different measure, say
the weight of the collection, and then, starting from two grains, we can say that this measure admits
the transposition of particles: the weight will not change under any permutation. In such considerations
both statistics are applicable. However if the transition to a heap has been postulated (“phase transition”
has occurred), i.e., the number of grains K after which we have a heap has been fixed, then automatically
in our consideration of the heap we introduce the following fundamental notion: the undistinguishing
statistics of distinguishable objects (UD statistics).

Also, there are measuring devices that cannot be replaced by more precise instruments. Such are our
senses: eyesight, sense of touch, etc. Thus, when we look at a painting by a pointillist from close up or
by using binoculars, we will not see the whole picture, just some points. At the same time, looking at the
painting from an appropriate longer distance, our eyes, imagination, memory, associations will allow to
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perceive the picture in a special way, and to see not only what the artist wanted to depict, but also some
additional individual images.

When we speak of of the passage from a small number of grains of sand to the notion of heap, then,
obviously, we are not referring to a jump, although the difference is considerable. But it is rather difficult
to specify, it depends on the feeling of different people.

The papers [19], [20] address the question: “How can one introduce parameters so as to make this
passage equivalent to a phase transition of the first kind?” This is related to a relaxation step by step
process, in which a key role is played by the duration of the observation period.

1.3. The Relationship of Thermodynamics with Economics and Sociology

Equilibrium thermodynamics is so general a science that everyone knows about the analogies
between thermodynamics and economics (thermoeconomics), thermodynamics and sociology (human
thermodynamics) and so on. These disciplines are related not only by analogies, but also by common
mathematical formulas.

The author at first had to face political problems and tried to understand the economic and social
problems appearing in Russia, in Vietnam and other countries in the 70-90ies of the previous century
(see [21],[22], [23]), in order not to lose his Homeland and his family3. But it was only on the basis
of equilibrium thermodynamics that the derivation of mathematically established formulas that so well
correlated with the latest experiments became possible.

Irving Fisher, a pupil of the great physicist Gibbs, noticed the analogy between the following
thermodynamical and economic quantities;

money M – particles N ,

amount of goods Q – volume V ,

turnover rate v – temperature T .

We extend this analogy to another pair of quantities:

nominal credit rate R – chemical potential µ.

The speed of dissemination and the volume of messages in social networks is a generalization of the
notion of temperature. An indirect measurement of such temperatures may be performed by calculating
the slowdown of transmission when the volume of messages increases (as they say, when “the internet
explodes”).

Negative pressure, i.e., negative energy, corresponds in physics to anti-particles, and in economics,
to anti-money, i.e., debts (holes).

Nevertheless, time has shown that despite the remarkable coincidence with experimental data,
theoretical physicists, even more than people in the humanities, are afraid of falling into “the sin of
acquiring new knowledge”.

3 Perhaps, the way that I will cast my die
Will lead me – oh, child-killer Russia –
Down to your cellars where I’ll die
A pool of blood as my last cushion.

M. Voloshin, At the Bottom of the Underworld. (Translated by A. Lecsis.)
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1.4. The Number of Degrees of Freedom

The author has succeeded in explaining a number of effects by using the undistinguishing statistics of
distinguishable objects (UD statistics). Here a significant role was played by one of the most important
notions of thermodynamics generalized by the author – the notion of fractional number of degrees of
freedom.

For example, we are interested in the average number of degrees of freedom of the population of a
given country. So we must take the average over the whole population. But we don’t know how to
assess that number for one specific person. In Part II, Sec. 13 of his Metaphysics of Morals 4, Kant
writes:

“Any notion of debt involves an objective enforcement by law (by a moral imperative that limits our
freedom) and belongs to the category of practical reason that sets the rules. The awareness of an inner
judgement in a human being (during which his thoughts accuse and forgive him) is one’s conscience.
Each human being has a conscience, and is always aware of an inner judge watching him, threatening
him, a judge for whom he feels respect (related to fear).”

If in all strata of society there is a moral rule, for instance “Thou shalt not kill,” it is always possible to
find a way of contradicting the rule, as in M. Gorki’s famous phrase “If the enemy refuses to capitulate,
he must be destroyed”. The word “destroy” is now in the standard lexicon of journalists as a synonym of
“kill,” nowadays bandits or terrorists are no longer “killed,” they are “destroyed”.

The biblical Ten Commandments appeared after the heap antinomy, with which we began our
consideration of the paradox of the two statistics. Incidentally, the Orthodox ethics of the Russian
philosopher S. N. Bulgakov – each must be a monk and an ascetic at heart 5 – also has its roots in
Ancient Greece, in particular, in Sparta.

The importance and incomprehensibility of the notion of number of degrees of freedom, just as the
“elements” of Pythagoras, which is experimentally computed for any pure gas, can scare one. No wonder
Pythagoreans were burned at the stake.

In the charter of his monastery, Basil the Great tried to combine the absence of degrees of freedom
of the monk in his cell (monastic isolation) with elements of communal life (monastic togetherness).
He based his monastic rules exclusively on togetherness and related the contemplative way of life with
socially useful activity.

Robespierre and his followers tried to introduce the principle of interdiction into a state law: the
principle forbidding prices above a certain maximum for products of first necessity and forbidding
workers’ salaries above a certain maximum. Ensuring these limitations of the degree of freedom for
a period of time required a policy of terror. Attempts to inculcate this into the “conscience” of the
citizen based on the notion of Higher Being did not succeed and therefore an overthrow of power (the
“phase transition” of the 8th of Thermidor), which increased the number of degrees of freedom, occurred
throughout France very rapidly – after 8 months (see (7.10)).

In the interview The 20th Century History of Russia in the Mirror of Present Times, the Russian
historian Yu. A. Polyakov said: “Our country underwent epochal metamorphoses: three revolutions,
a thermidor that completely transformed it politically, economically, and ideologically, significantly
changed its borders, the ethnical character of its population, the logic of its development, the ruling
elites.” As I have already written, all these metamorphoses I had to foresee and take into consideration
so as to survive (see [21], [23]).

Here is another striking example. When Tsar Nicholas II, in order to protect his family from the
revolutionaries, sent an elite disciplinary army division under the command of general N. I. Ivanov,
who had succeeded in putting down the Kronstadt insurrection, to Gatchino, the soldiers immediately
became infected by the absence of limitations leading to the increase of the degree of freedom and
shifted their allegiance to the revolutionaries at once, without going through a period of indoctrination.
However, had the moral principles of the soldiers been stronger, this would not have occurred. Therefore
the critical point, the critical fractional dimension of the number of degrees of freedom of the community
of soldiers was close enough.

4 I. Kant, Collected Works in 6 Volumes, Vol.4, Part 2, Mysl, Moscow, pp. 376–377 [In Russian].
5S. N. Bulgakov, Orthodoxy: Essays on the Teachings of the Orthodox Church (Terra, Moscow, 1991), p. 326 [In
Russian].
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As mentioned above, the author began the considerations summarized in the present work, devoted
mostly to thermodynamics, i.e., to physics and chemistry, by attempting to solve economic and
sociological problems and then using the numerous analogies that exist between these sciences related
to different statistics.

Let us consider, as an illustration, the old problem of the role of the individual in history, a problem
that Marxists claim to have solved. According to our analogy, if the role of the individual in some country
during some period of time was significant, then the situation is closer to Boltzmann statistics: one
individual cannot be replaced by another.

If one prefers a rougher view of history, then the role of the individual in inessential: one individual
may be replaced by another one; this does not seriously affect how history evolves.

Let me give an example when history was significantly changed when one individual replaced another.
When Pavel was enthroned in Russia, the war with Prussia was immediately stopped and Russian
foreign policy changed. But the new political situation did not last long: Pavel, as we would put it
today, was destroyed. When an individual interferes with the evolution of history and is not in resonance
with the natural way in which it evolves, then this individual is destroyed.

The Bourbon emigrants from France, headed by the Count of Provence, menaced the Convent and
the House of Orleans with revenge, attempted to restore the monarchy and to revoke all the new laws.
But they failed. E. Tarle wrote: “All (the italics are Tarle’s – V. M.) the laws introduced by Napoleon
remained after the restoration of the Bourbons.”6

The solution of the problem of the role of the individual in history in the positive or negative sense
cannot be very precise. When one looks deeply into history, just as tropical geometry looks deeply into
ordinary geometry, or as fractal dimension gives a deeper view of the British coastline from the altitude
of satellites, so could the UD statistics approach give rough predictions of historical evolution for long
periods of time.

The relationship of between the number of degrees of freedom and temperature will be discussed
below. We shall see that this number D does not change along isotherms and isochores. Do we have
the right to carry this rule over to history when the role of the individual is disregarded? Indeed, in
the equilibrium situation, the number of degrees of freedom, i.e., the amount of moral principles and
prohibitions, is stable, but it changes when the temperature and density in society changes.

In thermodynamics, a phase transition is a change in the number of degrees of freedom. Perhaps,
if we disregard the role of the individual in history, this transition will be an abrupt passage to a new
“religion” and new moral prohibition rules.

How should one understand the critical point in human society? It is related to endless fluctuations,
the gatherings into huge clusters (crowds) that may quickly disintegrate and then regroup into other
gatherings. This is the way out of a two-phase equilibrium. Such a point exists, it has a specific
temperature, a (small) number of degrees of freedom and so on. But it is only a point, it can be determined
only by indirect observations, and it cannot be practically accessed.

The Boyle point is a state of low density and individual ownership. At the triple point, we simultane-
ously have gas, liquid, and ice. Since a crystal can also be regarded as an ordered state without chaos
(a planned economy) such a point is also usually hypothetical, and so it cannot be accessed in practice.
But this point indicates the possibility of achieving complete planning.

In thermodynamics, these three points have been determined with sufficient precision for all pure
materials. This made it possible for the author to construct equilibrium thermodynamics in the case
when no other parameters except these three points are known. This approach is based on UD statistics,
which was mentioned above.

6E. B. Tarle, Collected Works (Izd. AN SSSR, Moscow, 1959), Vol. VI, p. 381 [in Russian].
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1.5. The Density Paradox

By density in thermodynamics, as in other sciences (the density of people in a city, density of fishes in
a pond, density of leucocytes in blood, etc.), one understands the ratio of the number of particles to the
volume, where the number of particles is very large, and the volume, as compared to the volume of one
particle, is also very large. And so, in thermodynamics, we assume that density is the limit of the ratio
of the number of particles to the volume when the number of particles tends to infinity. We have become
so used to this notion, as well as to the notion of the Avogadro number 1023, that by joining these
two ordinary notions, we come to the so-called paradox of the “two-dimensional Bose condensate”.
Thousands of books and articles assert that the two-dimensional Bose condensate is only possible at
absolute temperature equal to zero. Nevertheless, as the author has written long ago, and repeatedly, it
follows from a theorem of Erdös in number theory that the Bose condensate appears at a temperature
equal to a certain constant divided by the logarithm of the number of particles

T =
C

log N
, (1.2)

where

C =
�

2

√
2m

(
N

S

)
,

� is the Planck constant, and S is the area.
Since the absence of the Bose condensate was not linked to superfluidity, which had been obtained

experimentally, physicists introduced a new notion – pseudo-condensate. The author gave another
proof of the Erdös theorem, more understandable to physicists. Finally, he succeeded in convincing
the leading Russian experts (in particular, Academician Yu. M. Kogan) in the validity of formula (1.2)
and in the existence of the Bose condensate in the two-dimensional case. In the present article, we
give another, simpler, proof of the Erdös formula and prove the existence of the Bose condensate in the
two-dimensional case by a method simpler than the one previously described by us.

The innovative character of my economic approach did not hamper my finding a mutual understand-
ing with the economists V. V. Leontiev, Leo Gurwitz, and B. Z. Milner, all three of whom, unfortunately,
are no longer with us. This article is devoted to the memory of the latter.

These remarkable economists told me that they had grasped my theory. Other economists only
understood the part of my theory related to tropical mathematics. But the situation in the country at
the beginning of perestroïka was such that none of the economists whom I had convinced were able
to help me bring my ideas to the notice of the ruling elite, on whom the economic policy of the country
depended. It was hard to approach the men at the top. I did not even succeed in reaching, before the
crisis (default) occurred, a former student of my applied mathematics chair who had moved high up in the
national administration. And so I did not succeed in saving the failing national economy, I only managed
to rescue my own family.

2. THE CORRESPONDENCE PRINCIPLE BETWEEN QUANTUM STATISTICS
AND CLASSICAL UD STATISTICS

The following correspondence principle holds:
(1) The degeneration temperature T0 (of transition to the Bose condensate) in the quantum case

corresponds to the critical temperature Tc in the classical case.
(2) To the Bose condensate corresponds a condensate of the gas (vapor) into a virtual liquid without

attracting forces, i.e., a dense incompressible ideal gas, which had previously been regarded as a model
of the liquid state by some physicists [24], [25].

What objects are to be distinguished is a matter of convention. The simplest example is paper money,
i.e., bills. Each bill has a serial number, but from the point of view of the generally accepted convention
and even from the point of state laws, bills of the same denomination are interchangeable in the sense
that when the salary of an employee is given in rubles, it makes no difference what concrete ruble bills
are given to him provided that they exactly add up to his salary. The employee will not sue the bank or the
owner of an ATM for giving him bills of the wrong denominations or with serial numbers that he doesn’t
like.
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Let us describe an example from equilibrium thermodynamics regarded as a process.
If we introduce the notion of observable quantity in thermodynamics, then we must keep in mind

that the observation itself is performed at discrete moments of time at relatively long intervals of time.
From the purely mathematical standpoint, any process leading to equilibrium requires infinite time. Of
course, in mathematics, there are notions similar to the notion of “half-life” in physics. For example,
one can introduce as such a notion the time required for the difference between the current state and the
equilibrium state in a relaxation process to be decreased e times.

In approximation theory and numerical methods, especially after the well-known work of L. I. Man-
delshtam and M. A. Leontovich [26], the following relaxation process has often been used: at first the
reacting system is taken to equilibrium, then one of the parameters (say the pressure or the temperature)
is quickly changed and the evolution towards a new equilibrium is monitored (see, for example, the entry
“mean relaxation time” in the Encyclopedia of Oil and Gas at http://www.ngpedia.ru).

Since the intervals between steps must be equal to the relaxation time, they are quite large, and such
a process may be called a multistep relaxation process (MRT). Economic and historical processes, as
well as biological processes in living organisms, are the same kind of phenomena, and for this reason
thermodynamical models of these processes periodically appear.

Discrete time intervals between observations – that is the first thing to take into account when talking
about measurement devices.

If we increase the temperature of a boiler connected to heating devices, then we must wait for a
rather long time before an approximately equal temperature will be reached in the room. Similarly, if
the pressure in a vessel with a piston is increased, then some time will elapse before the pressure waves
are reflected and begin to decay gradually. In the damping process, the main role is played by viscosity,
which we neglect, because, finally, an equilibrium is established.

Fluctuations in equilibrium thermodynamics must be sufficiently small. But the transition to
equilibrium thermodynamics from nonequilibrium thermodynamics and hydrodynamics is very complex
at “catastrophe” points, i.e., at focal and caustic points. This is similar to the transition from quantum
mechanics to classical mechanics. In thermodynamics, to turning points (caustic points) correspond
the points of the so-called “spinodal,” while to a focal point (stronger catastrophe) corresponds a critical
point.

Physicists have withdrawn into their niches so far that, as some experimenters (D. Yu. Ivanov, in
particular) told me and as the well-known physicist Wagner wrote in a private letter7, they do not publish
in their journals articles that are at odds with the scaling hypothesis and its conclusions.

Closely related inferences follow from the asymptotics at a focal point. They agree with the analogy of
the Riemann and Maxwell surface rules. Let us consider some experimental data for the phase transition
“gas–liquid” for mercury (see Fig. 1), which was supplied by Professor V. S. Vorob’ev.

We see that the “gas–liquid” is not vertical, but is spread over viscosity, which suggests an analogy
with a shock wave. The notion of “dequantization,” which has led the author to thermodynamics and
tropical mathematics, agrees entirely with the experiment referred to above and is not consistent with
the scaling hypothesis and the theory of critical indices derived from it. The critical indices obtained by
D. Yu. Ivanov, which are close in value from those obtained from scaling theory, were derived from the
tunnel canonical operator applied to Wiener quantization described by Feynman and Gibbs.

Mathematicians and experimental physicists are willing to engage in discussions. Theoretical
physicists stand firm, shutting their ears, and do not participate in open discussions. And stand firm
all together. The remarks about one of the author’s works by an anonymous physicist in a review were
answered by the author on the site http://www.za-nauku.ru.

The difficulty here is also due to the fact that the theoretical physicist understands only the “science”
that he is used to and the logic that follows from the customary set of its rules. My close friend, the
late E. G. Maximov, a pupil of V. L. Ginzburg, whose language I had learned to understand, told me
the following unforgettable phrase: “You will not convince me by your lemmas!” Nevertheless, he finally
intuitively understood me and agreed with my arguments, but wasn’t completely sure.

7“Although the “critical point mafia” in the US seems to be overwhelming, it is nevertheless important, I think, to make
very clear that there are also other opinions about the thermodynamic behavior of pure fluids in the critical region.”
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Fig. 1. The Hougen–Watson diagram for mercury shows the phase transition “gas–liquid.” Experimental data (from
the sources W. Gotzlaff, G. Schonherr, F. Hensel, Z. Phys. Chem. Neue Fol. 156 (219) (1988) and W. Gotzlaff, Ph. D.
Thesis, University of Marburg, 1988) are equipped with symbols. The thick lines correspond to the van der Waals
equation for the related temperatures.

Even the coincidence of my theoretical computations with the results of physical experiments does
not convince physicists, on the contrary, it makes them suspicious. This is probably due to the fact that
they are used to “fixing up” their “theories” to fit the experiment. Then what language are we speaking?

The very well-known physicist A. A. Vlasov, the author of the famous Vlasov equation in the theory
of collective oscillations, asked my pupil V. L. Dubnov, who was defending his PhD thesis, the following
question: “Can you draw a straight line through two points?” When Dubnov answered “Yes, I can,”
Vlasov got up from his seat and loudly declared: “Never, never, no matter how carefully you aim, will you
get from one point to the other given point!”

He was right: Dubnov would surely have missed. And Vlasov’s shot hit the point, because this is
where the main difference between our logical rules and habits lies. L. V. Keldysh, my old and dearly
loved friend since our student days, did not doubt the mathematical rigor of my constructions, but would
not believe that it has any relationship with physics. I am not a physicist, I am simply constructing,
overcoming mathematical errors, a general mathematical equilibrium theory. Unfortunately, the most
convenient way of checking this theory in practice is in the case of gas. This is more chemistry than
physics, and the coincidence of the theory with experiments has been checked by narrow experts in this
field. There is no underlying special physics here, no physical hypotheses. I am correcting the erroneous
rules that physicists are used to, and this, as explained in the introduction, is the great sin of learning
the truth. But this is fear: “But you will not scare a coward” as Arbenin, a protagonist of Lermontov’s
drama The Mascarade exclaims.

My anonymous opponent (to whom I answer on the above-mentioned site “Moving to the renewal of
Russian science”; see the journal Za Nauku) asks: “What does number theory have to do with this?”.
There are rumors that the head of a whole school of theoretical physics asserted that he does not consider
that number theory is a science (see [27]). Nevertheless, as we mentioned, Erdös’ 1951 theorem refutes
the famous “theorem,” which physicists have “proved”; it claims that Bose condensate cannot exist in
dimension two,

The author is by no means an expert in the theory of gases and chemistry, and cannot be blamed for
the fact that his theory leads to a perfect coincidence with experimental data. As a mathematician,
the author only answers for the correctness of his theorems, and these theorems show that certain
statements put forward by physicists are in error.

The Bolzmann–Maxwell gas also occurs in certain situations, namely when the Bose–Einstein
entropy is transformed into the Bolzmann entropy, i.e., in the case of the old Maxwell–Bolzmann
ideal gas. The author’s theory is also a theory of ideal gas, i.e., of a gas without particle interactions.
Nevertheless, it contains the phase transition gas to liquid. But in the theory, liquid is understood as gas
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under pressure. This point of view on liquids previously appeared in the work of some physicists. We can
find the binodal through which this transition takes place. But a real gas under pressure, according to the
quantum theory of dipole-dipole interaction, attracts and forms the liquid, to which everyone, especially
physicists, are used to. However, the new ideal gas, as a mathematical object, explains a whole series of
important phenomena without appealing to particle interactions.

The importance of distinguishing an ideal gas obeying UD statistics from a gas with interactions is
as important as distinguishing classical mechanics from quantum mechanics, and of course should be
done without denying the quantum theory and the interactions that it involves.

One might ask: How can we take into consideration the interaction of particles in the constructed
statistics of identical particles? We must construct the three-dimensional Hamiltonian that contains
the interaction of particles, i.e., the self-consistent Hamiltonian or Vlasov Hamiltonian containing the
potential of pairwise interactions V (xi − xj).

Bogolyubov always maintained that the most important thing derived by Vlasov is the equation of
“collective oscillations”; in other words, the linear variational equation for Vlasov’s equation. It is this
equation that helps discover many secrets of the theory of many interacting particles. The mathematical
essence of such secrets is the presence of the minima of the Hamiltonian when there are more than
one minimum. If the barrier between these minima is sufficiently high, then this fact leads to different
spectra, or, more precisely, to different spectral series. This is very important for the experimenter. It is
difficult (practically impossible) to guess the form of the interaction potential, while it is quite feasible to
obtain resonance spectral series using the spectrograph.

The important difference between the Boltzmann–Maxwell ideal gas and the quantum ideal gas is
that, in the first case, we must consider an important notion, the number of degrees of freedom. For
one-atom molecules, this number is 3, for two-atom molecules, it is 5, and for three-atom molecules, it
is 6.

For ideal quantum gas, we deal with the three-dimensional and two-dimensional cases. It turns
out that these notions are closely related: as µ → −∞, the dimension with respect to momenta of the
quantum gas coincides with the number of degrees of freedom of the Boltzmann–Maxwell ideal gas.

However, we must always average the number of degrees of freedom over all gas molecules in the
given state, and then this number will, in general, be fractional. Denote this number by D.

One of the most important notions of modern thermodynamics is the so-called compressibility
factor Z, which is a dimensionless quantity equal to Z = (PV )/(NT ). The value of the critical point Zc,

Zc =
PcVc

NcTc
=

Pc

ρCTc
,

was, until recently, hard to find in tables of critical parameters. For hydrogen, noble gases, and methane,
Zc = 0.29. For mercury, Zc = 0.39 (this is the highest value among pure gases). For the van der Waals
gas, Zc = 0.375.

For the Bose–Einstein quantum three-dimensional gas,

Z =
Li5/2(a)
Li3/2(a)

,

where a = eµ/T is the activity and Li is the polylogarithm.
For the general value of D,

Z =
LiD/2+1(a)
LiD/2(a)

. (2.1)

By the correspondence principle, such a value of Zc is realized for µ = 0, i.e., for a = 1. In this case, the
polylogarithm is replaced by the Riemann zeta function

Zc =
ζ(D/2 + 1)

ζ(D/2)
. (2.2)

In particular, for Zc = 0.29, we have D = 2 + 0.444. Obviously, it is a very small number of degrees of
freedom.

MATHEMATICAL NOTES Vol. 94 No. 5 2013



734 MASLOV

The expert in practical chemistry Gekhman, a man of remarkable intuition, was not surprised by
the author’s communication, but said that he fully agreed with it. Vorob’ev and Apfelbaum compared
experimental critical isotherms with the Bose distribution of dimension D given by formula (2.2). Their
graphs are shown in Figs. 2–7.

Fig. 2. (a) Isotherms of pressure for the van der Waals equation are shown by solid lines. The lines formed by little
circles are plotted from calculations for γ = 0.312 (i.e., the ideal “Bose gas”), Zcr = 3/8. p = P/Pc, n = N/Nc.
(b) Isobars of density for the van der Waals equation are shown by solid lines. Line 1 is the binodal. The little circles
depict the isobars of the “Bose gas” for γ = 0.312.

Fig. 3. Critical isotherms for the Lennard-Jones system. The symbols 1 and 2 depict the theoretical values. Line 3
corresponds to the ideal Bose gas for γ = 0.24.

Thus, the critical isotherms of the (nonideal) classical gas are in full agreement with the isotherms
of the ideal Bose gas with the corresponding number of degrees of freedom up to the critical point. The
continuation of the isotherm will be defined below in Sec. 7 in the case of a positive chemical potential.

Let us now study the behavior of the Poisson adiabat in its dependence on the number of degrees
of freedom D for the Bose distribution as µ → −∞. To do this, we expand the formulas for the Bose
distribution generalized to dimension D

P = CTD/2+1 LiD/2+1(a),

P =
N

V
TD/2 LiD/2(a) (2.3)

and

Z =
LiD/2+1(a)
LiD/2(a)

(2.4)
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Fig. 4. (a) Isotherms for argon. The solid lines correspond to experimental data. The lines formed by little circles are
plotted from the isotherm of the ideal Bose gas, Zcr = ζ(γ+2)

ζ(γ+1)
= 0.29. p = P/Pc, and n = N/Nc;

(b) The same for water, Zcr = 0.23;
(c) The same for copper, Zcr = 0.39.

Fig. 5. Isotherms for water. The symbols 1 and 2 correspond to experimental data, and line 3 corresponds to the
theoretical values for the Bose gas.

as a → 0 (i.e., µ → −∞),

LiD/2+1(a) = a +
a2

2D/2+1
+ O(a3),

LiD/2(a) = a +
a2

2D/2
+ O(a3),

Z(a) =
a + a/2D/2+1

a + a/2D/2
+ O(a2) = 1 − a

2D/2+1
+ O(a2). (2.5)
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Fig. 6. Critical isotherms for mercury. The symbols 1 and 2 correspond to experimental data, and line 3 corresponds to
the theoretical values for the Bose gas.

Fig. 7. Isotherms of ideal Bose gas compared to experimental data (lower thick line: (a) isotherms for nitrogen with
γ = 0.218, Zc = 0.286; (b) isotherms for oxygen with γ = 0.219.

Hence

dP

dZ
= const(2T )D/2+1 (2.6)

as a → 0.
For fractional dimension, the Poisson adiabat generalizes as follows:

cv =
D

2
, cp + cv = 1, γ̃ =

cp

cv
,

where D is the number of degrees of freedom. In our case of classical ideal Bose gas, we have

γ̃ =
D + 2

D
.

In view of (2.6),

P ∼ PV

N
T γ+1, γ =

D

2
− 1.

In view of formula (43.9) of [16],

V T 1/(γ̃−1) = V TD/2 ∼ const.
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This Poisson adiabat for ideal Boltzmann–Maxwell gas obtained from the Bose distribution is one of
the numerous corroborations of the author’s approach treating the Bose distribution as a distribution
of classical particles. The resulting coincidence means that the Hougen–Watson isotherm vectors are
directed along the isotherms of classical Bose gas.

Theorists in physics are not convinced by the remarkable agreement of the mathematically rigorous
approach of the author with the latest experimental data of V. S. Vorob’ev (see [14]). Can this really be
an accidental agreement?

3. DERIVATION of BACHINSKII’S FORMULA USING
THE LENNARD-JONES POTENTIAL

The attraction between particles arises in the quantum mechanical study of the dipole-dipole
interaction. In the standard semiclassical limit, if the distance between neutral molecules is fixed (is
independent of the parameter �, i.e., of a dimensionless parameter proportional to �), then the attraction
vanishes as � → 0. In this sense, the use of an attractive potential in molecular dynamics based on the
classical Newton equation for many particles is not legitimate.

But if the problem under consideration involves other small or large parameters in addition to �,then
the attractive potential is preserved as � → 0 if there are certain relations between them. For example,
this is possible in the short-wave approximation under the Sommerfeld condition at infinity, which leads
to a non-self-adjoint problem and essentially uses the fact that viscosity is vanishingly small.

In quantum scattering problems with dissipation, rigorously studied after Kuroda’s paper [28]
appeared, the semiclassical limit preserves the attractive potential "for nearest neighbors," as physicists
used to say. Without presenting these sufficiently complicated estimates, we consider the classical
scattering problem involving the attractive potential and, in particular, the Lennard-Jones potential.

As is known, the relation

mv2

2
+

M2

2mr2
+ Φ(r) = E. (3.1)

holds in the radially symmetric case. We prescribe the individual energy E and the impact parameter B
for the initial scattering particles. Their momentum M and the energy E are preserved. It is also known
that

M2 = B2E. (3.2)

We express the energy E to obtain

E =
(mv2)/2 + Φ(r)

1 − B2/r2
(3.3)

in the case of attraction in the domain where r ≤ B.
Figure 8 presents the diagram corresponding to the current state of thermodynamics and was

obtained by using molecular dynamics methods (numerical simulation) and by physical experiments.
The comprehensive thermodynamics is based not on the well-known van der Waals empirical relation

but on the results obtained by numerical simulation in the new field of science called “molecular
dynamics.” The results of these experiments are shown in Fig. 8. The solid straight line issuing from the
Boyle point is called the Zeno line, while the straight dashed line is called the “binodal” (i.e., the curve
separating the two phases) [29]. A jump of the density ρ occurs at a given temperature less than Tc; this
jump is marked on the abscissa.

As the interaction potential in the scattering problem, we take the Lennard-Jones potential

Φ(r′, r′′) = 4ε
(

a12

||r′ − r′′||12 − a6

||r′ − r′′||6
)

, r = r′ − r,′′ (3.4)

where ε is the well depth energy, a is the effective radius, and ||r′ − r′′|| is the distance between two
particles with radius vectors r′ and r′′. If there is no external potential in the two-particle problem, then
the problem can be reduced to a one-dimensional radially symmetric problem.
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Fig. 8. The (T, ρ) diagram for gases corresponding to simple liquids; Tr = T/Tc and ρr = ρ/ρc. The Zeno line
(the straight line Z = PV /kNT = 1.0) is shown in the phase diagram. The repulsive forces dominate for the states
Z > 1.0 (hard fluids), and the attractive forces dominate for the states Z < 1.0 (soft fluids).

In problem (3.3), other barriers and wells arise for different values of B (see Figs. 9 and 10). The
velocity is zero at the stationary points Emin and Emax, and hence they can be calculated from the
potential term only.

We now consider not a single particle but a pair of particles whose center of mass is trapped. The
difference Emax − Emin is therefore the energy required to release this pair (dimer) from the trap. The
dimer percentage in a gas can be determined experimentally. It can be seen how dimers are created and
split by monomers. Their average number is then calculated. The higher the temperature, the greater
the mean energy of monomers, and the fewer the number of dimers.

It is an important characteristic of such an approach that only the two quantities Emax and Emin

remain in the skeleton of the scattering problem (cf. the amoeba skeleton in tropical mathematics [30]).
The well disappears whenEmax = Emin. This energy is equal to 0, 8ε for the attracting part of the
Lennard-Jones potential. It follows from the above isotropy that the mean particle energy is 16ε/5. The
mean energy corresponds to the temperature T = 16ε/5k. There is no well above this temperature. This
is the the so-called Boyle temperature TB in thermodynamics. According to the data for ε calculated by
this formula, the Boyle temperature is TB = 382K for argon (Ar) and and TB = 547K for krypton (Kr);
the experimental tables in [31] give TB = 392K for argon and TB = 538K for krypton. The discrepancy
between the theoretical and experimental values is 2 to 3%.

The critical temperature Emax must correspond to the deepest well, i.e., to the maximum value of the
difference Emax − Emin for all values of the impact parameter B. This difference shows how the dimer
energy drops after its capture by the “trap” and thus what energy the monomer must have for the dimer
to be freed from the well (i.e., to cause its disintegration).

The barrier height “protects” the resulting pair (whose reduced mass gets into the trap for the “dimer”
and clusters) from “impacts” by monomers. The barrier height decreases with the temperature T < Tc,
and the clusters must therefore create their own barrier (as an microanalogue of a surface film) in order
to survive. Hence, a “domain” that is a three-dimensional cluster (the so-called elementary cluster) with
at least one particle protected by other particles must be formed there.

The calculations give Emax = 0.286ε/k at the point maxB(Emax − Emin). The impact parameter at
this point is equal to B = 2.436.

Remark 1. The determination of the critical temperature and the Boyle temperature from the well depth
of the interaction potential ε is highly inaccurate, and different data are therefore given in different
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handbooks. In what follows, we therefore consider the dimensionless quantity TB/Tc = 2.79, which
agrees better with the experimental data (this value for argon is 2.73).

Table 1

Substance ε, K Tc/4 Ec · ε/k

Ne 36.3 11 10.5

Ar 119.3 37 35

Kr 171 52 50

N2 95,9 31 28

CH4 148.2 47 43

C2H6 243.0 76 70

C4H10 313.0 106 98

H2S 301 93 87

PH3 251.5 81 73

The only dimensionless quantity in our "skeleton" problem is Emin/Emax, i.e., we consider the
simplified problem with only two stationary points.

Because Emin/Emax is a dimensionless quantity and Emax is the average energy related to the
temperature (multiplied by the density ρ), it follows that the dimensionless quantity in thermodynamics
is the so-called compressibility factor, denoted by Z: Z = PV/RT .

Fig. 9. Wells and barriers in the scattering problem for two particles with a Lennard-Jones interaction for different
impact parameters B.

We now derive analytic formulas for the Zeno line depending on the potential. The initial assumption
is that the thermodynamical description is independent of the shape of the vessel. Because only the
volume, not the shape, is important for thermodynamical quantities, we can determine the characteristic
length from the value of the volume. Such a quantity is the ball radius for a ball-shaped vessel and
the tube radius for a long narrow test tube (like the one used by Torricelli). Therefore, according to
dimension theory, we generally have some volume measure, and we take the effective radius a for the
length measure.

We now use considerations of dimension theory for the scattering problem and the definition of the
attracting one-particle (the so-called thermal) potential. The scattering problem is considered for the
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Fig. 10. A trap for a fictitious particle (dimer) in the center-of-mass system: r is the dimer radius vector marked on the
abscissa, and the particle falls from the left from the point r = B.

Lennard-Jones potential, and the problem therefore has an additional length parameter, i.e., the effective
radius a. The attracting potential arises in the quantum theory of dipole-dipole interaction. If the
distance between particles is fixed and the semiclassical parameter � tends to zero, then the attracting
potential vanishes. This means that the distance between particles decreases as � → 0. This implies the
following assertions:

1. Using the attracting potential in the classical system of Newton equations in molecular dynamics
problems is, to say the least, not very well posed.

2. The attracting potential acts only between the nearest neighbors.
It is therefore natural to expand the attracting one-particle potential in a power series in the radius r

up to O(r3/V ).
The “thermal” potential Ψ(r) is an attractive potential. Because the volume V is a large parameter,

it additionally follows that the expansion of the potential Ψ(r) = Ψ(ar2/V ) in 1/V implies that

Ψ
(

ar2

V

)
= C1 +

C2ar2

V
+ O

(
1

V 2

)
. (3.5)

We expand

r2 = r2
1 + r2

2 =
(r1 − r2)2

2
+

(r1 + r2)2

2
, (3.6)

and then separate the variables in the two-particle problem, just as in [32], to obtain the scattering
problem for a pair of particles and the problem of their cooperative motion (for r1 + r2). In the obtained
scattering problem, the Lennard-Jones interaction potential is then supplemented with the attractive
quadratic potential (inverted parabola) −C2ρr2, ρ = a/V .

The presence of the thermal potential does not follow from the previous and subsequent construc-
tions. It can be obtained by using ideas of the Vlasov–Bogolyubov self-consistent field theory or the
fact that the correlation sphere for the N-particle Gibbs distribution is finite. As we see below, the
dependence on density significantly complements the number theory distributions (see, e.g., Sec. 3
in [32]).

In the scattering problem thus obtained, there are usually two stationary points, the stable point
Emin and the unstable point Emax. Their ratio is a dimensionless quantity. In thermodynamics, the
quantity Z = PV/NT is dimensionless, and because the stable stationary point has the meaning of the
temperature, it follows that the relation

Z =
PV

NT
=

Emin

Emax
(3.7)

allows constructing the curves Z = const on the graph (T, ρ = N/V ).
The curve with Z = 1 is called the Zeno line (or the Bachinskii parabola), and the geometric locus

of initial points of the curves for Z = const (for C2 �= 0 and B → ∞))is the binodal.
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The minimum value of the compressibility factor Z for a given ρ and C2 �= 0 is equal to

Zmin =
Emin

Emax

∣∣∣∣
B→∞

.

It corresponds to the Boyle temperature for Zmin = 0.8ε and ρ = 0. As is known,the point on the binodal
corresponding to Zmin for ρ = 0 corresponds to absolute zero. We let Zc and ρc denote the values of Z
and ρ at this point. We also let ρB denote the endpoint of the curve 1 − Zmin on the axis ρ. This point
was called the hypothetical Boyle point in [33].

We calculate the value of Zc and obtain Zc = 0.296, which coincides with the values of Zc for noble
gases up to the third decimal place. The ratio ρc/ρB also coincides with the values of this quantity for
noble gases.

Table 2 presents the data corresponding to the obtained diagram (for B = 100 in “molecular” values).
We note the deviation between the basic dimensionless relations obtained from data of molecular
dynamics and the theoretical relations obtained by physicists using the BBGKY hierarchy of equations
and the N-particle Gibbs distribution.

Table 2

Zc ρc/ρB Tc/TB

0.29 0.273 0.36

0.308 0.285 0.38

0.375 0.333 0.296

The upper row of Table 2 contains the theoretical values of Zc, ρc/ρB and Tc/TB obtained using the
dimension theory considered above, the second row contains the values of these quantities obtained from
the latest data based on molecular dynamics and theoretical physics for the Lennard-Jones potential,
and the third row contains the values obtained from the empirical van der Waals equation

The value of Zc can be obtained experimentally with a very high accuracy and is equal to 0.29 for
noble gases, nitrogen, oxygen, and propane. The value of ρc/ρB (i.e., the ratio of ρc to the entire length
of the segment of ρ, where the Zeno line intercepts the abscissa) coincides with the corresponding values
for water, argon, xenon, krypton, ethylene, and a number of other gases.

We now construct the (Z, ρ) diagram in which we show the curve Z = 1 − (Emin/Emax)|B=max

and the straight line joining its endpoints (Z = 1 and Z = 0). If the thermal potential is present, then
B → ∞, and the curve has the form shown in Fig. 11.

Fig. 11. The curve 1 − Zmin.

We determined the critical temperature for the “pure” Lennard-Jones potential without considering
the thermal potential, while Zc and the Zeno line were calculated with the thermal potential taken into
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account. We considered the maximal well depth Emax −Emin for the “pure” Lennard-Jones potential to
determine the critical temperature.

We now present detailed calculations for determining the Zeno line. We consider the potential

E(r) =
−αr4 + r2U(r)

B2 − r2
. (3.8)

It first and second derivatives are

E′(r) =
r(2B2U(r) + r(2αr(−2B2 + r2) + (B2 − r2)U ′(r)))

(B2 − r2)2
,

E′′(R) =
1

(B2 − r2)3
(
2(B4 + 3B2r2)U(r) + r(−2αr(6B4 − 3B2r2 + r4)

+4(B4 − B2r2)U ′(r) + r2(B2 − r2)2U ′′(r))
)
. (3.9)

We obtain the solution of the equation in the form

B =

√
− −r3U ′(r) + r4U ′′(r)
−8U(r) + 2rU ′(r) + 2r2U ′′(r)

. (3.10)

We substitute B(r) in (3.8) and obtain E(α), which is the Zeno line. We then set B = 100 and obtain
the first derivative, which we equate to zero to obtain the ratio (Emax − Emin)/Emax.

Thus, Bachinskii’s relation has the form

ρ

ρB
+

T

TB
= 1.

The midpoint

ρ =
ρB

2
, T =

TB

2
divides the segment 0 ≤ P ≤ Pmax in half:

P

2
=

ρBTB

4
,

where

Pmax =
ρBTB

2
.

Bachinskii’s relation implies

P =
ρB

Zc

(
T

(
1 − T

TB

))
. (3.11)

Equating (3.11) to Pmax, we find the extreme temperature.

4. THE LAW OF PREFERENCE OF CLUSTER FORMATION
OVER PASSAGE TO LIQUID STATE

4.1. Phase Transition “Gas–Saturated Vapor” as a Phase Transition of the 3d Kind

The question that we pose in two-phase thermodynamics is whether clusters or liquid appears first
as the temperature reaches the dew point. Debate on this point is still continuing.

We shall show that, in our mathematical theory, the phase transition to liquid is determined by the
spinodal in the negative quadrant −P,−Z. Negative pressure is equivalent to negative energy, which
is related to antiparticles by Dirac’s conjecture. The positron is the antiparticle for the electron, or the
hole in the negative spectrum filled by electrons. Similar holes in the crystal lattice were discovered by
Frenkel.
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And what is a “hole” in our case of neutral particles: antimass or the black hole, as in astrophysics?
As mentioned above, in economics, it is antimoney, i.e., debts.

In economics, at least in early Middle Ages, associations (clusters) were a better way than taking
loans. In Rome, a citizen became a slave because of any unreturned outstanding debt. Associations also
provided other advantages, for example, protection against pirates. As was already stated, clusters are
“three-dimensional” and also protect molecules at the center of clusters from striking monomers.

In early Middle Ages, the Catholic church strongly objected to providing loans at interest for
catholics. This moral prohibition is the usual norm in relations between relatives and good friends.

Judaism forbade to provide loans to its disciples, but did not object against providing loans at high
interest to persons of other faiths. Lombards (the tribe from Northern Italy) acted in the same way.
Such simple moral prohibition allowed the system to preserve a relative equilibrium for a sufficiently
long time. This was a closed society in the sense that transitions from one stratum to another were
severely hampered.

Mathematical statistics whose best application is thermodynamics must also explain matters in
connection with history if it is considered schematically.

In this section, we demonstrate the law of profitable of association into clusters to transition to liquid
state, using pure gases as an example.

As was already mentioned, in economics, by this principle, it is more preferable for people, companies,
banks, etc., to form an association rather than fall in debt. In thermodynamics, we shall compare
isotherms, binodals, and spinodals in two cases: consideration of the preference principle and pure Bose
statistics.

The consideration of the preference principle consists in the maximal increase of the number of
degrees of freedom for a given temperature and a given spinodal. Obviously, the increase in the number of
dimers leads to an average increase in the number of degrees of freedom. Let us show that this principle
is in almost full agreement with the gas part of the van der Waals model, so that the theoretical results
approximate the experimental data for nitrogen quite well.

Russian experimental physicists think that, first the number of dimers and clusters maximally
increases, and then the liquid is formed at the fixed temperature

Tr =
T

Tc
< 1.

This approach changes formulas of the Bose–Einstein statistics for Tr < 1. We shall illustrate this fact
using graphs.

At the same time, as we shall see later, the occurrence of clusters in the thermodynamics of
nanostructures and nanotubes is hampered and the agreement is greater with the ideal Bose distribution
(in which the number of degrees of freedom is determined by the value of Zc at the critical point). And
this value is, apparently, related to interaction, i.e., to the fact that the gas under consideration is not
ideal. Thus, in our construction, the fact mentioned above occurs only at the critical points, at the triple
point, and the Boyle point. Otherwise, the calculation of the number of degrees of freedom allows us to
consider an ideal gas, but in UD statistics.

But how does one distinguish clusters from pieces of liquid in the undistinguishing statistics of
objectively distinguishable particles, in the case of the “identical essence” of these particles? In
equilibrium thermodynamics, only averaged quantities appear: mean energy – temperature, mean
density ρ = N/V and their duals: entropy S, chemical potential µ; the latter two, due to the fact that
the Lagrange submanifold is two-dimensional, depend on the first two quantities. A most important role
is played by the number of degrees of freedom D, which in the old thermodynamics was considered only
in the case of the ideal Boltzmann–Maxwell gas.

It is precisely the trend of increasing D, which the author called the “preference principle,” that can
be construed as the preference of cluster formation.

We shall call the dual quantity to D the braking dominant or dominant for short and denote it by
the letter M. We would like to stress in this way the role of ancient moral interdictions, written in ancient
languages, because it is precisely these moral interdictions that limit the number of degrees of freedom.
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Consider the sequence of natural numbers 1, 2, . . . , n, . . . . Introduce a constant Λ, which we shall
call the free scaling, indicating the units in which the ruler with the numbers 1, 2, . . . , n, . . . written on
it uses to perform measurements.

In accordance with the van der Waals (VdW) model, let us introduce the scales Tr = T/Tc, Pr =
P/Pc as well as a new quantity – the number of degrees of freedom. Therefore, we must introduce a new
scaling x. Obviously, if the number of degrees of freedom is D �= 1, then the free scaling must be raised
to the power D.

Remark 2. Under our approach, we use three points, taken from experiments: the critical point, the
triple point, and the Boyle point. In general, all the formulas, isotherms, isochores, spinodals, and
binodals are obtained only from the statistics of gases without particle interactions (i.e., ideal gas in
the sense of Gentile parastatistics).

This approach contradicts the approach of “van der Waals forces” and the consequences of empirical
interaction potentials. Actually, the VdW forces, in particular the force of attraction A/r6, are obtained
in quantum mechanics as r → ∞. And so, even if r is a finite fixed quantity, the attraction tends to zero
as � → 0 and here we come to a contradiction.

Therefore, outside these points, as � → 0, there is no interaction, and we can use UD statistics of
identical particles without interaction.

In many cases the answer will coincide with the one based on the VdW forces (the Lennard–Jones
potential, see [34]–[36]). But this does not mean that both approaches are applicable here.

In the book [16], the misapprehension mainly concerns the interpretation of the notion of
Boltzmann–Maxwell ideal gas. The authors assert that saturated vapor is a particular case of the
Boltzmann–Maxwell ideal gas [16, §84]. Yet the book treats saturated vapor as if this notion differs
from the notion of “gas”. Not only students, but also some teachers of thermodynamics think that vapor
is not a gas, and remembering locomotives, regard vapor as a kind of smoke. «Why does the locomotive
puff and go, while the sauna puffs and doesn’t go?» is a question expressed by a popular character from
I. F. Gorbunov’s 1861 short story “Scenes of folk life” that has become deeply rooted in our folklore.

In [16, 314-315] the authors write: «Regarding vapor as an ideal gas, let us express its volume
according to the formula v2 = T/P».

The assertion “a liquid cannot exist without attraction” is well known. We know that attraction of
particles is a quantum phenomenon in which a substantial role is played by exchange interaction, which
disappears in the classical limit.

The passage to the Bose condensate in quantum statistics is a phase transition of the 3rd kind.
The appearance of density condensation at the temperature of the “binodal” (also called “dew point,”
although the dew droplets have not yet reached their critical radius) is the classical analog of the quantum
Bose condensate, and hence the phase transition “ideal gas → saturated vapor” is a phase transition of
the 3rd kind. And under this phase transition, saturated vapor remains an old Boltzmann–Maxwell ideal
gas.

According to the correspondence principle indicated below, a density fluctuation “at rest” appears as
the analog of the Bose condensate at rest. This fluctuation is at rest only in the same sense as metallic
dust, moving so rapidly above a magnet that it does not stick to the magnet, forms a dense cloud “at
rest” above the magnet, which can produce a deep shadow. The shadow stays in place, but the dust
particles move. However, this sort of density is the start-up mechanism of the appearance of quantum
forces of attraction which result in the formation of fluctuating droplets, and then as the temperature
decreases, the radius of the droplet reaches its critical value and the fluctuating droplet becomes a real
droplet.

However, Nature itself does not allow us to get rid of the mathematical model of ideal gas. The thing is
that the law of “gas-liquid equilibrium” breaks down, since the pressure inside the droplet is greater than
the pressure in saturated vapor. If we wish to remain within the framework of the original mathematical
model of the passage from gas to liquid, we must consider the liquid without surface tension, and hence
without forces of attraction. Fortunately for the author, certain physicists regard the model of liquid as
a model of dense gas [24], [25], and so the author is not completely alone in his efforts to refute the
postulate asserting that liquid cannot exist without forces of attraction between particles.
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Thus we can assume that between the time when the temperature is that of the binodal and when it
drops to the level at which the radius of the droplets attains its critical value, a density fluctuation forms.
If our gas is in a spherical vessel in the presence of Earth’s gravitational attraction, then a virtual liquid
will form near the bottom of the vessel. If, in this situation, we mark a small number of molecules by
isotopes (whose positions we can follow), we will see that these marked molecules will move freely from
the virtual liquid to the vapor and back and form a dense structure near the bottom of the sphere, so
dense that it will produce a shadow if parallel rays of light are directed on it. However, it is impossible
to pull out this dense structure from the gas medium. Virtual liquid can be seen, but not felt. It can
produce a shadow, but you can’t drink it. In that sense I agree with the statement that “a liquid without
attraction is not a liquid.”

A phase transfer of the 3rd kind described above is actually observed at least for methane (CH4) and
tetraftormethane (CF4) in experiments and occurs when part of the molecules associate into dimers,
trimers, and other clusters as the temperature decreases (see [37]).

Dimers are formed due to the attraction between molecules. But a dimer lives only 10−5 seconds, until
it is broken up by a monomer. For someone observing the gas discretely at large intervals of time, it is
virtual, the observer can only assess the percentage of dimers in the gas. As shown in [38], statistically
this phenomenon corresponds to a density condensate dissipated in the vessel. The increase in the
density of dimers is accompanied by fluctuations of density as in a virtual liquid.

Just as fluctuations of density help the appearance of quantum attraction, so does the density
condensate dissipated in the vessel play the role of start-up mechanism for the quantum forces of
attraction that produce dimers. Virtual liquid is a model, it adequately describes the situation of the
coexistence of gas-“liquid”.

The Clausius condition for the old Boltzmann–Maxwell ideal gas model,

Z =
PV

NT
= 1

is not related with the number of degrees of freedom D of the gas molecules. But in fact the passage “gas
→ saturated vapor” smoothly changes the number of degrees of freedom, because of the appearance of
dimers and other clusters. Obviously, one must change the number of particles N in Clausius’ old
formula, since in the calculation of N in Clausius’ time, the measuring devices could not distinguish
individual molecules from dimers.

4.2. The Van Der Waals Model

In what follows, using the P,Z diagram, where Z = PV/(NT ) is called the compressibility factor8,
for the van der Waals equation, we shall show that gas tends to pass into clusters and then into liquid.
This means that, for Tr < 1, where Tr = T/Tc and Tc is the critical temperature, the number of degrees
of freedom D first increases and, therefore, the parameter γ also increases to its maximal value at a given
temperature Tr < 1. (Note that the parameter γ is related to the number of degrees of freedom by the
relation D = 2γ + 2). The parameter γ increases in such a way that its critical value is not Tc, but Tr.
This effect will possibly occur also for the quantum case in which T < T0, where T0 is the degeneracy
temperature of ideal quantum Bose gas.

As soon as experimenters saw dimers and clusters in their atomic microscopes, the old theory of
thermodynamics should have undergone a revolution. However, physicists had grown accustomed to
the old theory.

It is difficult to get accustomed to new facts rigorously proved and verified by experiments. Some
physicists think that old thermodynamics and clusters, percolation, molecular dynamics, scaling
conjecture are separate areas. But mathematically rigorous results bear witness to the fact that the
Gibbs distribution for the Gibbs ensemble is valid and can be proved rigorously, while the Boltzmann–
Maxwell distribution is erroneous from the mathematical point of view. But theoretical physicists do not
accept the notion of “mathematical error” in these distributions, because they have their own notion of
proof. More precisely, they pay attention to the word “derivation,” rather than “proof.”

8Do not confuse with the notion of “compressibility.”
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From the physicists’ point of view, the word “erroneous” does not apply here even if they grow
accustomed to the Bose–Einstein distribution for classical ideal gas. They will say: “this is valid in a
particular region.” And this is indeed true: the Boltzmann–Maxwell distribution is valid in a certain
region. For physicists, the Gibbs paradox is not a counterexample to the theory, but only another
paradox, which can be explained away by means of another hypothesis (see Chap. 1 “Hydrodynamic
paradoxes” in [39]).

The Bachinskii condition on the Zeno line on the Z,P diagram uniquely relates Tc to the value of γ.
On the spinodal, for 3 ≥ D ≥ 2γ0 + 2, the fact that γ is constant on isotherms and isochores implies the
univalent dependence Tc ↔ γc. However, the Bachinskii condition is related to the interaction potential
in thermodynamics.

Fig. 12. Spinodals for the Ω-potential of ideal Bose gas; γc = 0.222, 0.222 < γ < 0.5.

Can we carry over this condition to economics and socialogy? It is more natural to use the ellipse
from the point Zc to the points corresponding to the triple point.

Figure 12 shows the spinodals for the Ω-potential of ideal Bose gas

Ω = Λγ−γcT 2+γ Li2+γ(a) (4.1)

for different values of the constant Λ for

P = Λγ−γc
ζ(γ + 2)
ζ(γc + 2)

, Z =
ζ(γ + 2)
ζ(γc + 1)

.

The quarter of the ellipse passing from the point γ = 0.222, Z = 0.45 as an empirical spinodal is
more natural in problems in social sciences as an analog of Poincaré theory. Incidentally, the ellipse also
satisfies, up to 3%, the Bachinskii condition.

Using graphs, let us again show that our concept agrees with the famous empirical van der Waals
model. However, we shall use another “derivation” for ideal Bose gas.

The van der Waals model corresponds to our concept of given specific points that define all isotherms,
isochores, isobars, binodals, and spinodals of the thermodynamics of pure gases: the critical point the
van der Waals model is Zc = 0.375 and, therefore, γ = 0.312 (i.e., the number of degrees of freedom is
D = 2.624), Tc/TB = 0.296, and ρc/ρB = 0.333.

Figure 13 shows the graphs of the isotherms Tr = T/Tc at different temperatures. Thin lines depict
isotherms constructed according to the Bose distribution (Bose isotherms) for γ = 0.312. The van der
Waals isotherms are denoted by thick dotted lines on which the corresponding temperatures are given.
The thin lines pass close to the van der Waals isotherms only for Tr = 1. For Tr = 0.75 and Tr = 0.85,
the increase in the number of degrees of freedom for the van der Waals isotherms is marked by the values
of γ on them.

The van der Waals model strictly obeys the Bachinskii rule. Since the value of γ does not change
along the isotherm, it follows that the Bachinskii rule immediately leads to a new spinodal shown by the
thick line passing from the point γ = 0.312 to the point Z = 0.5. This line passes close to the quarter
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Fig. 13. Van der Waals isotherms (thick dotted lines) and Bose–Einstein isotherms (thin solid lines). The thick line is
the spinodal.

of the ellipse. Near the point P = 0, the tangents of the Bose isotherms and those of the van der Waals
isotherms coincide.

Figure 14 shows Bose isotherms with the same tangents and the same ellipse-spinodal as in Fig. 13.

Let us apply the preference principle, i.e., let us increase the value of γ for each temperature until this
value becomes critical for the given temperature. This leads to an almost full agreement with the van der
Waals isotherms; see Fig. 15.

Fig. 14. Van der Waals isotherms (dotted lines) and Bose–Einstein isotherms (solid lines). The thick line is the
spinodal.

Let us pass to the law of preference for the association of clusters before transition to liquid. Recall
that the preference consists in that, at the same temperature Tr < 1 less than Tc, the gas particles tend to
increase the number of degrees of freedom with from the original value γ = γc to the value γ(Tr) critical
for the given Tr.

Recall again that the locus of points at which the transition ‘gas–liquid” occurs is called a binodal.
The locus of points at which the tangent to the isotherm is perpendicular to the axis P on the Z,P
diagram, is called a spinodal.
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Fig. 15. Van der Waals isotherms (dotted lines) and Bose–Einstein isotherms (solid lines). Here the law of preference
for the association into clusters is taken into account. The thick line is the spinodal.

Let γc correspond to the critical isotherm for the given gas, i.e.,

Zc =
PcVc

NcTc
=

ζ(γc + 2)
ζ(γc + 1)

. (4.2)

The point Ttr lying on the binodal and at which three phases: liquid, gas, and solid can simultaneously
exist is called the triple point. Thus, this point is defined on the binodal and, at temperatures below this
point, experimental isotherms are not observed. In the van der Waals model, Ttr = 0.

The isotherm Tr issues from each point P = 0, Z = 1. Let us find the value of γ(Tr) that is critical
for Tr. In this case, Tr = 1 and γ = γ(Tr). In the germ near P = 0, Z = 1, we have the relation
(see Sec. 5):

dP

dZ
=

4C(γ(Tr))2γ(Tr)

ζ(γ(Tr) + 2)
=

4 · 2γcT
(2+γc)
r

ζ(γc + 2)
, Tr =

T

Tc
. (4.3)

For a fixed γ = γ(T ), the equation of the isotherm is of the form

Z =
Liγ+2(a)
Liγ+1(a)

, P = C(γ)
Liγ+2(a)
ζ(γc + 2)

, γ = γ(T ), (4.4)

where a is the activity, ∞ > a ≥ 0, Li(a) is the polylogarithm, and C(γ) is determined from the
coincidence of the relation ⎧⎨⎩ Z = ζ(2+γ)

ζ(1+γ) , P = C(γ) ζ(2+γ)
ζ(2+γc)

;

2 > γ ≥ γc

(4.5)

with the spinodal constructed above. Here C(γ) is uniquely defined.
Indeed, let, for 0 ≤ P ≤ 1, the equation of the quarter ellipse be of the form P = f(Z).
Then

C(γ) = f

(
ζ(γ + 2)
ζ(γ + 1)

)
ζ(γc + 2)
ζ(γ + 2)

.

If γ = γ(Tr), T/Tr = 1, then we finally obtain

C(γ(Tr))2γ(Tr)

ζ(γ(Tr) + 2)
=

2γcT
(2+γc)
r

ζ(γc + 2)
, Tr =

T

Tc
. (4.6)
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Now the relation for γ(T ) takes the form

2γ(T )

ζ2(γ(T ) + 2)
f

(
ζ(γ(T ) + 2)
ζ(γ(T ) + 1)

)
=

2γcT 2+γc

ζ2(γc + 2)
. (4.7)

The final main equations of the “critical” isotherms of the pure gas corresponding to the value Zc (4.2)
are of the form ⎧⎨⎩ Z = Liγ(T )+2(a)

Liγ(T )+1(a) ,

P = Liγ(T )+2(a)T (2+γc)·2(γc−γ(T ))ζ(γ(T )+2)
ζ2(γc+2)

.
(4.8)

For the van der Waals equation corresponding to the ellipse passing through the points (Z = 3/8,
P = 1) and (Z = 1/2, P = 0) the isotherms pass so close to each other (see Fig. 15) that they are
indistinguishable on the graph, in contrast to Fig. 14. As Vorob’ev showed, the divergence with
experimental data for nitrogen is greater if the law of preference stated above is not taken into account.

Since, as Tr → T 0
tr, where T 0

tr is the triple point corresponding to the gas with the given value of
Zc (4.2) the isotherms condense, it follows that, at this point, the derivative of the spinodal with respect
to P on the (P,Z) diagram is zero. Therefore, the quarter of the ellipse terminates not on the line P = 0,
but at the point γ = γtr for the value Ptr (µ → 0) corresponding to this point. This uniquely determines
the elliptic spinodal of the gas branch.

Thus, the agreement with the latest experiments is very good (see Figs. 16 and 17). The vector of
Hougen–Watson isotherms near the point of the old ideal Boltzmann–Maxwell gas is determined by
the isotherm of the Bose–Einstein type distribution, while the famous empirical van der Waals model
corresponds to the distribution for ideal Bose–Einstein gas. The correspondence with the mathematical
statements is thus rigorously proved with mathematical exactitude inherent in number theory.

Fig. 16. The line marked as “Spinodal (0.5, 0.29)” is an ellipse. The thin line over it is the theoretical spinodal. The thin
lines are theoretical isotherms. The lines marked with squares are the latest data for nitrogen drawn by Prof. Vorob’ev.

5. NEGATIVE VALUES OF THE PARAMETER γ AND NEGATIVE PRESSURE

The gas spinodal, which is defined as the geometric locus of the endpoints of isotherms of the new
ideal gas, is formed in the case of maximal entropy at the points where the chemical potential µ is zero.
On the diagram (Z,Pr), the spinodal is therefore the segment Pr ≤ 1, Z = Zc in the case of the van
der Waals normalization Tr = T/Tc, Pr = P/Pc. For Tr ≤ 1, the Bose condensate arises and hence the
quantity N = T γc+1

r ζ(γc + 1) remains constant on the liquid phase isotherm for the liquid phase on the
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Fig. 17. Isotherms shown by thick lines and the corresponding temperatures are taken from [40]. Thin lines depict
theoretical isotherms coinciding with experimental isotherms for nitrogen and corresponding to temperatures T ′

r . The
points on the isotherms denote the end of the experimental isotherms and the transition to liquid. See Sec. 5.

spinodal. This means that the isotherm of the liquid phase corresponding to the temperature T has the
form

Z =
Pr

TrN
=

Pr

T γc+2
r ζ(γc + 1)

. (5.1)

All the isotherms of the liquid phase (including the critical isotherm at Tr = 1) pass through the origin
Z = 0, Pr = 0 and further pass into the negative domain (or into the “second sheet”). The point Z = 0
corresponds to the parameter γ = 0 and hence to the extension of the isotherm for γ < 0 because the
pressure for µ = 0,

Pr = T 2+γ
r

ζ(2 + γ)
ζ(2 + γc)

(5.2)

can be extended for 0 > γ > −1.
Below, we see that as µ/T → o(1/ ln N), the quantity Z is also positive, and the spinodal for

0 > γ > −1 therefore gives the second sheet in the diagram (Z,P ), which it is more convenient to map
into the negative quadrant.

We recall the relation for the Ω-potential:

Ω = −Λγ−γcTr

∑
i

ln
(

Gi

1 − exp µ−εi

Tr
N

1 − exp µ−εi
Tr

)
, (5.3)

where εi = i and Gi = iγ+1.

Lemma. Consider the integral

I = B

ˆ A

0

(
1

ebx−bµ − 1
− k0

ek0(bx−bµ) − 1

)
xγ dx (5.4)

MATHEMATICAL NOTES Vol. 94 No. 5 2013



UNDISTINGUISHING STATISTICS: THERMODYNAMICS AND SUPERFLUIDITY 751

where −1 < γ < 0, B is a constant depending on b, and A is a constant much greater than 1.
Then

I = − B

bγ+1
c
(Ab)
bµ,γ +

Bk−γ
0

bγ+1
c
(k0Ab)
k0bµ,γ , (5.5)

where

c(A)
µ,γ =

ˆ A

0

(
1

ξ − µ
− 1

eξ−µ − 1

)
ξγ dξ. (5.6)

Proof. Note that the value of B does not affect calculations in any way (it appears as a multiplier both
in the original and final relations); therefore, in the proof, we set B = 1.

Let us make the change of variable ξ = bx in the integral (5.4). Then

I =
1

bγ+1

ˆ Ab

0

(
1

eξ−bµ − 1
− k0

ek0(ξ−bµ) − 1

)
ξγ dξ.

Adding and subtracting the summands, we express the integral as the sum of the following three
integrals:

1
bγ+1

ˆ Ab

0

(
1

eξ−bµ − 1
− 1

ξ − bµ

)
ξγ dξ +

1
bγ+1

ˆ Ab

0

(
1

ξ − bµ
− 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ

− k−γ
0

bγ+1

ˆ Ab

0

(
kγ+1

0

ek0(ξ−bµ) − 1
− kγ+1

0

k0(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ. (5.7)

Introducing the notation (5.6), we find that the first integral from (5.7) equals −c
(Ab)
bµ,γ /bγ+1.

In the second integral (5.7), we subtract the fractions and then make the change η = k0ξ, obtaining

1
bγ+1

ˆ Ab

0

(
1

ξ − bµ
− 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ =

1
bγ+1

ˆ Ab

0

1 + k0
2 (ξ − bµ) − 1

(ξ − bµ)(1 + k0
2 (ξ − bµ))

ξγ dξ

=
1

bγ+1

k0

2

ˆ Ab

0

1
(1 + k0

2 (ξ − bµ))
ξγ dξ =

1
bγ+1

(k0)−γ

2

ˆ Abk0

0

1

1 + η−k0bµ
2

ηγ dη =
k−γ

0 c1

bγ+1
,

where we have introduced the notation

c1 =
ˆ ∞

0

1

2(1 + η−k0bµ
2 )

ηγdη.

In the third integral from (5.7), we make the same change η = k0ξ, obtaining

k−γ
0

bγ+1

ˆ Ab

0

(
kγ+1

0

ek0(ξ−bµ) − 1
− kγ+1

0

k0(ξ − bµ)(1 + k0
2 (ξ − bµ))

)
ξγ dξ

=
k−γ

0

bγ+1

ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

(η − k0bµ)(1 + η−k0bµ
2 )

)
ηγ dη

=
k−γ

0

bγ+1

ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

η − k0bµ
+

1

2(1 + η−k0bµ
2 )

)
ηγ dη

=
k−γ

0

bγ+1

(ˆ Abk0

0

(
1

eη−k0bµ − 1
− 1

η − k0bµ

)
ηγ dη +

ˆ Abk0

0

1
2(1 + η−k0bµ

2 )
ηγ dη

)

=
−k−γ

0 c
(Abk0)
k0bµ,γ

bγ+1
+

k−γ
0 c1

bγ+1
.
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Collecting all the expressions together, we find that the sum of the three integrals (5.7) is

− 1
bγ+1

c
(Ab)
bµ,γ +

k−γ
0

bγ+1
c1 +

k−γ
0

bγ+1
c
(Abk0)
k0bµ,γ − k−γ

0

bγ+1
c1 = − 1

bγ+1
c
(Ab)
bµ,γ +

k−γ
0

bγ+1
c
(Abk0)
k0bµ,γ ,

i.e., as a result, the integral c1 cancels out.

We now apply the Euler-Maclaurin formula, take the parameter γ into account, and obtain
n∑

j=1

(
jγ

ebj+κ − 1
− kjγ

ebkj+κ

)
=

1
α

ˆ ∞

0

(
1

ebx+κ − 1
− k

ebkx+κ − 1

)
dxα + R,

where α = γ + 1, k = N and b = 1/T . The remainder R here satisfies the estimate

|R| ≤ 1
α

ˆ ∞

0
|f ′(x)| dxα, where f(x) =

1
ebx+κ − 1

− k

ek(bx+κ) − 1
.

We calculate the derivative and obtain

f ′(x) =
bk2ek(bx+κ)

(ek(bx+κ) − 1)2
− bebx+κ

(ebx+κ − 1)2
, |R| ≤ b−α

α

ˆ ∞

0

∣∣∣∣ k2ek(y+κ)

(ek(y+κ) − 1)2
− ey+κ

(ey+κ − 1)2

∣∣∣∣ dyα.

(5.8)
We also have

ey

(ey − 1)2
=

1
y2

+ ψ(y),

where ψ(y) is smooth and |ψ(y)| ≤ C(1 + |y|)−2. We substitute this formula in (5.8), obtaining

|R| ≤ b−α

α

ˆ ∞

0

∣∣k2ψ
(
k(y + κ)

)
− ψ(y + κ)

∣∣ dyα ≤ k−αb−α

ˆ ∞

kκ

|ψ(y)| dyα +
ˆ ∞

κ

|ψ(y)| dy ≤ Cb−α

where C is a constant. For example, if we have κ ∼ (ln k)−1/4, then |R| satisfies the estimate |R| ∼
O((ln k)(2−α)/4). We therefore have k = Nc and T = Tc, and obtain the formula for the integral at µ = 0:

M =
Λγ−γc

αΓ(γ + 2)

ˆ
ξ dξα

ebξ − 1
=

Λγ−γc

b1+α

ˆ ∞

0

ηdηα

eη − 1
,

where α = γ + 1. Consequently,

b =
1

M1/(1+α)

(
Λγ−γc

αΓ(γ + 2)

ˆ ∞

0

ξ dξα

eξ − 1

)1/(1+α)

.

We obtain (see[22])

NΛγ−γc =
ˆ ∞

0

{
1

ebξ − 1
− k

ekbξ − 1

}
dξα =

1
bα

ˆ ∞

0

(
1

eξ − 1
− 1

ξ

)
dξα + O(b−α)

+
1
bα

ˆ ∞

0

(
1
ξ
− 1

ξ(1 + (k/2)ξ)

)
dξα − k1−α

bα

ˆ ∞

0

{
kα

ekξ − 1
− kα

kξ(1 + (k/2)ξ)

}
dξα

+ O(b−α)

=
c(γ)
bα

(k1−α − 1) + O(b−α).

Setting k = N |µ̃/Tr=o(1), we have

N |µ̃/Tr=o(1) = (Λγ−γcc(γ))1/(1+γ)Tr, where c(γ) =
ˆ ∞

0

(
1
ξ
− 1

eξ − 1

)
ξγ dξ. (5.9)

For P < 0, the Bachinskii relation for ρc is consistent with A(γ)Tr , where

A(γ) = (Λγ−γcc(γ))1/(1+γ) .
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We can normalize the activity a at the point Tc and then find a0 by matching the liquid and gas branches
at Tc for the pressure (i.e., for the quantity M ) such that there is no phase transition on the critical
isotherm at Tr = 1.

We further normalize the activities at Tr < 1 by the value a0 calculated below. Then the chemical
potentials (the thermodynamic Gibbs potentials for the liquid and gas branches in thermodynamics)
coincide, and there is therefore no “gas-liquid” phase transition at Tr = 1.

For γ < 0, the density satisfies the formula

ρ = Λγ−γc

ˆ ∞

0

(
1

eb(x−µ) − 1
− N

eNb(x−µ) − 1

)
xγ dx. (5.10)

Hence, by Lemma 5, we have

ρ = T (Λγ−γcC(γ))1/(1+γ); (5.11)

see Fig. 18.

Fig. 18. The value of C(γ).

The liquid is assumed incompressible (i.e., ρ does not depend on the pressure P , but depends only on
the temperature T ). Thus, we assume that all the isochores pass through the origin (P,Z) = (0, 0).

Let us express the density from Bachinskii’s condition (for Z = 1):

ρ

ρB
+

T

TB
= 1; (5.12)

hence we obtain (
1 − T

TB

)
ρB = T (Λγ−γcC(γ))1/(1+γ). (5.13)

Therefore, we can express T as a function of γ:

T =
ρB

ρB/TB + (Λγ−γcC(γ))1/(1+γ)
. (5.14)

To a temperature T < 1 corresponds two values of γ. Further, we use the least of them (the largest in
absolute value), and denote it by γ̃(T ).

On the spinodal, in the negative region, we have

P = Λγ̃(T )−γcT 2+γ̃(T ) ζ(2 + γ̃(T ))
ζ(2 + γc)

, γ̃(T ) < 0. (5.15)

Let us construct the gas isotherms T < 1 by the preference principle. Since there is no phase transition
on the critical isotherm, we equate the activities a and ã on it.
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Choose Λ = 2.4. Then γ̃(1) = 0.742. Comparing the activities on the gas and liquid isotherms, we
obtain

ã =
1

1.00271
, µ̃ = µ − 0.0027. (5.16)

The phase transitions on the other isotherms is determined by the difference of a and ã.
For the chosen value of Λ, we obtain a good agreement at the triple point. Namely, for the isotherm

T = 0.501 corresponding to the triple point for nitrogen, we have γ̃(0.50) = 0.742. The pressure on
the gas isotherm at the triple point is 0.0037. The pressure on the liquid isotherm at the triple point is
0.00376.

If, for each of the temperatures T the least (in absolute value) γ (and, accordingly, the least (in
absolute value) pressure on the negative spinodal) is taken, then, comparing the activities on the critical
isotherm, we obtain ã > a. The pressure P on the gas isotherm for a = 1 is the critical pressure P = 1,
while, on the liquid isotherm for ã = 1, we obtain P = 0.90 < 1.

Therefore, we use only the lower branch in Fig. 19 shown by the solid line.

Fig. 19. Spinodal on the (P, T ) diagram in the negative quadrant. On the vertical axis, the absolute value of pressure
is plotted.

Taking into account the correction (5.16) and the fact that µ and µ̃ are identical, we obtain the binodal
point shown in Fig. 20 and, carrying out the same procedure for the other isotherms, we draw the binodal,
shown in Fig. 21, through these points.

Remark 3. The critical values Tc, Pc, and ρc were obtained experimentally for almost all gases in
thermodynamics, and the critical number of degrees of freedom can, therefore, be given beforehand.
The parameter Λ (1.6 < Λ < 3, Tr > 1/3) is determined by the condition that the binodal coincides at
the triple point obtained experimentally.

Now we consider the problem of holes in the Bose condensate.
Molecules of an ideal gas can be regarded as tiny balls. We regard holes or excitons in glass as

spherical but empty (without any matter) molecules. Obviously, if such balls are chaotically mixed in
glass, then chaos also increases in the glass, and this means that the entropy also increases in the
presence of holes. Therefore, to attain maximum entropy, more holes must be “mixed” into the glass. In
our approach, holes appear for γ < 0.

We ignore attraction in the model of an ideal liquid, and this means that a liquid can be “expanded”
without any resistance to produce holes (just as sand is incompressible when pressure is applied, but
can still be easily “expanded”; cf. the appendix in [41]).

If there is no attraction, then there is also no negative pressure under “expansion,” and hence there are
no holes. If γ < 0, then the plane (Z,P ) is again positive and is therefore covered by another sheet. It is
easy to see that the straight lines arriving at the point Z = 0, P = 0 (i.e., at the point γ = 0) are reflected
from this second sheet in the reverse direction along the same line. This means that it is geometrically
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Fig. 20. Theoretical points on the binodal for T = 0.85 and T = 0.95.

Fig. 21. The theoretical binodal is shown by the thin line passing through four points.

convenient to arrange reflection of the vectors from the second sheet by using the matrix −I, where I is
a two-dimensional unit matrix, i.e., to mirror the sheet γ < 0 into the negative quadrant.

We note that this procedure corresponds to the concept of Dirac holes, but, conversely, the holes are
associated with negative pressure, i.e., with negative energy. The straight lines now pass through the
origin into the negative quadrant, although the pressure does not actually change sign. This is only a
convenient geometric “uniformization.”

We also note that an ideal liquid is completely plastic because there is no attraction, namely, the liquid
does not attempt to return to the original (pre-expansion) state. In this sense, the Bose condensate for
γ < 0, which leads to this “form” of liquid, can also be visualized as glass or as an amorphous substance.
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Fig. 22. The dotted line shows the binodal given in [40]. The grey solid line corresponds to the theoretical binodal.
Thin lines depict the theoretical isotherms, coinciding with the experimental isotherms for nitrogen. They correspond
to lines 1’, 2’, 3’ and 4’ and, accordingly, to the temperatures denoted by T ′

r .

Remark 4. As mentioned above, we started to revise thermodynamics when studying the process in
economics in which money bills can be treated as particles according to the correspondence principle
derived by Irving Fisher. Fisher himself did not call his observation the correspondence principle, but he
was a disciple of Gibbs, and his relation of the main law in economics

PQ = Mv, (5.17)

where Q is the volume of goods, M is the amount of money, v is the turnover rate, and P is the price of
goods, is therefore obviously related to the correspondence between the economic and thermodynamic
quantities: the volume of goods Q corresponds to the volume V , the amount of money M corresponds to
the number of particles N , and the turnover rate v corresponds to the temperature T . The price of goods
P is not so closely related to pressure, but is still denoted by the same letter.

This correspondence principle naturally associates holes with debts, and the repayment of debts with
annihilation.

As previously noted, the geometric locus of points where the chemical potential is zero is the set of
points of maximal entropy, which we call the “new spinodal.” In economics, this new spinodal means a
certain debt limit.

The above relations can thus be used to obtain a two-sheeted covering of the plane {Z,P} for
γ ≥ 0 and −1 ≤ γ < 0. The meaning of the second sheet is that the chaotic state of the liquid (as a
phenomenon related to the Bose condensate) is enhanced with an increasing number of Frenkel exciton-
type holes for−1 ≤ γ < 0, and the holes are located in the liquid, which is fluctuationally concentrated on
a rather slowly evolving domain (from the standpoint of the instrument discussed above), where chaotic
nanoholes appear, i.e., the structure of the liquid is chaotically expanded [42].

These hole-excitons, just as particles, cannot be labeled by our instrument, and we can only speak
about the density of holes. It is more convenient to place this second sheet in the quadrant [−Z,−P ],
continuing straight lines (5.1) beyond the singular point Z = 0, P = 0 into the negative quadrant. In
other words, reflection can be performed using the matrix −I, where I is the unit matrix.
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It thus turns out that it is convenient to introduce “negative pressure,” although the attraction
between the particles is neglected, and hence no negative pressure can be there. The pressure, just
as the temperature, is usually assumed to be positive. When we expand a liquid, it plastically solidifies
in its expanded state and does not try to compress back to its previous state.

It is therefore clearer and geometrically more convenient to speak about “negative pressure,”
although this pressure is in fact related to the presence of holes in the Bose condensate. The new
spinodal treated as the set of points where the entropy of the liquid attains its maximum at a given
temperature can be obtained experimentally by equilibrium expansion of the liquid. The expansion of a
plastic structure is not usually called negative pressure, but it is convenient in our case, as already noted,
just as in Dirac’s hole theory, to consider negative energy (i.e., pressure) instead of holes, although, as is
seen, in contrast to the Dirac equation, the “negative energy” in any substance does not approach −∞,
but is bounded in absolute value. In this sense, we can move the energy origin as is usually done in the
theory of semidefinite operators. But if the potential at infinity is equal to a constant, then this constant
is usually taken as the energy origin (e.g., for the Lennard-Jones potential). In the van der Waals theory,
negative pressure can approach infinity, but this is not admissible from the physical standpoint.

Here, neglecting the attraction is just as “legitimate” as in the theory of the “vapor-liquid” equilib-
rium, where the condition that the pressures are equal is possible only if the surface tension is neglected.

This also explains the smooth transition (without a first-order phase discontinuity) of this structure
into ice, which means that the solidified glass is being crystallized.

6. CRITICAL INDICES

In passing from quantum mechanics to classical theory, we have seen that quantum mechanics,
which is apparently unrelated to classical gas theory, unexpectedly furnishes the missing important term
corresponding to superfluidity in classical physics. As to the passage with viscosity tending to zero, we
have already used this asymptotics in Sec. 3. It would be strange if the consideration of viscosity and
the subsequent passage to the limit with viscosity tending to zero as the number of particles N → ∞
were of no importance at the critical point. As pointed out above, at this point, the main feature of
thermodynamics, the relative smallness of fluctuations, is violated.

Before passing to a new conjecture, the scaling conjecture, we need to use “semiclassical” asymp-
totics and its “catastrophes” (the term used by Arnold). From the mathematical point of view, the
consideration of viscosity and the passage to viscosity tending to zero is completely similar to the
passage from quantum mechanics to classical mechanics in the regions of shadow, of the tunnel effect,
and in Euclidean field theory, where instantons, etc., are used.

The pure imaginary Planck parameter � is considered and, in this case, quantization using the
Feynman path integral is carried out in the famous paper [43] of Feynman and Hibbs. In mathematics,
this was carried out much earlier by Wiener. Therefore, we shall call this quantization Wiener
quantization, and the pure imaginary quantity � will be called viscosity.

The critical point Tc is such that, for T < Tc, the jump from the gas region to the liquid region
occurs. Usually, it is assumed to be a jump of θ-function type. However, from Fig. 1, it is seen that
the experimental curve of such a transition is an inclined line. In addition, this curve can be determined
from Maxwell’s “area rule.” This resembles the Riemann wave and Riemann’a area rule for shock waves.

So long as we do not pass to isotherms of Bose distribution type, the value of the chemical potential
is determines up to an additive constant as in the old thermodynamics. But now the point µ = 0 is the
point on the spinodal at which the point P = Pc on the critical isotherm is critical.

Here it is useful to apply the notion called “Lagrangian manifold” introduced by the author [44]. In
our simplest case, this manifold is a Lagrangian surface in 4-dimensional phase space T, S, µ,N , where
the temperature T and the chemical potential µ play the role of coordinates and entropy S, while the
number of particles N plays the role of momenta. The spinodal (an ellipse) plays the role of turning
points and its extreme point (focus) is that of stronger degeneracy.

Remark 5. The passage to the preference principle makes each point of the spinodal a focus of second
order of degeneracy. Thus, on each isotherm, we obtain an analog of the transition to a “shock wave,”
but, with the exception of the critical point, the other points of the spinodal cannot be reached so far.
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The quantization by the tunnel canonical operator is performed in the same way as that of the
canonical operator in quantum mechanics. This method yields uniform asymptotics near the focal
points.

Quantizing a Lagrangian manifold geometrically (see Sec. 11.4 in [45]) is usually related to
introducing the constant �. We called the case where the number � is pure imaginary “Wiener” (or
“tunnel”) “quantization” in [46].

We apply Wiener quantization to thermodynamics. The thermodynamic potential G = µN is the
action S =

´
p dq on a two-dimensional Lagrangian manifold Λ2 in the four-dimensional phase space

q1, q2, p1, p2, where q1 and q2 are the pressure P and temperature T and p1 and p2 are the volume V and
the entropy S with the opposite sign. All the other potentials (the inner energy E, free energy F ,and
enthalpy W are the results of projecting the Lagrangian manifold onto the coordinate planes p1, p2:

E = −
ˆ

�q d�p, �q = {q1, q2}, �p = {p1, p2},

W = −
ˆ

(q2 dp2 + q1 dp1), F =
ˆ

(q1 dp1 − q2 dp2). (6.1)

For the Wiener quantization, we have

N = ε
∂

∂µ
, V = ε

∂

∂p
, S = −ε

∂

∂T
.

The role of the time t in the quantization is therefore played by ln(−µ/T ):

G = µN ∼ ε
µ

T

∂

∂(µ/T )
= ε

∂

∂ ln(µ/T )
.

We note that tunnel quantization of the van der Waals equation implies the Maxwell rule as ε → 0
(see below).

As is seen below, the critical point and the spinodal points are focal points, and so they do not become
“classics,” i.e., the van der Waals model, as ε → 0. Before the application of the preference principle,
the spinodal points, just as the turning points in quantum mechanics, are approximated by the Airy
function, and the critical point, i.e., the point where two turning points (two Airy functions) arise, is
approximated by the Weber function (see [47]). It is precisely the Weber function in terms of which the
point of the shock wave origination as ε → 0 is expressed in the Burgers equation. If the transition as
ε → 0 occurs outside these points, then the van der Waals–Maxwell model is obtained. But there is no
passage to the limit at these points, and the so-called Landau “classical” critical exponents [16] strongly
differ from their experimental values. The Weber function implies singularities of the form ε−1/4, and the
Airy function implies singularities of the form ε−1/6. After the application of the preference principle, the
singularity is of the form ε−1/4.

We now consider the Burgers equation in more detail. We consider the heat equation

∂u

∂t
=

ε

2
∂2u

∂x2
, x ∈ R, t ≥ 0, (6.2)

where ε > 0 is a small parameter.

It is well known that all linear combinations

u = λ1u1 + λ2u2 (6.3)

of the solutions u1 and u2 of Eq. (6.2) are solutions of this equation. We replace u = exp(−w(x, t)/ε)
and obtain the nonlinear equation

∂w

∂t
+

1
2

(
∂w

∂x

)2

− ε

2
∂2w

∂x2
= 0, (6.4)
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which is called the integrated Burgers equation9. It is obvious that any solution ui of Eq. (6.2) is
associated with the solution wi = −ε ln ui, i = 1, 2 of Eq. (6.4). Solution (6.3) of Eq. (6.2) corresponds
to the solution (6.4)

w = −ε ln
(

exp
(
−w1 + µ1

ε

)
+ exp

(
−w2 + µ2

ε

))
,

where µi = −ε ln λi, (i = 1.2). Because

lim
ε→0

w = min(w1, w2),

we obtain the (min,+) algebra of tropical mathematics [30].
To determine the solutions for t > tc, Hopf proposed considering the Burgers equation

∂v

∂t
+ v

∂v

∂x
− ε

2
∂2v

∂x2
= 0, v|t=0 = p0(x), (6.5)

and calling the function pgen = limε→0 v (the Riemann waves) the (generalized) solution of the equation

∂p

∂t
+ p

∂p

∂x
= 0, p|t=0 = p0(x). (6.6)

The solution v of the Burgers equation is expressed via the logarithmic derivative

v = −ε
∂

∂x
lnu (6.7)

of the solution u of the heat equation

∂u

∂t
=

ε

2
∂2u

∂x2
, u|t=0 = exp

{
− 1

ε

ˆ x

−∞
p0(x) dx

}
. (6.8)

The original problem thus reduces to studying the logarithmic limit of the solution of the heat
equation. It is known that the solution of problem (6.8) has the form

u = (2πεt)−1/2

ˆ ∞

−∞
exp
{
−
(

(x − ξ)2 + 2t
ˆ ξ

−∞
p0(ξ) dξ

)/
2th
}

dξ. (6.9)

The asymptotic behavior of integral (6.9) can be calculated by the Laplace method. We obtain

u =
(
|J |−1/2(ξ(x, t), t) + O(ε)

)
exp
{
− 1

ε
S(x, t)

}
(6.10)

for t < tc.
Here

S(x, t) =
ˆ r(t)

−∞
p dx,

and the integral can be calculated along the Lagrangian curve Λt, and r(x) is a point on Λt. For t > tcr,
there are three points r1(x), r2(x), and r3(x) on Λt, whose projections on the axis x coincide or, in other
words, the equation Q(t, ξ) = x has three solutions ξ1(x, t), ξ2(x, t), ξ3(x, t) for x ∈ (x1, x2). We let

S(x, t) =
ˆ r(x)

−∞
p dx for x < x1, x > x2

and

S(x, t) = min(S1, S2, S3), Sj =
ˆ rj(x)

−∞
p dx, where j = 1, 2, 3 for x ∈ [x1, x2].

9The usual Burgers equation is derived from (6.4) by differentiating with respect to x and replacing v = ∂w/∂x.
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These arguments allow obtaining a generalized discontinuous solution of problem (6.6) for times
t > tc. It is determined by the function p = p(x, t) defining the essential domains of the curve Λt [46].
We note that this in particular implies the equal area rule often used in hydrodynamics for determining the
shock wave front whose evolution is described by Eq. (6.6). We also note that this exactly corresponds
to the Maxwell rule for the van der Waals equation.

The solution v = v(x, ε) of the Burgers equation at the critical point x = p3 is calculated by the
formula

v(x, ε) = ε
∂ ln u(x)

∂x
=

´∞
0 exp{−xξ−ξ4/4

ε }ξ dξ´∞
0 exp{−xξ−ξ4/4

ε }dξ
. (6.11)

As x → 0, we replace ξ/ 4
√

ε = η and obtain

v(ε, x) →x→0
4
√

ε · const. (6.12)

What does this mean from the classical and classical measurement standpoints when the condition
called the “semiclassical condition” in [48] is satisfied (and this means that we are outside the focal
point)? For the Laplace transformation, this means that we are in a domain where the Laplace
asymptotic method is applicable, i.e., where

u(x) =
1√
ε

ˆ ∞

0
e−

px−eS(p)
ε dp. (6.13)

If the solution of the relation

x =
∂S̃

∂p
(6.14)

is nondegenerate, i.e.,

∂2S̃

∂p2
�= 0 at the point

∂S̃

∂p
= x,

then the integral (6.13) is bounded as ε → 0 in this case. For this integral to have a zero of the order of
ε1/4, we must integrate it over x using the fractional derivative D−1/4. The value of D−1/4 applied to 1
gives approximately x1/4.

It follows form the uncertainty principle [52] that the correspondence between the differential operator
and a small parameter of the form D → 1/ε is preserved for the ratio −ε∂u/∂x

u , although the leading term

of the asymptotic expansion in the difference ∂2u/∂x2

u between (∂u/∂x)2

u2 cancels.
As we approach the critical point, the multiplicity of scattering of photons at fluctuations increases.

Optical instruments do not possess the necessary resolving power and, therefore, it is impossible to study
spectra by using them. However, the difference between the frequencies of the incident and scattered
waves is contained the range of radio frequencies. The Fourier transform of the scattered spectrum
(beats) is taken (see [53, 126]). In all other experiments, the Fourier transformation is also applied.
Therefore, the asymptotics with respect to the small viscosity in the vicinity of the critical point becomes,
as the result of the Fourier transforms, the shift in the critical index.

Such a spread in a small parameter mathematically blurs the asymptotic pattern and, despite the
fact that, mathematically, this coincides exactly with the occurrence of a shock wave, such a spread, to
my knowledge, has never been used. Maybe, in times of Riemann, when the Hopf relationship between
the heat equation and the Burgers equation was not known, an attempt to develop a theoretic approach
along these lines could have been made. One of the physicists had a strong objection to the use of
viscosity in equilibrium thermodynamics. But, as was already stated, the critical point is incompatible
with the notion of equilibrium thermodynamics, at least, because of huge fluctuations occurring in it.
This does not mean at all that we must exclude its neighborhood from consideration.

In view of the preference principle, a function similar to the Weber function (which was discussed
above) appears on the whole spinodal and is the source generating the two-phase state “saturated
vapor–liquid.” However, experiments do not reach the spinodal, except for the critical point and,
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therefore, we actually observe this pattern of passage from the Weber function to the step θ-function
only on the critical isotherm. The author considers it more expedient to consider not the jumps of the
critical indices, but the exact asymptotics of tunnel canonical operator type depending on small viscosity,
in particular, on the Weber function. This is a natural approach, because, using the Wiener quantization
of equilibrium thermodynamics, we can obtain important corrections to it, at least, in the direction of
increasing viscosity and the passage to nonequilibrium thermodynamics.

Remark 6. We can pass to the following correction terms with a view to decrease the number of particles
(mesoscopic physics) only for dimensions greater than 4. For example, for photons, we can obtain the
following correction to the Stefan–Boltzmann formula (see [6], [7]):

F = −4δ
3c

T 4V − 12�δ

k
· ζ(3)
ζ(4)

T 3V 2/3, (6.15)

where F is the free energy,

δ =
π2k4

60�3c2

is the Stefan–Boltzmann constant, V is the volume, c is the speed of light, � is the Planck constant, k
is the Boltzmann constant, and T is the temperature.

7. TRANSITION TO A POSITIVE CHEMICAL POTENTIAL IN THE SUPERCRITICAL
REGION

As we have seen, the value of the dimension D at a critical point largely determines the distribution
that the corresponding relaxation process obeys.

The paradox of our approach is that it is exactly at the critical point that our main axiom (concerning
fluctuations), on which the distribution is based, breaks down. It is precisely in the neighborhood of
the critical point that the fluctuations are so large that they no longer obey that axiom: they can be
considerably greater than

√
N . This implies that we should avoid the neighborhood of the critical point.

There a kind of “phase transition” occurs at the point µ = 0 [49]– [51]. The Bose–Einstein distribution,
as well as the parastatistical distribution, take place outside some neighborhood of the point µ = 0, and
this allows us to avoid it.

According to the Large Encyclopedic Dictionary of the Russian Language (T. E. Efremova, Editor),
fluctuations are random deviations of a physical quantity from its average value. The average observation
depends on the interval of time during which the observation is made. If this interval is sufficiently large
(because the observer must wait for the system to reach equilibrium), the fluctuation can “live” for a
fairly long time, and for the observer it will remain a fluctuation. Further, when the life span of the object
that we regarded as a fluctuation will be of the order of the observation time, then this object can no
longer be considered to be a fluctuation.

Let us note first of all that there are domains where fluctuations and clusters are essentially the same
things. And if we consider clusters consisting of Kc = 200 particles or less, then from the parastatistical
formula we can find admissible fluctuations.

Thus, at the critical point, besides the restriction on the number of degrees of freedom, we establish
an upper bound on the number K, the number of particles at any energy level. This leads to a version of
UD statistics which is called parastatistics or Gentile statistics [18] (see Fig. 23).

For each value of γc, γc, T , we can choose a number K(T ) that allows the critical isochore to reach
the Zeno line at the point determined by the Bachinskii rule.

In the case of negative µ, we can use the following parastatistical formulas for pressure and density
(where b = 1/T , γ = D/2 − 1).

P = T γ+2C(Liγ+2(ebµ) − 1
(K + 1)γ+1

Liγ+2(ebµ(K+1)))

=
T γ+2C

Γ(γ + 2)

ˆ ∞

0
(

1
ex−bµ − 1

− K + 1
e(K+1)(x−bµ) − 1

)xγ+1dx, (7.1)
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Fig. 23. Isotherms for γ = 0.312 coincide with the van der Waals isotherms for µ ≤ 0. The Solid lines are van der
Waals isotherms and the dotted lines are the parastatistical isotherms corresponding to different values of K.

ρ = T γ+1C(Liγ+1(ebµ) − 1
(K + 1)γ

Liγ+1(ebµ(K+1)))

=
T γ+1C

Γ(γ + 1)

ˆ ∞

0
(

1
ex−bµ − 1

− K + 1
e(K+1)(x−bµ) − 1

)xγdx. (7.2)

For the constant C we can take

C =
Λγ−γ0

ζ(γ + 2)
, (7.3)

where the constant Λ is determined by the value of the triple point when constructing the binodal.
For the compressibility factor we have

Z =
P

ρT
=

Liγ+2(ebµ) − 1
(K+1)γ+1 Liγ+2(ebµ(K+1))

Liγ+1(ebµ) − 1
(K+1)γ Liγ+1(ebµ(K+1))

(7.4)

When µ = 0, we obtain

P = T γ+2Cζ(γ + 2)(1 − 1
(K + 1)γ+1

) = T γ+2(1 − 1
(K + 1)γ+1

), (7.5)

ρ = T γ+1Cζ(γ + 1)(1 − 1
(K + 1)γ

) = T γ+1 ζ(γ + 1)
ζ(γ + 2)

(1 − 1
(K + 1)γ

), (7.6)

Z =
ζ(γ + 2)(1 − 1

(K+1)γ+1 )

ζ(γ + 1)(1 − 1
(K+1)γ )

. (7.7)

In parastatistics, the critical point is obtained for K = ∞. Approaching this point from the
supercritical side, we assume K = R. For example, if R = 100, we consider an almost critical isotherm,
denoting it by T̃c. For γ = 0.222, for this isotherm, we obtain Z|µ=0 = 0.45 and P |µ=0 = 0.996.

Reducing to T̃c: Tr = T/T̃c and imposing the following condition on K(Tr, γ), we write

ρ(γ)
c =

N
(γ)
c

V
= C(γ)ζ(1 + γ) = T 1+γ

r C(γ)
[
1 −
(

1
1 + K

)γ]
ζ(1 + γ). (7.8)

This condition yields K(Tr, γ) for µ = 0 (see (7.9)).
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Fig. 24. Pressure on the Zeno line. The reduced temperature Tr is plotted along the ordinate.

As a result, we obtain the dependence K(Tr), which, for µ = 0, is given by the formula

T

Tcell
= (1 − (K + 1)−γ)−1/(γ+1), γ = γc, (7.9)

where Tcell is the temperature, less than Tc, at which contour cells appear (see [3], [10], and others).
The temperature Tcell, is, probably, related to the Frenkel line dividing “soft” and “stiff” liquids. For an
experimental criterion for this line, one can use, in particular, the observation of the disappearance of the
positive dispersion of acoustic waves in liquid [49], [55]–[58].

These contour cells are preserved in passing through the critical point. They are bounded above by
some number determined for each pure gas. This model is, in principle, close to that of the above-
mentioned authors, because monomers pass through the cellular structure of the contours without
collisions and viscosity. This model serves as a two-phase model “gas–liquid” in the papers [3], [10].
In the present paper, supercritical fluid is described by a similar model.

On other isotherms, both Tcell and γ(T ) are determined from the Bachinskii condition for Z = 1.

Fig. 25. Theoretical critical isotherm for methane.

The value of K(T ) may be determined from the critical isochore for µ = 0 (see (7.9)).
From the point of view of economics, this critical isochore is a curve on the (Z,P )-plane for the

nominal interest equal to zero. Hence we can determine the value K(T ) in economics only approximately
(see Fig. 27).

Let us derive formulas for the value of µ from the interval 0 ≤ µ ≤ 1/K. 0 ≤ µ ≤ 1/K(Tc). This
interval of thermodynamics is not equilibrium and it should be “sewn” onto equilibrium thermodynamics
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Fig. 26. Experimental isotherm for methane, propane, CO2, and other gases; they are depicted by different symbols.

Fig. 27. Three families of isotherms for the initial values Kc = 98.7, Kc = 191, Kc = 514 for µ ≤ 0.

for µ ≥ 1/K(Tc). In this case, the free parameter appearing in the potential Ω should be taken as

CΛγ−γ0

(K(Tc) + 1)ζ(2 + γ)
. (7.10)

For 0 ≤ µK(Tc) ≤ 1, we can sew together these two distributions by taking the free parameter as

CΛγ−γ0

(K(Tc) + 1)µK(Tc)ζ(2 + γ)
µK(Tc) ≤ 1.

For µ = 1/K(Tc), the free parameter coincides with (7.10).

In thermodynamics, we need not leave out this interval of µ (0 ≤ µ ≤ 1/K(Tc)), but can

MATHEMATICAL NOTES Vol. 94 No. 5 2013



UNDISTINGUISHING STATISTICS: THERMODYNAMICS AND SUPERFLUIDITY 765

determine the constant C(γ,K) on the Zeno line from Bachinskii’s condition on the whole
interval 0 ≤ P ≤ ρBTB/2 (see (3.11)).

Fig. 28. Theoretic isotherms of methane with decreasing parameter Tr ≤ 1.

Let us consider the economic analogy. In the case of economics, it is necessary to leave ot the interval
indicated above, because, in economics, there is no condition of Bachinskii type (although the Zeno line
corresponds to the GDP; see [59]).

As the authors of [59] have already indicated, to the chemical potential corresponds, in economics,
minus the nominal credit rate. The nominal credit rate in Islamic countries equals zero: Islam forbids
any gains from lending money. Situations in which the nominal credit rate is negative are very rare. An
example is the situation when one has to pay the bank for storing your money, for instance for renting a
box in the bank’s safe. The amount of money lying in such boxes is not necessarily known to the bank,
but the understanding that there is money in those boxes may influence the financial policy of the bank.

As another example of a negative nominal credit rate, we can consider a fairly reasonable way of
calculating the purchasing power of very poor population (which is, so to speak, in a Bose condensate)
if we accept Irving Fisher’s point of view and agree that the turnover rate of money corresponds to
temperature and energy in thermodynamics.

The giving of credit (lending money) for buying real estate or other goods in order to begin farming and
have a regular monthly income could be a reasonable measure for raising the enthusiasm of agricultural
workers and increasing their purchasing power. But if the farmer is unable to return his debt in time
(within the duration of the loan), this can be regarded as a crime, and the farmer can be punished, e.g.
some soft form of compulsory labor.

If there are repulsive interactions between the particles of gas, then the potential in the case of the
most general Hamiltonian [60] leads to a model of cell-like structure for the “normal” supercritical liquid-
fluid through which monomers pass in a superfluid way. But despite the very general character of the
Hamiltonian considered in [60], this model cannot be used for ideal noninteracting objects. The general
Hamiltonian considered below in Sec. 10 possibly allows to construct the interaction between subjects
of society, where small businesses will move in a superfluid way among the “cells” of big business. The
less will this depend on the interactions and the more it will depend on uniting the two statistics, the
more feasible will such a scenario be.

In Sec. 10, it will be shown that, in the case of interactions, a two-liquid fluid consisting of superfluid
monomers and cell-like clusters appears.
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8. DERIVATION OF VLASOV’S EQUATION FROM UD STATISTICS

There are two aspects of the many-body problem. The bodies can be in arbitrary motion in our
three-dimensional space, interacting and sometimes colliding with one another. All this occurs in
three-dimensional space. But we can treat this phenomenon differently. Namely, we can consider
these N bodies (regarded as N material points) as one point in 3N-dimensional space. And in this
3N-dimensional space, this single point is in a motion that we can observe. Depending on the case
considered, it turns out that one of these two approaches can be used. Thus, from the mathematical
point of view, it is simpler to consider one point in space, while, from the physical point of view, it is of
interest to know how these material points behave in the three-dimensional space in which we, in fact,
live. This will constitute a more realistic “picture”. For example, we can follow the motion in three-
dimensional space of one particle which is in the field of all other particles. In that theory, we assume
that all particles are approximately identical and have identical distributions. We can assume that one
particle interacts with another one. And that other particle is actually the same one, i.e., it is distributed
exactly like the first one.

From the mathematical point of view, it is important to have not an intuitive equation, but rather the
exact equation in three-dimensional space that corresponds to the equation of motion of a particle in
3N-dimensional space.

It turns out that this can be done by using the method of second quantization. In other words, we
consider the behavior in three-dimensional space of operators, not functions, namely, of creation and
annihilation operators. This was first done by Dirac in quantum mechanics. However, it is really not
necessary to invoke the ideas of quantum mechanics. Thus, Schoenberg (approximately in 1953–1956)
considered classical mechanics and applied the method of second quantization to classical objects and
to classical statistical physics.

In fact, in the mathematics literature, he first used the notion that we call UD statistics, i.e., statistics
for distinguishable objects regarded as indistiguishable, for the classical Hamiltonian. It so happened
that physicists did not take any note of these papers. They are really hard to understand from the physical
point of view: The particles in the Newton multiparticle system are considered indistiguishable, so
that the system does not change under the interchange of two particles. Nevertheless, the present-
day derivation of the Vlasov equation can be obtained by using the method of second quantization for
classical particles.

Using this method as N → ∞, we obtain the system [61]

u̇(p, q, t) =
(

∂U

∂q

∂

∂p
− p

∂

∂q

)
u(p, q, t)

+
ˆ

dp′ dq′ v(p′, q′, t)
(

∂V (q, q′)
∂q

∂

∂p
+

∂V (q, q′)
∂q′

∂

∂p′

)
u(p′, q′, t)u(p, q, t),

v̇(p, q, t) =
(

∂U

∂q

∂

∂p
− p

∂

∂q

)
v(p, q, t)

+
ˆ

dp′ dq′ u(p′, q′, t)
(

∂V (q, q′)
∂q

∂

∂p
+

∂V (q, q′)
∂q′

∂

∂p′

)
v(p′, q′, t)v(p, q, t), (8.1)

where U(qi) is the external field and V (qi, qj) is the pair interaction.

If we replace u and v by the creation and annihilation operators û and v̂, respectively, in Fock space,
then system (8.1) will be equivalent to the N-particle problem for the Newton system. Namely, the
projection from the Fock space to the 3N-dimensional space of N particles will, indeed, give the system
of Newton equations. This implies that, “in the framework of the operator approach, the equation for the
characteristics for these equations is the Vlasov equation” [62, 10]. This approach allows us to obtain
corrections to the Vlasov equation and to the expansion of N-particle Newton equations in powers of
1/N .

Note that, by substituting

u(p, q, t) =
√

ρ(p, q, t)eiπ(p,q,t), v(p, q, t) =
√

ρ(p, q, t)e−iπ(p,q,t) (8.2)
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system (8.1)) can be reduced to the form

ρ̇(p, q, t) =
(

∂W t

∂q

∂

∂p
− p

∂

∂q

)
ρ(p, q, t), (8.3)

π̇(p, q, t) =
(

∂W t

∂q

∂

∂p
− p

∂

∂q

)
π(p, q, t) +

ˆ
dp′ dq′

∂V (q, q′)
∂q′

∂π(p′, q′, t)
∂p′

ρ(p′, q′, t); (8.4)

here

W t(q) = U(q) +
ˆ

dq′V (q, q′)ρ(p′, q′, t) dp′ dq′.

The first equation (8.3) of the above system is the Vlasov equation [63], where ρ is the distribution
function used in physics for the study of many-particle systems; the second, new, equation (8.4) is linear
in the function π(p, q, t). The functions u and v are called semidensities and π(p, q, t),the phase. Semi-
density plays an important role in the semiclassical approximation of the wave function in quantum
mechanics. The phase π(p, q, t) plays an important role when the potential V (x − y) has a singularity
and the solution has a vortex line. Then, the conditions for the existence of a unique value of eiπ

yield conditions for the quantization of π(p, q, t), i.e., for the quantization of vortices arising in classical
problems.

Since the equation for π(p, q, t) is linear, we can divide π by any constant. It follows from dimension
considerations that π(p, q, t) must be divided by the Planck constant �. Thus, � is injected into a
purely classical problem. The quantization of the vortices of dimers of the gas argon can be verified
experimentally by short-wave irradiation of the gas and the presence of resonance absorption.

Traditionally, classical physics is considered “historically,” i.e., up to a certain point in history. In
point of fact, we must revise classical physics from the point of view of the classical limit of quantum
mechanics. Under such an approach, new important objects (notions) may arise in classical physics.
Thus, the notion of polarization in optics is regarded as a derivation from wave optics. However, this
notion is preserved in the short-wave limit. Therefore, it is natural to consider polarization within the
framework of geometric optics.

Objects appearing in quantum mechanics in the semiclassical limit and not previously known in
classical mechanics are particularly important, because they often change fixed notions in this firmly
established science. We have obtained the new equation (8.4) in addition to Vlasov’s equation. In what
follows, we shall obtain a most important complement to Vlasov’s equation of collective oscillations,
which is preserved in the semiclassical limit, i.e., for classical particles.

9. REPRESENTATION BY THE SEQUENCE OF NATURAL NUMBERS

Consider the following natural conditions:∑
Ni =

∑
Gin̄i = N,∑

εiNi = εiGin̄i = E. (9.1)

These conditions for the number of particles N and the energy E are, a particular case of Diophantine
equations (1.1) in number theory.

Physicists can easily interpret the numbers Gi in the way explained in Sec. 40 of the book [16] of
Landau and Lifshits. It is simpler for mathematicians to call Gi the multiplicity of the eigenvalue εi

(physicists use the term “degeneracy”). This is a particular case of the general pattern to which the
physicists are more accustomed. However, this particular case is, at the same time, also a general
one, because mathematical formulas do not vary in passing from the general pattern to the standard
representation of the multiplicity of eigenvalues and can be uniquely carried over to the pointillistic
pattern depicted in [16].

Note that, after passing to integral form [16], it is natural to use the measure dε, where ε is energy,
considering, as a preliminary, the “phase space element”

dpx dpy dpz dV,
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which is a more habitual term for physicists (px, py, pz are the momenta and V is the volume).

In the present section, we use the measure dε in the original formulas. If we pass from the integral
over dε to the Riemann integral sum ∆εi, then we approach expression (1.1) of number theory, for which
the remarkable theory due to Ramanujan, Harley, and Erdös was developed in a rigorous way; however,
it can be said that this theory was not derived from any rational source: Ramanujan declared that the
goddess Radha revealed the formula to him while he was asleep.

By the symbol εi physicists mean the energy levels of the self-adjoint operator A(Ĥ) of the Hamilto-
nian in the Hilbert space L2(R3). According to the Mathematical Encyclopedic Dictionary [64] (see
item “Spectral Analysis”) and the Mathematical Encyclopedia [17] (see item “Self-Adjoint Operator”)
the following equality is valid:

A =
ˆ ∞

−∞
λdE(λ),

where E(λ) is a partition of unity, i.e., a family of projection operators satisfying the spectral conditions.
In the discrete case,

E(λ) =
∑
λk<λ

Ek, A =
∞∑

k=1

λkEk.

If the spectral measure is absolutely continuous, then

A =
ˆ ∞

−∞
λ

dE(λ)
dλ

dλ. (9.2)

It is this case that we shall consider, passing to the Riemann integral sum dλ = ∆λi, i = 1, 2, . . . , n.

Let us now give a more rigorous statement. We assume that the restriction of the operator on
a subspace has a homomorphic mapping of Euler–Maclaurin type onto an operator with absolute
continuous spectral measure. To each such restriction corresponds a spectral series. To each series
we assign the sequence of natural numbers. Further, we shall take into account the semiclassical
asymptotics for the quantum operator. This means that the invariance of the restriction of the operator
will be considered approximately with respect to �, tunnel transitions will be prohibited, etc.

Each series will be associated with complex germ theory generalizing the Bogolyubov u − v trans-
formation, in which the variational equation plays an essential role. The remarkable fact is that the term
containing the Planck constant � is preserved in the variational equation for a Hartree-type equation;
this fact is related to the ratio of two small parameters: the parameter � and the linearization parameter.

For these reasons, such a representation is said to be natural. From our point of view, the coefficients
of i are the multiplicities of the eigenvalue i. The multiplicities can be fractional if averaging is performed
over the group of near eigenvalues according to the “pointillistic pattern” of Landau and Lifshits.

Let us now pass to the natural representation of self-consistent operators for the case in which the
interaction between two particles is of the form

V (x − y), x ∈ R3, y ∈ R3.

We shall consider the self-consistent Hamiltonian

Ĥ[ψ] = −h2

2
∆ψ(x) + V0(x)ψ(x) + ψ(x)

¨
ψ(y)V (x − y)ψ(y) dy, (9.3)

where the bar denotes complex conjugation.

The nonlinear symbol is given by the formula

H[ρ](x, p) =
|p|2
2

+ V0(x) +
¨

V (x − x′)ρ(x′, p′) dx′ dp′,

where V, V0 ∈ S∞(Rn), ρ(x′, p′) is of the form (9.8).
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The solution F (x, p, t) of Vlasov’s equation mentioned above can be regarded as the density of the
distribution of classical particles over coordinates and momenta. So, for example, the mean value of the
momentum of particles at the instant t is

〈p〉 =
¨

p · F (x, p, t) dx dp, (9.4)

and the mean value of the energy of the particles with the Hamilton function p2/2m + V (x) is

〈E〉 =
¨ (

p2

2m
+ V (x)

)
F (x, p, t) dx dp. (9.5)

In quantum mechanics, the state of the system is described by some “wave” function ψ = ψ(x, t)
continuous with respect to t and belonging to L2(Rn) with respect to the argument x. In this quantum
case, the mean value 〈 p̂ 〉qu of the momentum operator p̂ = −ih ∂

∂x is determined by the integral

〈 p̂ 〉qu =
ˆ

ψ(x, t)p̂ψ(x, t) dx, (9.6)

and the mean value of the operator of the energy

Ê =
p̂ 2

2m
+ V (x)

by the integral

〈Ê〉qu =
ˆ

ψ(x, t)Ê psi(x, t) dx. (9.7)

It is said that 〈 p̂ 〉qu and 〈Ê〉qu are the mean values of the operators p̂ and Ê in the state ψ.
From the wave function ψ, one can construct the quantum distribution function Fqu(x, p, t) so that,

for example, the means 〈p̂〉qu and 〈Ê〉qu are determined by formulas (9.4) and (9.5) in which F is replaced
by Fqu. Such a quantum distribution function is of the form

(2πh)−n/2ψ(x, t)ψ̃(p, t)e−
ixp
h (9.8)

and is called the density function ρψ corresponding to the wave function ψ. Thus, we have

Fqu = ρψ.

Formula (9.6) and (9.7) (see [65]) can be rewritten as follows:

〈 p̂ 〉qu =
¨

p · ρψ(x, p, t) dx dp,

〈Ê〉qu =
¨ (

p2

2m
+ V (x)

)
ρψ(x, p, t) dx dp.

In general, the mean of the operator f̂ = f(
2
x,

1
p) in the state ψ is

〈 f̂ 〉qu
def=

ˆ
ψ(x, t)f̂ψ(x, t) dx =

¨
f(x, p)ρψ(x, p, t) dx dp (9.9)

where
1
p=

1

p̂, p̂ = ih
∂

∂x
. (9.10)

In linear theory, the wave function ψ usually obeys some linear partial differential equation. As an
example of such equations, we can indicate equations of Hartree type as well as equations obtained
in [66] by “quantizing” Vlasov’s equations. They all have the following form:

H[ρψ](
2
x,

1
p)ψ = 0,

H[ρψ](x, p) = F (x, p, I1[ρψ] . . . Ir[ρψ]), (9.11)
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where F (x, p, λ) is a given function of the variables x, p ∈ Rn, and λ ∈ Rr , while the functionals
I1 . . . Ir have the form of the means (9.10):

Ij[ρψ] =
ˆ

kj(x, p, x′, p′)ρψ(x′, p′) dx′ dp′ =
ˆ

ψ(x′)kj(x, p,
2
x′, −i

1

∂/∂x′)ψ(x′) dx′.

We say that equations of type (9.11) are unitary nonlinear equations, while the operators

ψ → H[ρψ](
2
x,

1
p)ψ are unitary nonlinear operators (or, briefly, UN-operators). This term is related

to the fact that, under unitary transformations in the space of wave functions ψ, the symbol of the
UN-operator is transformed by the unitary canonical transformation.

Consider the Cauchy problem for the UN-operator

−ih∂ψ/∂t + H[ρψ](
2
x,

1
p)ψ = 0, ψ

∣∣
t=0

= ψ0,h(x). (9.12)

Under certain assumptions on the symbol H , the existence theorem for the solutions of problem (9.12)
was proved in [67], [65] using the method of T -mappings.

Definition of unitary nonlinear operators. We begin by considering the definition of unitary
nonlinear operators of Hilbert–Schmidt type.

Definition 1. Let H be a smooth mapping of the space L2(R2n) into itself:

ρ(x, p) → H[ρ](x, p).

By a unitary nonlinear operator (or, briefly, UN-operator) of Hilbert–Schmidt type we mean
the mapping H of the space L2(Rn) into itself defined by the formula

H[ψ] = H[ρψ](
2
x,

1
p)ψ, (9.13)

where ρψ is the density function corresponding to ψ. We say that the mapping H is the nonlinear
symbol of the operator H, and the function H[ρψ] is the linear symbol of the operator H in the state ψ.

Example 1. Let the nonlinear symbol H be a constant mapping of H[ρ] = f0, where f0 is a fixed function
from L2(R2n). The unitary nonlinear operator Ĥ with such a symbol is the linear pseudodifferential
operator

H[ψ] = f0(
2
x,

1
p)ψ.

Thus, the class of UN-operators includes the linear pseudodifferential operators.

Example 2. Let the symbol H be a linear bounded mapping from L2(R2n) into itself. Let us express it
as the integral operator with generalized kernel K(x, p, x′, p′), i.e.,

H[ρ](x, p) =
ˆ

K(x, p; x′, p′)ρ(x′, p′) dx′ dp′.

The UN-operator Ĥ with such a symbol acts by the formula(
H[ψ]

)
(x) =

(ˆ
ψ(y)K

(2
x, −ih∂/

1
∂ x,

2
y, −ih

1
∂ /y

)
ψ(y)∂y

)
ψ(x).

If H = 1 is the unit operator, then

H[ψ] = (2πh)−n‖ψ‖2 · ψ(x).

Consider the variation of the nonlinear symbol of the UN-operator under the unitary transformation.
The isometry [65]

µ : L2(R2n) → H2, µ(f) ≡ f(
2
x,

1
p)
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is valid for the class H2 of linear Hilbert–Schmidt operators acting in the space L2(R2). Let V be a
linear unitary operator in L2(R2). Define the operator AdV in H2 by the formula

AdV (T ) = V TV −1. (9.14)

Let us also assign to the operator V the following linear unitary operator Ṽ in the space L2(R2n):

Ṽ = µ−1 ◦ AdV ◦ µ. (9.15)

Theorem 1. Let H be a UN-operator of Hilbert–Schmidt type, and let V be a linear unitary
transformation of the space L2(Rn). Then the mapping V −1 ◦ H ◦ V is a UN-operator and its
nonlinear symbol HV is related to the symbol H by the canonical unitary transformation

HV = Ṽ −1 ◦ H ◦ Ṽ .

Proof. It is required to show that V −1H[V ψ] = HV [ψ] for any function ψ ∈ L2(Rn), where HV is a
UN-operator with symbol HV . By definition, we have

HV [ψ] = f(
2
x,

1
p)ψ,

where

f = HV [ρψ] = Ṽ −1H[Ṽ ρψ].

In view of formulas (9.14) and (9.15), we have

f ≡ µ−1
(
V · H[Ṽ ρψ] · (2

x,
1
p) · V −1

)
and

Ṽ ρψ = µ−1
(
V · ρψ(

2
x,

1
p) · V −1

)
.

Therefore, it remains to prove that

V · ρψ(
2
x,

1
p) · V −1 = ρVψ

(
2
x,

1
p).

This equality follows from the fact that the operator V is unitary and from formula (b) from Lemma 1.3
in [65, Chap. II]. The theorem is proved.

Let us now give the definition of more general unitary nonlinear operators. Consider some mapping

r : S−∞(R2n) → S∞(R2n).

Set S0 = S∞(R2n) and denote by Lk the space of all continuous mappings from S−∞(R2n) to Lk−1

(where k = 1, 2, . . .). Let us endow Lk with continuous convergence [68], [43]. The mapping r is said to
be smooth if r and all of its differentials Dk

r : L0 → Lk, are bounded, i.e., take bounded sets to bounded
sets.

Definition 2. Let H : S−∞(R2n) → S∞(R2n) be a smooth mapping. The operator

H : S(Rn) → S(Rn),

given by the formula

H[ψ] = H[ρψ](
2
x,

1
p)ψ, ψ ∈ S(Rn),

is said to be unitary nonlinear (or, briefly, a UN-operator).

Remark 7. Superfluidity in a nanotube is not a dynamic flow: all the particles in the nanotube belong
to the same series. Therefore, ρB is very large, which yields a small extreme temperature (see (3.11) in
Sec. 3).
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10. SUPERFLUIDITY IN THE CLASSICAL PROBLEM

Consider the following general Hartree-type equations:[
H0

(
x,−ih

∂

∂x

)
+
ˆ

dyψ∗(y)H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)
ψ(y)

]
ψ(x) = Ωψ(x), (10.1)

where x, y ∈ Rn, ψ ∈ L2(Rn) is a complex-valued function, h > 0, Ω ∈ R, are the operators −ih∂/∂x
and −ih∂/∂y acting first; the operators x and y act next. The function H1 satisfies the condition
H1(x, px; y, py) = H1(y, py;x, px). Equation (10.1) generalizes the ordinary Hartree equation (Eq. (1)
in [69], where N = 1). The study of Eq. (10.1) is important, for example, if one is attempting to find a
solution to the Hartree equation in the momentum representation,

ψ(x) =
ˆ

ψ̃(p)e(i/�)px dp

(2π�)n/2
.

Let us also discuss the variational system associated with Eq. (10.1), which can be obtained as
follows. Along with Eq. (10.1), let us write out the conjugate equation and consider the variations of
both equations assuming that the variations δψ = F and δψ∗ = G are independent.

The variational system has the form[
H0

(
x,−ih

∂

∂x

)
− Ω +

ˆ
dyψ∗(y)H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)
ψ(y)

]
F (x)

+
ˆ

dy

(
G(y)H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)
ψ(y)

+ ψ∗(y)H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)
F (y)

)
ψ(x) = −βF (x),[

H0

(
x, ih

∂

∂x

)
− Ω +

ˆ
dyψ(y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
ψ∗(y)

]
G(x)

+
ˆ

dy

(
F (y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
ψ∗(y)

+ ψ(y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
G(y)

)
ψ∗(x) = βG(x).

(10.2)

Equations (10.1) and (10.2) play an important role in the problem of constructing asymptotic
solutions to the N-particle Schrödinger equation as N → ∞ [70]-[72].

For example, the spectrum of system (10.2) (possible values of β) corresponds to the spectrum of
quasi-particles. Namely, the difference between the energy of an excited state and the ground state
energy is given by the expression ∑

k

βknk,

where the numbers nk ∈ Z+, k = 1,∞, which are equal to zero starting from some k, define the
eigenfunction and the eigenvalue of the excited state, and βk ∈ R are the eigenvalues of system (10.2).

In this section, we are interested in asymptotic solutions to Eqs. (10.1) and (10.2) as the “inner" h
tends to zero.

Asymptotic solutions to Eq. (10.1) are given [66] by the canonical operator on a Lagrangian manifold
Λn = {x = X(α), p = P (α)} invariant with respect to the Hamiltonian system

ẋ =
∂H(x, p)

∂p
, ṗ = −∂H(x, p)

∂x
, (10.3)

where

H(x, p) = H0(x, p) +
ˆ

dµαH1(x, p;X(α), P (α)),
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α ∈ Λn, and dµα is an invariant measure on the manifold Λn. The Lagrangian manifold lies on the
surface H(x, p) = Ω. If a chart A is projected diffeomorphically in the x-plane, then the canonical
operator acts as the multiplication by exp{(i/h)S(x)}/

√
J , where

S(x) =
ˆ

p dx on Λn and J = Dx/Dµα.

We are interested in finding asymptotic solutions to Eqs. (10.2). Without loss of generality, we can
consider only the case of an x-chart. Indeed, to obtain similar expressions in the p-chart, one must
consider the Fourier transformation of Eqs. (10.1) and (10.2) and apply the same technique, since the
form of the equations remains unchanged.

Let us seek the asymptotic solutions to Eqs. (10.2) in the x-chart in the form

F (x) = f̃(x)ψ(x), G(x) = g̃(x)ψ∗(x), (10.4)

where the functions f and g, in contrast to ψ and ψ∗, have a limit as h → 0. One can consider a more
general case, by allowing f and g to be functions of x and −ih∂/∂x, but in the leading term as h → 0
we have

−ih
∂

∂x
e(i/h)S ≈ ∂S

∂x
e(i/h)S ,

and so we arrive at functions f and g that depend only on x.
The second equation in system (10.2) can be rewritten in the form[

H0

(
x, ih

∂

∂x

)
+
ˆ

dyψ(y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
ψ∗(y); g̃(x)

]
ψ∗(x)

+
ˆ

dy

{
ψ(y)c̃(y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
ψ∗(y)

+ ψ(y)
[
H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
; g̃(y)

]
ψ∗(y)

}
= βg̃(x)ψ∗(x),

(10.5)

where [A;B] = AB − BA and

c(x) = f̃(x) + g̃(x). (10.6)

Equation (10.1) is used in the derivation of Eq. (10.5). We observe that all terms containing the function
g̃ on the left-hand side in Eq. (10.1) are O(h), since the commutator of two operators depending on x and
−ih∂/∂x is equal in the classical limit to (−ih) times the Poisson bracket of the corresponding classical
quantities.

Thus, the function c, as well as the eigenvalue β, is assumed to be O(h). Let us rescale these
quantities as follows:

c(x) = hc̃(x), β = hβ̃. (10.7)

Now we can derive the equation for g̃, c̃, and β̃ in the leading term in h and the first correction to it
from Eq. (10.5), making use of the following relations:

i) [
A

(
x, ih

∂

∂x

)
; ξ(x)

]
=

n∑
a=1

ih
∂A

∂pa

(
x, ih

∂

∂x

)
∂ξ

∂xa
−

n∑
a,b=1

h2

2
∂2A

∂pa∂pb

(
x, ih

∂

∂x

)
∂2ξ

∂xa∂xb
,

(10.8)

where pa = ih∂/∂xa, A(x, p) is a function, R2n → C, ξ : Rn → R;

ii)

ψ(x) = χ(x, h)e(i/h)S(x),

where χ = 1/
√

J in the leading term in h;

MATHEMATICAL NOTES Vol. 94 No. 5 2013



774 MASLOV

iii)

ih
∂

∂x
e−(i/h)S(x) = e−(i/h)S(x)

(
∂S

∂xn
+ ih

∂

∂x

)
;

iv)

B

(
ih

∂

∂x
+

∂S

∂x

)
= B

(
∂S

∂x

)
+ ih

n∑
a=1

∂B

∂pa

∂

∂xa
+

ih

2

n∑
a,b=1

∂2B

∂pa∂pb

∂2S

∂xa∂xb

+
(ih)2

2

n∑
a,b=1

∂2B

∂pa∂pb

∂2

∂xa∂xb
+

(ih)2

2

n∑
a,b,c=1

∂3B

∂pa∂pb∂pc

∂2S

∂xa∂xb

∂

∂xc

+
(ih)2

6

n∑
a,b,c=1

∂3B

∂pa∂pb∂pc

∂3S

∂xa∂xb∂xc

+
(ih)2

8

n∑
a,b,c,d=1

∂4B

∂pa∂pb∂pc∂pd

∂2S

∂xa∂xb

∂2S

∂xc∂xd
+ O(h3),

(10.9)

where all derivatives of B are evaluated at the point p = ∂S/∂x.

These relations can easily be obtained for monomial functions A and B. An application of formulas
i)–iv) yields the equation

i
n∑

a=1

∂H

∂px
a

∂g̃

∂xa
(X(α)) − β̃g̃(X(α)) +

ˆ
dµβ c̃(X(β))H1

+ i

ˆ
dµβ

n∑
a=1

∂g̃

∂xa
(X(β))

∂H1

∂py
a

+
h

2

n∑
a,b=1

∂g̃

∂xa
(X(α))

∂2H

∂px
a∂px

b

∂ ln J

∂xb
(X(α))

− h

2

n∑
a,b,c=1

∂g̃

∂xa
(X(α))

∂3H

∂px
a∂px

b ∂px
c

∂2S

∂xb∂xc
(X(α)) − h

2

n∑
a,b=1

∂2g̃

∂xa∂xb
(X(α))

∂2H

∂px
a∂px

b

+
ih

2

ˆ
dµβ c̃(X(β))

n∑
a,b=1

[
∂2H1

∂px
a∂px

b

∂2S

∂xa∂xb
(X(α)) +

∂2H1

∂py
a∂py

b

∂2S

∂xa∂xb
(X(β))

]

− ih

2

ˆ
dµβ c̃(X(β))

n∑
a=1

[
∂H1

∂px
a

∂ ln J

∂xa
(X(α)) +

∂H1

∂py
a

∂ lnJ

∂xa
(X(β))

]

+
h

2

ˆ
dµβ

n∑
a=1

∂g̃

∂xa
(X(β))

{ n∑
b=1

(
∂2H1

∂py
a∂py

b

∂ ln J

∂xb
(X(β)) +

∂2H1

∂py
a∂px

b

∂ ln J

∂xb
(X(α))

)

−
n∑

b,c=1

(
∂3H1

∂py
a∂px

b ∂px
c

∂2S

∂xb∂xc
(X(α)) +

∂3H1

∂py
a∂py

b∂py
c

∂2S

∂yb∂yc
(X(β))

}

− h

2

ˆ
dµβ

n∑
a,b=1

∂2H1

∂py
a∂py

b

∂2g

∂xa∂xb
(X(β)) = 0; (10.10)

in this formula the arguments

x = X(α), px = P (α), y = X(β), py = P (β) (10.11)

of the function H1 and of its derivatives, as well as the arguments x = X(α), px = P (α) of the function
H , are omitted.
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Let us now find another equation relating g̃ to c̃. To this end, let us multiply the first equation in
system (10.2) by ψ∗(x) and the second equation by ψ(x). Let us subtract the first product from the
second. We obtain

βψ∗(x)ψ(x)c(x) = ψ(x)
[
H

(
x, ih

∂

∂x

)
; g̃(x)

]
ψ∗(x)

+ ψ∗(x)
[
H

(
x,−ih

∂

∂x

)
; g̃(x)

]
ψ(x) − ψ∗(x)

[
H

(
x,−ih

∂

∂x

)
; c̃(x)

]
ψ(x)

+ ψ(x)
ˆ

dyψ(y)
[
H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
; g̃(y)

]
ψ∗(y)ψ∗(x)

− ψ∗(x)
ˆ

dyψ∗(y)
[
g̃(y);H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)]
ψ(y)ψ(x)

+ ψ(x)
ˆ

dyψ(y)c(y)H1

(
x, ih

∂

∂x
; y, ih

∂

∂y

)
ψ∗(y)ψ∗(x)

− ψ∗(x)
ˆ

dyψ∗(y)H1

(
x,−ih

∂

∂x
; y,−ih

∂

∂y

)
c(y)ψ(y)ψ(x). (10.12)

Let us use Eqs. (10.8)–(10.10). We find the following equation for g̃ and c̃ modulo O(h2):

i
n∑

a=1

∂H

∂px
a

∂c̃

∂xa
(X(α)) − β̃c̃(X(α)) −

n∑
a,b=1

∂2H

∂px
a∂px

b

∂2g̃

∂xa∂xb
(X(α))

+
n∑

a,b=1

∂2H

∂px
a∂px

b

∂g̃

∂xa
(X(α))

∂ ln J

∂xb
(X(α))

−
n∑

a,b,c=1

∂g̃

∂xa
(X(α))

∂3H

∂px
a∂px

b ∂px
c

∂2S

∂xb∂xc
(X(α)) −

ˆ
dµβ

n∑
a,b=1

∂2g̃

∂xa∂xb
(X(β))

∂2H1

∂py
a∂py

b

−
ˆ

dµβ

n∑
a,b,c=1

∂g̃

∂xa
(X(β))

(
∂2S

∂xa∂xb
(X(α))

∂3H1

∂py
a∂px

b ∂px
c

+
∂2S

∂ya∂yb
(X(β))

∂3H1

∂py
a∂py

b∂py
c

)

+
ˆ

dµβ

n∑
a,b=1

∂g̃

∂xa
(X(β))

(
∂ ln J

∂xb
(X(α)) − ∂2H1

∂py
a∂px

b

+
∂ ln J

∂xb
(X(β))

∂2H1

∂py
a∂py

b

)

− i

ˆ
dµβ c̃(X(β))

n∑
a=1

(
∂ ln J

∂xa
(X(α))

∂H1

∂px
a

+
∂ ln J

∂xa
(X(β))

∂H1

∂py
a

)

+ i

ˆ
dµβ

n∑
a=1

∂c̃

∂xa
(X(β))

∂H1

∂py
a

+ i

ˆ
dµβ c̃(X(β))

n∑
a,b=1

(
∂2H1

∂px
a∂px

b

∂2S

∂xa∂xb
(X(α)) +

∂2H1

∂py
a∂py

b

∂2S

∂ya∂xb
(X(β))

)

+
h

2

n∑
a,b,c=1

∂c̃

∂xa
(X(α))

∂3H

∂px
a∂px

b ∂px
c

∂2S

∂xb∂xc
(X(α))

− h

2

n∑
a,b=1

∂c̃

∂xa
(X(α))

∂2H

∂px
a∂px

b

∂ ln J

∂xb
(X(α)) +

h

2

n∑
a,b=1

∂2H

∂px
a∂px

b

∂2c̃

∂xa∂xb
(X(α))

+
h

2

ˆ
dµβ

n∑
a,b,c=1

∂c̃

∂xa
(X(β))

(
∂3H1

∂py
a∂px

b ∂px
c

∂2S

∂xb∂xc
(X(α)) +

∂3H1

∂py
a∂py

b∂py
c

∂2S

∂xb∂xc
(X(β))

)
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+
h

2

ˆ
dµβ

n∑
a,b=1

[
∂2H1

∂py
a∂py

b

(
∂2c̃

∂xa∂xb
(X(β)) − ∂c̃

∂xa
(X(β))

∂ ln J

∂xb
(X(β))

− ∂c̃

∂xa
(X(β))

∂ ln J

∂xb
(X(α))

∂2H1

∂py
a∂px

b

]
= 0. (10.13)

Finally, from the general equations we now pass to the case of interest. If

H0(x, px) = p2
x/2 + U(x),

H1(x, px; y, py) = V (x, y),

then Eqs. (10.10) and (10.13) become much simpler and acquire the form

(i∇S∇− β̃)g̃ +
ˆ

V (x,X(α′))c̃(X(α′)) dµα′ +
h

2
(−∆g̃ + ∇ ln J∇g̃) = 0,

(i∇S∇− β̃)c̃ − ∆g̃ + ∇ ln J∇g̃ − h

2
(−∆c̃ + ∇ ln J∇c̃) = 0.

(10.14)

From Eqs. (10.14) one can approximately find the functions F and G, which are important for
constructing approximate wave functions in the N-particle problem as N → ∞ [70].

Let ρ̂ be the projection on the function ψ. Its kernel is ρ̃(x, y) = ψ(x)ψ∗(y), and its symbol is
ρ(x, p) = ψ(x)ψ̃∗(p)e(i/�)px. The operator ρ̂ satisfies the Wigner equation, which reduces to the Vlasov
equation as h → 0. The operator σ̂ with the kernel F (x)ψ∗(y) + ψ(x)G(y) is equal to

σ̂ = f̃ ρ̂ + ρ̂g̃ (10.15)

and satisfies the variational equation to the Wigner equation, which is reduced to the variational equation
for the Vlasov equation (8.3). In Eq. (10.15) f̃ and g̃ are the operators of multiplication by the functions
f̃ and g̃. We see that in the semiclassical approximation the symbol of σ is O(h), since

σ̂ = [ρ̂; g̃] + � c̃ ρ̂

and

σ(x, p) � �

(
− i

n∑
a=1

∂ρ

∂pa
(x, p)

∂g̃

∂xa
+ c̃ρ

)
.

Since ρ is the δΛ-function in the semiclassical approximation [69], the function σ is actually the sum of
the δΛ-function and its derivative.

11. EXAMPLE OF SUPERFLUIDITY

Consider the case in which the ratio of the number of particles to the phase volume is finite (see [73]).
In the model under consideration, the number of particles and the entropy are calculated for a finite
number of particles and a finite phase volume. We consider the sum of N Hamiltonians not interacting
with one another. The formulas obtained provide a new interpretation to well-known formulas for ideal
gas.

First, we consider a simple example in which the potential has the form of a well with two minima
symmetric with respect to the ordinate axis. (Such a potential is called the “Lifshits double-well
potential.”) The eigenfunctions in this potential well are symmetric with respect to the origin. They
are either even or odd. The squares of these eigenfunctions are symmetric with respect to the barrier
separating the minima. The symmetry is preserved as the barrier height tends to infinity. Consequently,
the squared eigenfunctions and hence the probabilities of being in a well are the same for both wells.

If, instead of letting the barrier height tend to infinity, we let the parameter h (the Planck constant)
tend to zero, i.e., if we consider the semiclassical limit, then the passages will be prohibited in the limit for
the eigenfunctions with eigenvalues below the energy barrier. Nevertheless, the classical particle “sits”
simultaneously in both wells, i.e., behaves as if it has split into two parts.
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This can be understood as follows. Suppose that one of the wells contains a quantum particle and
the barrier height is finite. Then in the course of time the particle can penetrate the barrier owing to
resonance by virtue of the tunnel effect and eventually distributes itself uniformly in both wells. After
that, if we let the barrier height tend to infinity, two limits can be considered, one with respect to time
and the other with respect to the barrier height. These two limits do not commute. However, if first
time and then the barrier height tend to infinity, then the probabilities that the particle be in either well
are the same. Moreover, if the barrier is high, then the distance between the eigenvalues corresponding
to resonance eigenfunctions will be very small. For the infinite height of the barrier, the spectrum is
multiple (degenerate).

The same situation occurs in the case of a periodic potential. Suppose that the system itself resides on
a circle equipped with a periodic potential with, say, M wells. Then the particle sits in each of the M wells
with the same probability. Now if we pass to infinitely high barriers between the wells, the probabilities
still remain equal. If we assume the eigenfunction to be normalized, so that the probability of sitting in
any well is equal to the integral of the squared eigenfunction over the well, then this integral will be equal
to 1/M . In the limit of infinitely high barriers between the wells, the symmetry property is preserved (it
continuously depends on the barrier height). Moreover, each eigenvalue has multiplicity M . Naturally,
the same situation occurs in the three-dimensional case if one deals with a potential periodic in three
directions. In other words, we have a finite crystal satisfying the periodic Born–Karman conditions, i.e.,
wrapped over itself into a torus. There is a periodic lattice on this torus. Thus, in the three-dimensional
case, we, in general, obtain a substantially larger multiplicity, which is not necessarily the same in
different wells, since in the three-dimensional case each well may possess its own multiplicity. This
multiplicity is multiplied by the number of wells, or, as one says in the case of crystals, by the number of
crystal cells.

We consider this very model, i.e., assume that the barrier between the cells is infinite and penetration
from one cell to another is not possible. Nevertheless, the particle is assumed to sit in all cells
simultaneously. In the framework of this model, we neglect the distance between the spectrum points
owing to the tunnel phenomenon. These eigenvalues are indeed very close; namely, the distance between
them is an exponentially decaying function of the barrier height, and so we can regard the eigenvalues
as coinciding.

Suppose that some energy level E is given. Consider the number of eigenvalues (or energy levels)
that do not exceed E, counted with their multiplicities. This number is equal to the number of such levels
in a single cell times the number M of cells. Now we take the mean energy of this system. Neglecting a
constant, it is equal to the sum of eigenvalues not exceeding E, counted with their multiplicities, i.e., to
the “Spur” of the system with respect to the energy level E. The multiplicities of eigenvalues are equal
to M times the multiplicities of the respective eigenvalues in a single cell. The ratio of the “Spur” to
the number of eigenvalues is the internal energy of the system. Since the number M of cells cancels
out in the computation of both mean and internal energy, it follows that internal energy is reduced to the
internal energy of a single cell. In the classical limit, internal energy is given by the phase integral over the
part of the well below the energy level E. The internal energy of a cell coincides with the phase volume,
which is the phase integral over energies smaller than the given one. Thus, if the cell Hamiltonian has
the form p2 + v(x), then the phase volume coincides with the integral over the domain p2 + v(x) ≤ E.

Accordingly, we consider a self-adjoint one-particle operator Ĥ with n distinct eigenvalues
ε1, ε2, . . . εn of multiplicities G1, . . . , Gn, respectively, such that

∑
Gi = M and construct the frequency

probabilities gi = Gi/M . The eigenfunctions of Ĥ corresponding to the eigenvalue εj will be denoted by
ϕj

αj (ξ), where αi = 1, . . . , Gi. We assume that the variable ξ ranges over a finite discrete set.

Consider an ideal gas of N such particles; it is described by the operator

ĤN =
∑

Ĥ(ξi).

Let Ni be the number of particles corresponding to the eigenvalue εi, that is, residing at the energy level

εi. The Hamiltonian ĤN acts on functions of the form
N∏

i=1
ϕi(ξi) as follows:

ĤN (ϕ1(ξ1) · · · · · ϕN (ξN )) = Ĥ(ϕ1(ξ1)) · ϕ2(ξ2) · · · · · ϕN (ξN )
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+ϕ1(ξ1) · Ĥ(ϕ2(ξ2)) · ϕ3(ξ3) · · · · · ϕN (ξN ) + . . .

+ϕ1(ξ1) · · · · · ϕN−1(ξN−1) · Ĥ(ϕN (ξN )). (11.1)

Thus, functions of the form

Ψ{j,α}(ξ1, ...ξN ) =
N∏

s=1

ϕjs
αjs

(ξs), (11.2)

where {j, α} stands for the finite sequence (j1, αj1 ; j2, αj2 ; . . . ; jN , αjN
) are eigenfunctions of the

Hamiltonian operator ĤN .

Note that the indices js, as well as αjs , in (11.2) are not necessarily distinct.

Clearly,
n∑

i=1
Ni = N . The eigenfunctions (11.2) correspond to the eigenvalue

λ{N} =
n∑

i=1

Niεi, (11.3)

where {N} = {N1, . . . , Nn}.

Now consider symmetric eigenfunctions of an ideal gas of N particles.

The space of symmetric (bosonic) eigenfunctions of the operator ĤN corresponding to an eigenvalue
λ{N} is generated by functions of the form Symmξ1,...ξN

Ψ{j,α}(ξ1, ...ξN ), where Symm is the operation
of symmetrization with respect to ξi.

The order of arguments of the function to be symmetrized is not essential in the computation of the
multiplicity of an eigenvalue. Hence it suffices to consider functions Ψ{j,α} of the form

Ψ̃{j,α}(ξ1, ...ξN ) = (ϕ1
α1

1
(ξ1) · · · · · ϕ1

α
K1
1

(ξK1)ϕ
2
α2

1
(ξK1+1)

· . . . ϕ2

α
K2
2

(ξK1+K2) · · · · · ϕn
α1

n
(ξK1+K2+···+Kn−1+1) · · · · · ϕn

αKn
n

(ξN ) (11.4)

Note that some of the indices αi
j, j = 1, . . . n, i = 1, . . . Nj, may occur several times, while some of

the αj = 1, 2, . . . Gj may be absent.

This product may well contain coinciding eigenfunctions of Ĥ . Consider the product

ϕ1
1(ξ1) · ϕ1

1(ξ2) · . . . ϕ1
1(ξl1)ϕ

1
2(ξl1+1) · · · · · ϕ1

2(ξl1+l2)ϕ
1
3(ξl1+l2+1) · · · · · ϕ1

g1
(ξl1+···+lg1

) (11.5)

where 0 ≤ li ≤ N1 and
g1∑

i=1
li = N1.

The number of all possible products of this form is equal to the number of ways in which N1 functions
can be distributed over G1 classes. This number is equal to

CN1
G1+N1+1 =

(G1 + N1 − 1)!
N1!(G1 − 1)!

, (11.6)

Proposition 1. The multiplicity of the eigenvalue λ{N} of symmetric eigenfunctions of the
Hamiltonian operator ĤN is equal to

Γ{Ni}{Gi} =
n∏

i=1

(Gi + Ni − 1)!
Ni!(Gi − 1)!

,

which is the frequency (nonnormalized) probability of the eigenvalue
∑n

1 Niεi of the operator ĤN

by the above definition.
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As usual, we define the free energy of the ideal gas in question as

min
Ni

{∑
Niεi − θ ln Γ{Ni}{Gi}

}
, (11.7)

where θ is the temperature and S = ln Γ{Ni}{Gi} is the entropy. Thus we obtain the distribution of the
ideal gas on a crystal base for finite N .

Now let us pass to the limit as N → ∞ and M → ∞ assuming that lim(N/M) = ρ, where ∞ > ρ ≥
0, and apply the Stirling formula.

In this case, if we define the frequency probabilities for N particles as Ni/N , then for pi = lim(Ni/N)
and gi = lim(Gi/M) we obtain the following value of specific entropy:

S =
∑

i

(pi + qiρ
−1) ln(pi + qiρ

−1) − pi ln pi − qiρ
−1 ln qiρ

−1. (11.8)

Likewise, the specific entropy of a Fermi gas on a crystal base is equal to

SF =
∑

i

qiρ
−1 ln qiρ

−1 − pi ln pi − (qiρ
−1 − pi) ln(qiρ

−1 − pi), (11.9)

Here pi and qi are probabilities:
∑

pi = 1 and
∑

qi = 1. For ρ → 0 they pass, modulo the constant
ln ρ, into the Shannon entropy −pi ln(pi/qi). This limit shows the role of the probabilities pi and qi in
information theory [74].

Instead of formula (11.7) for free energy, the author suggests considering a free energy operator of
the form displayed below [27], [75]. Let δ(λn) be the multiplicity of an eigenvalue λn of a self-adjoint
operator Â =

´
λdEλ (where Eλ is the spectral family) with discrete spectrum in Hilbert space H . The

free energy operator F̂ in the same space is defined by the formula

F̂ =
ˆ

{λ − θ ln δ(λ)} dEλ.

In our case, Â is the operator ĤN , and the minimum eigenvalue of F̂ coincides with (11.7), i.e., with the
usual definition of free energy [16].

An analog of the minimum eigenvalue for the Schrödinger operator is its “lower” level, the “ground
state,” i.e., the state eventually reached by the system at very large times. (If a pendulum swings for a
long time, it finally comes to rest.)

The discovery of superfluidity apparently refuted this postulate. At zero temperature, there still is
motion, energy is not zero, and this state is preserved. (According to very recent computations, the
motion ceases, but only in millions of years.)

Bogolyubov showed, using the many-particle Schrödinger equation as an example, that as N → ∞
there exist metastable eigenvalues that should “live” sufficiently long and thus determine the superfluid
state. This was done for zero temperature.

On the basis of the preceding, we give a model of the free energy operator showing that this operator
can also have metastable eigenvalues.

As is customary in the physical theory of metals, we consider only two “zones,” namely, two
eigenvalues ε1 and ε2 of the one-particle Hamiltonian. The interaction will also be chosen to correspond
to the physical problem [76].

As was already mentioned, in quantum mechanics the squared modulus of an eigenfunction is the
coordinate probability density of a particle.

Since we consider distributions over eigenvalues (energy levels), it is important to know level-to-level
transition probabilities.

Suppose that there are N particles and

V
(s)
N =

∑
Hi +

1
N

∑∑
Hi1,i2 +

1
N3

∑∑∑
Hi1,i2,i3 + · · · + 1

N s

∑
· · ·
∑

Hi1,...,is
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where s is arbitrarily large but much less than N and Hi1,...,ik is an operator affecting only k particles;
for example, N ,

Hi1i2f(x1, x2 . . . , xN ) = H(xi, xj)f(x1, x2 . . . , xN ),

which means that this operator acts as the identity operator with respect to all coordinates except for xi1
and xi2 .

The probability of the transition of a particle from a state λk (corresponding to the eigenvalue
λk of the operator HN ) to a state λk′ (corresponding to the eigenvalue λk′) under the action of
the operator VN is defined (in quantum mechanics) as the squared modulus of the inner product
(Ψλk

, VNΨλk′ ).

This expression is called a matrix element. This important physical notion essentially alters our
understanding of standard notions concerning the spectrum of an operator in functional analysis: the
spectrum is divided into spectral series [27], [77], [78].

There is a law in physics referred to as “energetically favorable states” (Bogolyubov): in the course
of time, a particle subjected to “friction-like” perturbations loses energy and passes to a lower level. It
cannot directly pass from a “state” at level λi to the level λi−k, but it can first pass to the level λi−1, then
to the level λi−2, etc., until it reaches the level λi−k and eventually the least level λ1, which is referred to
as the “ground state” in physics.

To describe friction-like perturbations mathematically, we should set all matrix elements correspond-
ing to transitions to higher energy levels (larger eigenvalues) equal to zero. Such a perturbation operator

Ṽ
(s)
N is no longer self-adjoint.

Consider the following simple model: to reach a higher zone, any two particles release an energy
quantum ν/N , where

2(ε2 − ε1) > ν > ε2 − ε1; ε2 > ε1. (11.10)

Let L be a space of functions Ψ(x1, . . . , xN ) (anti)symmetric with respect to the discrete variables10 xi,
i = 1, . . . , N , which range over the values

1
M

,
2
M

, . . . ,
M − 1

M
, 1.

The Hamiltonian corresponding to this mathematical problem acts on elements of L as follows:

ĤNΨ(x1, . . . , xN ) =

⎛⎝ N∑
i=1

λ(xi) +
1
N

N∑
i=1

N∑
j=i+1

V (xi, xj)

⎞⎠Ψ(x1, . . . , xN ), (11.11)

where λ(x) = ε1 for 1/M ≤ x ≤ G1/M and λ(x) = ε2 for (G1 + 1)/M ≤ x ≤ 1, moreover V (x, x′) =
−V ,if (G1 + 1)/M ≤ x ≤ 1 and (G1 + 1)/M ≤ x′ ≤ 1, while V (x, x′) = 0 in all other cases.

We introduce functions ϕi(x), i = 1, . . . , G1 and φj(x), j = 1, . . . , G2, where G2 = M − G1, as
follows:

ϕi(x) =

⎧⎨⎩ 1 for x = i/M

0 for x �= i/M
, φj(x) =

⎧⎨⎩ 1 for x = (j + G1)/M

0 for x �= (j + G1)/M
. (11.12)

The eigenfunctions of the Hamiltonian (11.11) will be numbered by two sets {k} = k1, . . . , kG1 and
{l} = l1, . . . , lG2 of nonnegative integers such that

G1∑
i=1

ki +
G2∑
j=1

lj = N.

10From the viewpoint of physics, the problem is considered in the p-representation, and in physical notation we should have
written the momentum pi instead of the coordinate xi.
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The eigenfunction Ψ{k},{l} can be expressed via the functions (11.12) as follows:

Ψ{k},{l} = Symmx1,...,xN

(
ϕ1(x1) . . . ϕ1(xk1)ϕ2(xk1+1) . . . ϕ2(xk1+k2) . . . ϕG1(xN1)

× φ1(xN1+1) . . . φ1(xN1+l1)φ2(xN1+k1+1) . . . φ2(xN1+k1+k2) . . . φG2(xN )
)

,

(11.13)

where Symmx1,...,xN
is the operator of symmetrization with respect to the variables x1, . . . , xN , and N1

depends on {k} according to the formula

N1 =
G1∑
i=1

ki,

For a Fermi gas, we take the antisymmetrization operator Asymm instead of Symm. In what
follows, we also use the notation N2 = N − N1. The eigenvalue of ĤN corresponding to the eigen-
function (11.13) has the form

λ(N2) = ε1N + (ε2 − ε1)N2 −
V N2(N2 − 1)

2N
(11.14)

and its multiplicity in the symmetric case (a Bose gas) is equal to

ΓB(N2) =
(N − N2 + G1 − 1)!
(N − N2)!(G1 − 1)!

(N2 + G2 − 1)!
N2!(G2 − 1)!

. (11.15)

In the antisymmetric case (a Fermi gas), the multiplicity is

ΓF (N2) =
G1!

(N − N2)!(G1 − N + N2)!
G2!

N2!(G2 − N2)!
. (11.16)

Let us study the eigenvalues (11.14). It follows from their form that the following inequalities hold:

λ(N2 + 1) > λ(N2) for N2 ≤ K − 1,
λ(N2 + 1) < λ(N2) for N2 ≥ K,

(11.17)

where K is given by the formula

K =
ε2 − ε1

V
N. (11.18)

Inequalities (11.17) imply that the eigenvalue λ(0) is the (globally) minimal eigenvalue. Moreover,
these inequalities imply that the eigenvalue λ(N) is a locally minimum eigenvalue, since λ(N2) < λ(N)
for all N2 such that K ≤ N2 < N .

Consider perturbations of the Hamiltonian ĤN by self-adjoint operators Hs acting in L as the
operators of multiplication by the functions

Hs(x1, . . . , x2) =
∑

1≤i1 �=i2 �=···�=is≤N

Us(xi1 , xi2 , . . . , xip), (11.19)

where s ≥ 1, and the Us are real functions. Such operators Hs are s-particle interaction operators. One
can readily see that the matrix elements of such operators with respect to the eigenfunctions (11.13)
satisfy the relation

(
Ψ{k},{l},HsΨ{k′},{l′}

)
= 0 for

G1∑
i=1

|ki − k′
i| +

G2∑
j=1

|lj − l′j| > 2s. (11.20)

Since s = O(1), we see that (11.20) and (11.17) imply the following assertion.
Under s-particle perturbations, the eigenfunctions corresponding to global and local minima

of eigenvalues can pass only to states with larger eigenvalues.
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By Landau’s approach, this means that a local minimum state is a superfluid state.
Proceeding to another “specific” scale, we have

λp =
λ(N2)

N
= ε1(1 − p) + ε2p − ν

p2

2
− p

2N
, p =

N2

N
, 0 ≤ p ≤ 1.

The last term tends to zero as N → ∞; hence we neglect it. The spectrum is continuous in this limit.

The ground state (global minimum) is λ̄0 = ε1. The maximum λp corresponds to p = ε2−ε1
ν . There

is also another minimum λ1 for p = 1, which is equal to ε2 − ν
2 .

Let us apply a friction-like perturbation Ṽs to this problem. Knowing the eigenfunctions (11.5), one
can readily show that under this perturbation some of the eigenvalues (particles at high energy levels)
gradually pass via the nearest eigenvalues to the absolute minimum λ0, while the others pass to the local
minimum λ1. The transition from λ1 to λ0 is forbidden asymptotically (for N � 1). Thus, a particle can
spend a rather long time at the level λ1 > λ0. In the language of physics, λ1 is a metastable state. In
contrast with λ0, the level λ1 corresponds to nonzero energy, and particles with nonzero (kinetic) energy
move at some nonzero velocity.

Now let us assume that the perturbation of the Hamiltonian ĤN is an s-particle nonself-adjoint
operator (friction operator) V̂s admitting only transitions to levels with lower eigenvalues. Then it follows
from (11.20) and inequality (11.17) that there are two classes of eigenfunctions (11.13).

The eigenfunctions Ψ{k},{l} satisfying the inequality

N2 =
G2∑
j=1

lj ≤ Nλp1 − S − 1

are eventually taken by this perturbation to the global minimum state, and the eigenfunctions
satisfying the inequality

N2 =
G2∑
j=1

lj ≥ Nλp1 + S,

(i.e., N2/N > λp1 + O(1/N)) are taken to the local minimum.

Let λ(N2, G1, G2) be eigenvalues of the free energy operator F̂ , let Λ(p, q) = λ/N , and let

ΛF = ε1(1 − p) + ε2p − ν
p2

2
− θ ln ΓB, 0 ≤ p ≤ 1.

For a Fermi gas, ln ΓB is replaced by ln ΓF . There are three critical points of ΛF , determined by the
equation ∂ΛF /∂p = 0, for sufficiently small θ; the first is a point of minimum, the second, a point of local
minimum, and the third, a point of maximum:

p1 ≈ q2

ρ + 1 − q2
exp (−ε

θ
), p2 ≈ 1 − 1 − q2

ρ + q2
exp (−ν − ε

θ
),

p3 ≈ ε

ν
+

θ

ν
ln

ε

ν − ε

ν(1 − q2) + ρ(ν − ε)
νq2

, ε = ε2 − ε1 (11.21)

(for a Bose gas).
The eigenfunctions of the free energy operator coincide with those of the Hamiltonian HN . Consider

the eigenvalues of the free energy operator F̂ and the same friction operator Ṽs, i.e., an operator whose
matrix elements with respect to the eigenfunctions (11.5) are zero for the transitions from lower to higher
eigenvalues of the free energy operator (see above). Then, as a result of multiple applications of the
friction operator, the eigenvalues of the free energy operator for p > p3 tend to a local minimum, which
is a metastable superfluid free energy state.

The state p2 is also locally stable (metastable); this means that λF can only increase under
perturbations by the operator αHs, where α is sufficiently small.
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The critical temperature values at which phase transitions occur are determined by the equations
∂f/∂p = 0 and ∂2f/∂p2 = 0.

A critical point occurs where the entropy curves S1(θ) and S2(θ) corresponding to the point of
maximum and a point of local minimum meet. On the left of this point θc, the electric capacity ∂S/∂θ

tends to ∞ as (θ1 − θ0)−1/2. In the language of physics, one deals with a phase transition with critical
exponent 1/2. Note that the curve θ(S) is smooth and makes a turn at the critical point, where S plays
the role of momentum and θ plays the role of coordinate (see [79]). Since this is a simple turning point,
we can follow [79] and apply the tunnel canonical operator, which, in this case, precisely gives the Airy
function.

Beyond the critical point, metastability (superfluidity) disappears, deceleration begins, and eventually
the particles, influenced by the friction operator, reach the global minimum, i.e., come to a halt.

Thus, it follows from our model that if one heats a system in a metastable (superfluid) state, then a
transition to a “normal” state (a state with friction) occurs at temperature θ0.

Let us summarize.
The semiclassical asymptotics as h → 0 of such a quantum problem already does not coincide with

the initial classical self-consistent Vlasov-type equation but contains a semiclassical correction when
the complex germ method is applied; this correction was first obtained in Bogolyubov’s work about
weakly nonideal Bose gas and cannot be neglected as h → 0.

It was shown above that, in the case of a repulsive potential (i.e., in the region of supercritical
temperature T > Tc), there are particles of two types, namely, “superfluid” and normal particles.

Thus, the two-liquid situation arises in the region T > Tc, and moreover, particles of one liquid pass
without collisions through particles of the other liquid. Probably, these are clusters and monomers, and
the supercritical “liquid-gas” is not transparent because of the clusters, but the monomers pass through
them practically without retardation.

One can show that the complex germ method is a generalization of the Bogolyubov (u − v)-
transformation to the case of, for example, focal points and other singularities. In particular, the
author succeeded in generalizing the well-known Bogolyubov relation [80] to the case where an external
field v(x) is present (see below). It turned out that the transition as h → 0, i.e., the result of transition
to classical mechanics, contains an additional term generalizing the Bogolyubov formula (6′) given
in [80], and this term remains in the classical limit, because, although the value h is infinitely small,
it is multiplied by a constant that is generally unbounded. Thus, in this case, the parameter h is included
in the limiting classical picture (also see [62], [61]).

The Lagrangean manifold Λn = {x = X(α), p = P (α)} is invariant under the Hamiltonian system

ẋ =
∂H(x, p)

∂p
, ṗ =

∂H(x, p)
∂x

, (11.22)

where

H(x, p) = H0(x, p) +
ˆ

dµα H1(x, p;X(α), P (α)).

Here H0(x, px) = p2
x/2 + V (x) and H1(x, px; y, py) = U(x, y), α ∈ Λn, and dµα is an invariant measure

on Λn. The Lagrangian manifold lies on the surface H(x, p) = Ω. If Λn can diffeomorphically be
projected on the x-plane, then the canonical operator acts as multiplication by exp{(i/h)S(x)}/

√
J ,

where

S(x) =
ˆ

p dx on Λn

and J = Dx/Dµα. The leading term of the formula in the presence of an external field gives the following
system for the functions g̃ and c̃ (see Section 10):

(i∇S∇− β̃ )g̃ +
ˆ

U(x,X(α′))c̃(X(α′)) dµα′ +
h

2
(−∆g̃ + ∇ ln J∇g̃ ) = 0,

(i∇S∇− β̃ )c̃ − ∆g̃ + ∇ ln J∇g̃ − h

2
(−∆c̃ + ∇ lnJ∇c̃ ) = 0.

(11.23)
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Superfluidity in the classical problem. Let us give examples for the notion “series of eigenvalues”
defined by the author in [81], [82].

First, consider the following illustrative examples.

Example 3. Consider the Laplace operator with Dirichlet conditions on the boundary and assume that
the domain consists of two nonsymmetric nonintersecting domains. Let

∆U(x) = λU(x), U(x)|Γ = 0

and

Γ = Γ1 ⊕ Γ2,

where Γ is the boundary.

Obviously, this operator splits into two different operators. Nevertheless, if they are considered as
a single operator, there arise two different series of eigenvalues and corresponding eigenfunctions Um

and Ũn. Then, for any function f(x) belonging to the domain that includes both boundaries, we have

(Um, f(x)Ũn) = 0, f(x) = L2(R2). (11.24)

Then {Ũn} and {Um} are series.

Example 4. Consider the one-dimensional Schrödinger equation

− h2

2m
d2

dx2
Ψ + U(x)Ψ = EΨ (11.25)

with potential U(x), which can be regarded as having two nonsymmetric gaps (wells) such that the
barrier between them goes to infinity. In this case, the problem can also be divided into two different
Schrödinger operators with two different potential gaps,

En = {E′
n ∪ E′′

n},

where E′
n and E′′

n are series.

The exact series E′
n and E′′

n go to infinity. The asymptotic series E′
n and E′′

n do not go to infinity.

Example 5. Assume that the barrier between the gaps in the preceding example is not infinite but
sufficiently high. Then we can speak of asymptotic series where the asymptotics is taken for the
high barrier. For the eigenfunctions corresponding to the eigenvalues lying inside each of the gaps,
the semiclassical asymptotics also does not allow them to penetrate through the barrier if there is no
resonance between the eigenfunctions.

Thus, we have considered several examples of different series corresponding to the same Hamiltonian.

In the physics encyclopedia [83], the following definition of spectral series appears. “Spectral series
are groups of spectral lines arising in allowed transitions from different levels to the same final level.
The lines in spectral series tend to a limit or to the boundary of the spectral series. The observed set of
spectral lines is most clearly divided into spectral series in the spectra of elements of the first subgroups
of the Mendeleev periodic system, i.e., hydrogen, helium, alkaline, and alkaline-earth metals.”

One can see that this definition is very close to the Landau concept of the existence of friction. The
rigorous mathematical definition of asymptotic spectral series was given above.
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12. SECOND QUANTIZATION OF DIMERS

Since the two-particle distribution function is described more rigorously by the true symbol (not
the pseudosymbol) using the method of ultrasecond quantization [27], we first consider the operator Ĥ
equivalent to the system of multiparticle Newton equations with pair interaction.

Denote by Ĥ such an operator:

Ĥ = i

ˆ
dpdq Ψ+(p, q)

(
∂U(q)

∂q

∂

∂p
− p

∂

∂q

)
Ψ−(p, q)

+ i

ˆ ˆ
dp dq dp′dq′ Ψ+(p, q)Ψ+(p′, q′)

(
∂V (q, q′)

∂q
· ∂

∂p
+

∂V (q, q′)
∂q′

· ∂

∂p′

)
Ψ−(p′, q′)Ψ−(p, q).

(12.1)

Suppose that ρ̂B is the operator introduced in [27] and in [84, formula (19)].
Denote by

HB(b∗(·), b(·), B∗(·), B(·)) =
Spρ̂BĤ

Spρ̂B

the pseudosymbol of this two-particle operator.
Here ρ̂B depends on the functions b(x, s), B(y, y′):

ρ̂B =
∞∑

k=0

∞∑
M=0

1
k!M !(k + 2M)!

( ∞∑
s=0

ˆ ˆ
dxdx′b(x, s)b∗(x′, s)ψ̂+(x)ψ̂−(x′)

)k

×
(¨

dy1dy2B(y1, y2)ψ̂+(y1)ψ̂+(y2)
)M

×
(¨

dy′1dy′2B(y′1, y
′
2)ψ̂

−(y′1)ψ̂
−(y′2)

)M

exp
(
−
ˆ

dzψ̂+(z)ψ̂−(z)
)

, (12.2)

where ψ̂+(x) and ψ̂−(x) are Bose creation and annihilation operators ordered in the sense of Wick [85].

Suppose that F is Fock bosonic space [85], b̂+(x, s) is the creation operator of particles with number
s, b̂−(x, s) is the annihilation operator of particles with number s in the space F , B̂+(x, x′) and B̂−(x, x′)
are the creation and annihilation operators, respectively, of a pair of particles. These operators satisfy the
following commutation relations for Bose particles b− and b+

[̂b−(x, s), b̂+(x′, s′)] = δss′δ(x − x′), [̂b±(x, s), b̂±(x′, s′)] = 0,

[B̂−(x1, x2)B̂+(x′
1, x

′
2)] = δ(x1 − x′

1)δ(x2 − x′
2),

[B̂±(x1, x2), B̂±(x′
1, x

′
2)] = 0, (12.3)

[̂b±(x, s), B̂±(x′
1, x

′
2)] = [̂b±(x, s), B̂∓(x′

1, x
′
2)] = 0.

These operators must be substituted into the symbol HB(b∗(·), b(·), B∗(·), B(·)) to obtain the
operator ĤB, and then to calculate its true symbol, thus obtaining self-consistent equations for the
two-particle distribution functions (semidensities).

Consider the case of ultrasecond quantization only for pairs. In this case, the true symbol is the
following functional:
√
H
[
Φ+(·),Φ(·)

]
= i

ˆ ˆ
dpdqdp′dq′ Φ+(p, q, p′, q′)

×
(

∂U(q)
∂q

∂

∂p
+

∂U(q′)
∂q′

∂

∂p′
− p

∂

∂q
− p′

∂

∂q′

)
Φ(p, q, p′, q′)

+
iα

2

ˆ
. . .

ˆ
dpdqdp′dq′dp1dq1dp′1dq′1Φ

+(p, q, p′, q′)Φ+(p1, q1, p
′
1, q

′
1)

MATHEMATICAL NOTES Vol. 94 No. 5 2013



786 MASLOV

×
(

∂V (q, q1)
∂q

∂

∂p
+

∂V (q, q1)
∂q1

∂

∂p1
+

∂V (q, q′1)
∂q

∂

∂p
+

∂V (q, q′1)
∂q′1

∂

∂p′1

+
∂V (q′, q1)

∂q′
∂

∂p′
+

∂V (q′, q1)
∂q1

∂

∂p1
+

∂V (q′, q′1)
∂q′

∂

∂p′
+

∂V (q′, q′1)
∂q′1

∂

∂p′1

)
× Φ(p1, q1, p

′
1, q

′
1)Φ(p, q, p′, q′)

+
i(1 − α)

2

ˆ
. . .

ˆ
dpdqdp′dq′dp1dq1dp′1dq′1Φ

+(p, q, p′1, q
′
1)Φ

+(p1, q1, p
′, q′)

×
((

∂V (q, q1)
∂q

∂

∂p
+

∂V (q, q1)
∂q1

∂

∂p1

)
Φ(p1, q1, p

′
1, q

′
1)Φ(p, q, p′, q′)

+
(

∂V (q′1, q1)
∂q′1

∂

∂p′1
+

∂V (q′1, q1)
∂q1

∂

∂p1

)
Φ(p1, q1, p, q)Φ(p′, q′, p′1, q

′
1)

+
(

∂V (q, q′)
∂q

∂

∂p
+

∂V (q, q′)
∂q′

∂

∂p′

)
Φ(p′, q′, p′1, q

′
1)Φ(p, q, p1, q1)

+
(

∂V (q′, q′1)
∂q′

∂

∂p′
+

∂V (q′, q′1)
∂q′1

∂

∂p′1

)
Φ(p1, q1, p

′
1, q

′
1)Φ(p, q, p′, q′)

)
, (12.4)

where α is a temperature-dependent parameter.
The corresponding system of self-consistent equations for the two-particle distribution functions

(semidensities) is of the form

∂Φ
∂t

(p, q, p′, q′, t) =
(

∂U(q)
∂q

∂

∂p
− p

∂

∂q
+

∂U(q′)
∂q′

∂

∂p′
− p′

∂

∂q′

)
Φ(p, q, p′, q′, t)

+ 2α
ˆ ˆ

dp1dq1dp′1dq′1Φ
+(p1, q1, p

′
1, q

′
1, t)

×
(

∂V (q, q1)
∂q

∂

∂p
+

∂V (q, q1)
∂q1

∂

∂p1
+

∂V (q1, q
′)

∂q1

∂

∂p1
+

∂V (q1, q
′)

∂q′
∂

∂p′

)
× Φ(p′, q′, p, q, t)Φ(p′1, q

′
1, p1, q1, t)

+ 2(1 − α)
ˆ ˆ

dp1dq1dp′1dq′1Φ
+(p1, q1, p

′
1, q

′
1, t)

×
((

∂V (q, q1)
∂q

∂

∂p
+

∂V (q, q1)
∂q1

∂

∂p1

)
Φ(p1, q1, p

′, q′, t)Φ(p, q, p′1, q
′
1, t)

+
(

∂V (q′, q1)
∂q′

∂

∂p′
+

∂V (q′, q1)
∂q1

∂

∂p1

)
Φ(p1, q1, p, q, t)Φ(p′, q′, p′1, q

′
1, t)
)

.

(12.5)

The second equation is obtained from (12.5) by replacing Φ(p, q, p′, q′, t) and Φ+(p, q, p′, q′, t) by
Φ+(p, q, p′, q′, t) and Φ(p, q, p′, q′, t),respectively. The functions Φ(p, q, p′, q′, t) and Φ+(p, q, p′, q′, t) )
are symmetric with respect to the permutation of the pairs p, q and p′, q′.

Proposition 2. The integralˆ
Φ(p, q, p′, q′, t)Φ+(p, q, p′, q′, t)dp dq dp′ dq′

is independent of time t.

The proof is obtained by a direct verification.
Of course,

´
ρ(p, q, t) dp dq is also preserved. However, after “condensation,” the number of particles

in the gas is not equal to the integral over all energies, and only over energies ranging from some El to
infinity; hence the one-particle “gas” formula for the distribution and the number of particles in the gas
may depend on time. On the other hand, the one-particle distribution in the liquid does not coincide with
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the distribution in the gas because of the presence, in the liquid, of a great number of quantized vortices
(the rotational components of the molecules increase essentially), and, in view of Proposition 2, we can
only guarantee the conservation of the total number of particles.

The most important property of the distribution corresponding to UD statistics is that it makes
possible the construction of creation and annihilation operators for individual particles as well as creation
and annihilation operators for dimers.

Essentially, Vlasov’s self-consistent field equation implicitly uses UD statistics: the distribution for
every given particle is simultaneously the distribution for any particle. The Vlasov equations were derived
10 years after the corresponding Hartree equations of quantum mechanics. This shows that universal
statistics appeared earlier than UD statistics. Vlasov’s theory was intuitively based on his statement
about the straight line passing through 2 points, which was mentioned above. It was strongly objected
to by the leading physicists of the time and could have had dire consequences for him.

In his famous work [80] on the weakly nonideal Bose gas, Bogolyubov essentially obtained a term
that does not disappear in the quasiclassical limit, but is added to the Vlasov equation of collective
oscillations.

Remark 8. Bogolyubov’s dispersion is of the form (the mass is put equal to 1)√
krṼ +

k4�2

4
, (12.6)

where k is the wave vector, V (x − y) is the interaction potential, and Ṽ is the Fourier transform.
Apparently, as � → 0, the second term under the root sign must disappear. However, the value of k

can be arbitrarily large and this obstructs the passage to the limit. On the other hand, if the interaction
potential V (x− y) is zero, then the term k2

�/2 arises and it is further multiplied by �. The kinetic energy
k2

�
2/2 naturally does not disappear in the semiclassical limit. Therefore, the term containing � remains

in the classical limit. It is this term that is responsible for Bogolyubov superfluidity. The fact that this
term does not disappear in the classical limit is not obvious in Bogolyubov’s papers, because there is
no external field (external potential u(x)) in his work. In this case, as a rule, the semiclassical solution
coincides with the exact solution. Therefore, we shall introduce the external potential in its most general
form and calculate this correction.

Remark 9. In economics, both self-consistent equations and their linearization arise. The method in
which we pass to the limit as the parameter � tends to zero can yield the most important correction in the
corresponding linearized problems and this shows the way for solving these equations in general form.

13. NANODISTRIBUTION

The following question arises: If helium at low temperature consists of normal and superfluid liquid,
then its superfluidity also occurs in a capillary (in Bogolyubov’s famous paper of 1947) [80], superfluidity
was established for a torus without taking the boundary conditions into account.)

In our case, in order to believe in such an effect in the supercritical part of any pure gas, we must
establish the existence of the same superfluidity in a capillary. We shall show this to be true and also
prove the fact that superfluidity occurs in a very narrow nanocapillary in what follows.

When the author first produced his proof, his friends, specialists in physics, were quite bewildered.
It turns out that such superfluidity is observed experimentally. However, this effect was unexpected for
physicists, who often do not attach too much significance to experimental data. The fact that, in this
case, the theory and experiment are in agreement was not very convincing for physicists (the author and
the experimenters did not know each other’s works at that time). Since it is hard for experimenters to
understand the author’s mathematical works, we shall try to explain in a more convincing manner the
effect in question.

The important tool used by Bogolyubov in his paper on the superfluidity of weakly nonideal Bose
gas was the second quantization method. In this method, Fock space and creation and annihilation
operators are used and a chain of equations for N particles, where N varies up to infinity, is considered.
This chain is rewritten in the form of creation and annihilation operators as a single operator equation.
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The projection operator N̂ of the number of particles is introduced; this operator projects the solution of
the operator equation on the solution of the original N-particle equation.

In Landau’s paper [86], the following remarkable fact is mentioned: in the limit as N → ∞, when the
commutators of creation and annihilation operators vanish, the operator equation becomes a unitarily
nonlinear equation in three variables. Using the UD statistics, we can carry out this procedure for
objectively distinguishable objects. The asymptotics for the obtained unitarily nonlinear equation is
derived by using the complex germ method developed by the author in the general case.

It is sufficient to use these methods in order to obtain the superfluid component in supercritical ther-
modynamics, as described in Sec. 10. But these methods are inadequate for establishing superfluidity
in a narrow capillary. It turns out that we must also introduce creation and annihilation operators for
vapor dimers. This can be seen in the transition of cooled helium across the λ-point (see [87], [88]).

This procedure makes the asymptotic transition as µ → ∞ significantly more difficult, but, on the
other hand, it allows us to take into account the boundary conditions for the unitarily nonlinear equation
on the boundary of the capillary. A rigorous mathematical solution requires the use of number theory.
One of the lemmas was proved by A. Karatsuba at my request; his proof occupied 18 pages. In this
paper, we consider a less general problem, which made cumbersome calculations unnecessary.

How to construct the thermodynamics of nanostructures not from the physicist’s, but from the
mathematician’s point of view? Under our approach, we must remove everything that contradicts the
state of gas in a nanotube. Obviously, we mean cluster formation. In other words, the preference
principle considered in Sec. 4 is no longer suitable here, and we must consider an analog of the Bose
distribution without the preference principle. The parastatistics based on the creation of clusters also
does not apply here.

Let us compare the Bose distribution with the picture constructed by physicists [40]. Consider
Fig. 29.

Fig. 29. Comparison of isotherms plotted from the Bose distribution (shown by the thin lines corresponding to the
temperatures T ′

r) with isotherms obtained in [40] (shown by the thick lines corresponding to the temperatures Tr).

It is seen that there is a very good agreement. However, the triple point in the nanotube is lower, and
hence the constant λ is very small. The recount of temperatures depends on the unknown spinodal, but
the recounting method was described above.
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For supercritical states, we shall use Bachinskii’s formula for the Zeno line, which was obtained by
the author for the Lennard-Jones potential [34]–[36].

Taking into account the Zeno line influences the form of the Ω-potential as follows:

Ω(µ, T ) = −Λγ+1V ϕ(V/V0)
T γ+2

Γ(γ + 2)

ˆ ∞

0

tγ+1 dt

(et/y) − 1
= −Λγ+1T γ+2V ϕ(V/V0) Liγ+2(y), (13.1)

where y = exp(µ/T ) is the activity and µ stands for the chemical potential.

Let us write out the differential equations for ϕ(x) with regard to the relations on the Zeno line,

Tz = TB

(
1 − ρz

ρB

)
, Pz = ρzTB

(
1 − ρz

ρB

)
, (13.2)

where the subscript z means that the corresponding values are taken on the Zeno line, i.e., for Z = 1.

Let us construct the relation Z = 1 on the Zeno line. This relation is of the form

Z =
∂Ω/∂V

Tz∂Ω/∂µ
=

ϕ(Vz/V0) + (Vz/V0)ϕ′(Vz/V0)
ϕ(Vz/V0)

· Liγ+2(yz)
Liγ+1(yz)

= 1. (13.3)

It follows from (13.2) on the Zeno line that

T 2+γ
z [ϕ(Vz/V0) + (Vz/V0)ϕ′(Vz/V0)] Liγ+2(yz) =

(
N

Vz

)
TB

(
1 − N

VzρB

)
. (13.4)

Assume that the conditions N/V = const and N = const hold on the isochore and on the Zeno line
defined by relation (13.2). It follows from (13.3)and (13.4) that

T γ+1
B

(
1 − N

VzρB

)γ+1

ϕ(Vz/V0) Liγ+1(yz) =
N

VzρB
. (13.5)

Here N/Vz = const and N = const, and hence this equation contains the unknowns yz, Vz , and
ϕ(Vz/V0).

After finding the value yz as a function of Vz and ϕ(Vz/V0), we substitute it into formula (13.3), thus
transforming equation (13.3) into a differential equation for the function ϕ(x) depending on the constants
ρB and TB . The equation for ϕ(V ) enables one to find the point yz(ρ) on the Zeno line, and, after this,
the isochore is changed only at the expense of the modification of activity a = e−µ/T from yz(ρ) to a = 1
for the polylogarithm Liγ+1(a). The function ϕ(V ) is not reflected in the structure of the isochore, and it
is reflected in scaling only (see Fig. 30).

The most important problem in the theory of differential equations, the general existence problem for
a solution, remains open. Physicists pay less attention to this problem than mathematicians.

What are conditions for the existence of a solution of equations (13.3)-(13.4)?

Introduce the notation Ts = Tstandard = T/Tm and Ps = Pstandard = P/Pm, where Tm and Pm are
defined by the formulas

Pm = T γ+2
m , V0 = Vm = Vmax,

and Zm = Zmax and ρm = ρmin are defined below.

Since Nc does not depend on T , it follows that V and N are constant along the isochore V = Vm.

Let us write out the above relations at the point Ts = 1, Ps = 1:

[ϕ(Vz/V0) + (Vz/V0)ϕ′(Vz/V0)]ζ(γ + 2) = 1, Vmϕ(1)ζ(γ + 1) = Nc, Vm = Vmax, (13.6)

Hence

Zm =
Vm

Nc

ζ(γ + 1)
ζ(γ + 2)

· Liγ+2(1)
Liγ+1(1)

=
Vm

Nc
=

1
ρm

. (13.7)
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Fig. 30. The graph for the isochore of the polylogarithm Liγ+1(a) for γ = 2.

Fig. 31. The dotted line shows the Zeno line Z = 1. The bold line is the critical isotherm of a real gas (mercury) which
is calculated theoretically, and the thin lines are isochores of mercury for T < Tc.

Since we construct isochores V = const on the plane {Z,P}, it follows that Vm = Vz . Eliminating
(Vzϕ(Vz/V0)′ from (13.6) by using (13.5), we obtain

T γ+1
B

(
1 − 1

ZmρB

)γ+1 1
ζ(γ + 2)

Liγ+2(yz) =
1

Zm
. (13.8)

Since Vm = Vz , we see that

ϕ(1) = Nc(ζ(γ + 1)Vm)−1, ϕ(1) + ϕ′(1) = (ζ(γ + 2))−1, (13.9)

and it follows from (13.3) on the Zeno line that the following equation holds:

Liγ+2(yz)
Liγ+1(yz)

· Vm

Nc
· ζ(γ + 1)
ζ(γ + 2)

= 1. (13.10)

Eliminating yz, we find a relation for Zm and γ. The maximum value of Zm depends on the values of ρB

and TB only.
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Fig. 32. Thin solid lines depict experimental isotherms for methane. Thick solid lines approximating experimental
curves are plotted from theoretical data. The dotted lines show experimental isochores.

Fig. 33. The law of corresponding states for molecules of different gases. Thin lines depict isotherms of methane.
Different symbols on the isotherms correspond to argon, carbon dioxide, water, etc. The fact the isotherms of different
gases are close to one another illustrates the empirical law of corresponding states. The bold line depicts the theoretical
critical isotherm.

The family of isochores, according to system (13.4)-(13.5) with the above initial condition (13.9), is
shown in Fig. 31.

The first relation for the limit isochore Vm/Nc = Zm, for γ = γm, is of the form

Z = Zm · ζ(γ + 1)
ζ(γ + 2)

· Liγ+2(y)
Liγ+1(y)

, 1 ≤ y ≤ yz(γ). (13.11)
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Since Ps = T γ+2
s Liγ+2(y)/ζ(γ + 2) and N = T γ+1

s Liγ+1(y)Vm, it follows that the other relation is

Ps =
(

ζ(γ + 1)
Liγ+1(y)

)(γ+2)/(γ+1) Liγ+2(y)
ζ(γ + 2)

, 1 ≤ y ≤ yz(γ). (13.12)

Equations (13.11) and (13.12) give an almost straight segment of the isochore.
Starting from Z < 0.4 (for example, for a van der Waals gas), the phase transition to an ideal liquid

occurs.

Remark 10. Since the rightmost isochore (which is not shown in Fig. 31) is a segment of a straight
line, it follows that all isochores of high density must also be line segments. They pass through the point
ρ > ρm on the Zeno line and the point Z0 = 1/ρ on the line Ps = 1. We thus obtain (when including
the isochores shown in Fig. 31) a complete family of isochores for Z ≤ 1, P ≥ 1. To any point of an
isochore in the plane {Z,P} there corresponds some temperature, and we construct isotherms that are
well within the spread of gas isotherms satisfying the experimental law of corresponding states (see
Fig. 32 and Fig. 33).

14. SUPERFLUIDITY OF CLASSICAL LIQUID IN A NANOTUBE
FOR EVEN AND ODD NUMBERS OF NEUTRONS IN A MOLECULE

14.1. Preliminaries

1. The case of an even number of neutrons We first note that solutions of the variational equation for
the Vlasov equation do not coincide with the classical limit for the variational equations corresponding
to the mean-field equations in quantum theory. We consider mean-field equations of the form

ih
∂

∂t
ϕt(x) =

(
− h2

2m
∆ + Wt(x)

)
ϕt(x), Wt(x) = U(x) +

ˆ
dy V (x, y)|ϕt(y)|2 (14.1)

with the initial condition ϕ|t=0 = ϕ0, where ϕ0 ∈ W∞
2 (Rν),

´
dx |ϕ0(x)|2 = 1.

To find an asymptotic representation of the complex-germ type [62], we consider a system consisting
of the Hartree equation and its conjugate equation. We then take the system of variational equations
for it and replace the variations δϕ and δϕ∗ with the independent functions F and G. For F and G, we
obtain the system of equations

i
∂F t(x)

∂t
=
ˆ

dy

(
δ2H

δϕ∗(x)δϕ(y)
F t(y) +

δ2H

δϕ∗(x)δ∗ϕ(y)
Gt(y)

)
,

−i
∂Gt(x)

∂t
=
ˆ

dy

(
δ2H

δϕ(x)δϕ(y)
F t(y) +

δ2H

δϕ(x)δ∗ϕ(y)
Gt(y)

)
.

(14.2)

Roughly speaking, the classical equations can be obtained from the quantum ones using a sub-
stitution of the form ϕ = χeiS/h (the WKB method), ϕ∗ = χ∗e−iS∗/h, S = S∗, χ = χ(x, t) ∈ C∞,
S = S(x, t) ∈ C∞.

For variational equations, it is natural to vary not only the limit equation for χ and χ∗ but also the
functions S and S∗. This gives an important new term in the solution of the equation for collective
oscillations. We consider this fact for the simplest example investigated in the famous work by
Bogolyubov on a weakly nonideal Bose gas [80].

Let U = 0 for Eq. (14.1) in a three-dimensional box with edge length L, and let the L-periodicity
condition be imposed on the wave functions in this case (i.e., a problem on the torus with generators L,
L, and L is considered). Then the function

ϕ(x) = L−3/2ei(px−Ωt)/h (14.3)

with p = 2πn/L, where n is an integer-valued vector, satisfies Eq. (14.1) with

Ω =
p2

2m
+ L−3

ˆ
dxV (x). (14.4)
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We consider functions F (λ)(x) and G(λ)(x), where λ = 2πn/L, n �= 0, of the form

F (λ)t(x) = L−3/2ρλei|(p+λ)x+(β−Ω)t|/h,

G(λ)t(x) = L−3/2σλei|(−p+λ)x+(β+Ω)t|/h,
(14.5)

where

−βλρλ =
(

(p + λ)2

2m
− p2

2m
+ Ṽλ

)
ρλ + Ṽλσλ,

βλρλ =
(

(p − λ)2

2m
− p2

2m
+ Ṽλ

)
σλ + Ṽλρλ,

|σλ|2 − |ρλ|2 = 1, Ṽλ = L−3

ˆ
dxV (x)eiλx/h.

(14.6)

From system (14.6), we obtain

βλ = −pλ +

√(
λ2

2m
+ Ṽλ

)2

− Ṽ 2
λ . (14.7)

In this example, we have

u = eis(x,t)/h and u∗ = e−is(x,t)/h,

where s(x, t, ) = px + βt, and the variation of the action for the vector (δu, δu∗) is equal to λx ± Ωt. A
more thorough passage to the limit gives

Ṽλ → V0 = L−3

ˆ
dxV (x).

In the classical limit, we thus obtain the famous Bogolyubov relation (14.7). In this case, we have
u(x) = 0, and the exact solution coincides with the classical one as in the linear Schrödinger equation.
The situation with u(x) �= 0 was investigated in [77], and it turns out that a relation similar to (14.7)
is the classical limit as h → 0 for the variational equation in this general case. The curve for the
dependence of βλ on λ is called the Landau curve, and it specifies the superfluid state. The value λc at
which the superfluidity disappears is called the Landau criterion. Bogolyubov explains the superfluidity
phenomenon as follows: “the ‘degenerate condensate’ can move without friction relative to elementary
excitations with an arbitrary sufficiently small velocity" (p. 210 in [80]).

But this mathematical consideration is not related to the Bose–Einstein condensate; it merely means
that the quasiparticle spectrum determined for λ < λc is positive. This means that it is metastable
(see [61]). The Bose–Einstein condensate is mentioned here only to disprove the idea that it follows
from what was said above that this consideration applies to a classical liquid.

Indeed, for example, the molecules of a classical undischarged liquid are Bose particles if the number
of neutrons in the molecule is even. Because every particle (molecule) is neutral and is formed of an
even number l of neutrons, an N-particle equation can be written for this liquid. Thus, every ith particle
is 3(2k+l)-dimensional, where k is the number of electrons; there is a dependence on the potential
u(xi), xi ∈ R

6k+3l; and an equation for N particles xi, i = 1, 2, . . . , N , with a pair interaction potential
V (xi − xj) can be considered.

But Bogolyubov found only one series for the spectrum of the many-particle problem. As Landau
wrote, “N. N. Bogolyubov recently managed to find the general form of the energy spectrum for the
Bose–Einstein gas with a weak interaction between the particles using a clever application of second
quantization” (p. 43 in [86]). But this series is not unique, i.e., it does not exhaust the whole energy
spectrum.

In 2001, we suggested the ultrasecond quantization method [27] (also see [89]–[93]). The
ultrasecond-quantized Schrödinger equations, like the second-quantized ones, represent the N-particle
Schrödinger equation, and this means that the ultrasecond-quantized equation is essentially identical
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to the original N-particle equation: it coincides with the latter on the 3N-dimensional space. But in
contrast to the second-quantized case, replacing the creation and annihilation operators with c-numbers
does not yet give the correct asymptotic representation; it turns out that its results coincide with those
obtained by applying the Schröder variational principle or the Bogolyubov variational method.

For the Bardeen exotic potential, the correct asymptotic solution coincides with the one resulting
from applying the abovementioned ultrasecond quantization method. For potentials of general form,
in the case of pair interaction for example, the answer turns out to be different. In particular, the
ultrasecond quantization method gives certain other asymptotic series of eigenvalues corresponding to
the N-particle Schrödinger equation, which, in contrast to Bogolyubov series (14.7), are not metastable.
They correspond to vortex filaments [94].

It turns out that the decisive factor here is not the Bose–Einstein condensate, but the thickness of
the capillary (nanotube) in which the liquid flows. If we consider a liquid in a capillary or nanotube, then
the velocity corresponding to metastable states is not small for a sufficiently small radius. Consequently,
the liquid flows without friction for a smaller velocity.

The no-flow condition on the boundary of the nanotube (absence of flow) is the Dirichlet boundary
condition or the Born–von Karman boundary condition. It generates a standing wave that can be
interpreted as a particle–antiparticle pair: a particle with the momentum p orthogonal to the tube wall
and an antiparticle with the momentum −p.

In the boson case, we consider a short-range interaction potential V (xi − xj). This means that
only interaction with finitely many particles is possible as N → ∞ (N is the number of particles).
Consequently, the potential depends on N as VN = V ((xi − xj)N1/3). If V (y) is finitely supported
in ΩV , then the number of particles captured by the support is independent of N as N → ∞. As result,
superfluidity occurs for velocities less than min(λc, h/(2mR)), where R is the nanotube radius. The
upper bound is determined by the condition that the radius of action of the molecule must be less than
the radius of the nanotube.

We now present our own considerations that do not relate to the mathematical presentation.
Viscosity is connected with collisions of particles: the higher the temperature, the greater the number of
collisions. In a nanotube, there are few collisions because only those with the tube walls occur, which is
taken into account by the series obtained below. Precisely this fact, rather than the presence of the Bose
condensate, leads to the weakening of viscosity and consequently to superfluidity. In other words, even
for liquid He4, the main factor in the superfluidity phenomenon is not the condensate but the presence of
a thin capillary [95], [96].

2. The case of an odd number of neutrons In the case of an odd number of neutrons, the attractive,
not repulsive, part of the potential is important, and a more precise knowledge of the behavior of the
potential at infinity is therefore needed. To consider a system in which the number of neutrons in a
molecule is odd and its spin is therefore equal to 1/2, which leads to antisymmetry of eigenfunctions, we
use an interaction potential ensuring repulsion at short distances and attraction at long distances. In
particular, the interaction potential in the Fermi liquid He3 has this property.

The potential V (ξ) is assumed to be spherically symmetric, whence it follows that its Fourier
transform Ṽ (ξ) is also spherically symmetric. Next, we set a purely mathematical condition that we call
the mirror property. Both the potential V (ξ) and its Fourier transform Ṽ (ξ) must have a branching of
the form

√
|x| =

√
x2

1 + x2
2 + x2

3. It is even possible that this condition is unnecessary for the results
presented below, but it appears in a wide variety of other problems and is profoundly significant for
analytic continuation (see, e.g., [97]). This means that the potential V (r) essentially depends on the
first degree of the radius r and its Fourier transform has the same property in relation to |p|.

Passing to spherical coordinates leads to the relation11

V (r) =
4π
r

ˆ ∞

0
Ṽ (ξ) sin(ξr)ξ dξ. (14.8)

11M. V. Karasev comuunicated this formula to us.
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Under the assumption that Ṽ (|ξ|) tends to infinity as const/|ξ|2, we obtain

V (r) =
const

r
+ O(1)

as r → 0 and V (r) tends to infinity as const/r4.
The mirror condition implies that Ṽ ′

|ξ|(|ξ|)
∣∣
|ξ|=0

�= 0. It can be easily verified that

Ṽ|ξ|
∣∣
|ξ|=0

= − 1
8π

lim
r→∞

r4V (r).

As is known, the interaction potential decreases as r−6 in a free space, but if an arbitrarily small radially
symmetric potential is added, then the decrease is almost certainly of the order of r−4 (see [98, 310],
formula (6.170)).

14.2. Ultrasecond Quantization
Ultrasecond quantization was introduced in [27], [99]–[101] for problems in quantum mechanics and

statistical physics. We recall the notation and the main facts in the case of quantization by pairs of
particle and particle index and by pairs of two particles. In what follows, quantization over pairs allows
taking the pair correlations of particles into account when constructing asymptotic expansions. The
ultrasecond-quantization space is the bosonic Fock space F , b̂+(x, s) and b̂−(x, s) are the creation and
annihilation operators for particles with the index s in the space F [85], and B̂+(x, x′) and B̂−(x, x′)
are the creation and annihilation operators for pairs of particles in F . These operators satisfy the
commutation relations

[b̂−(x, s), b̂+(x′, s′)] = δss′δ(x − x′), [b̂±(x, s), b̂±(x′, s′)] = 0,

[B̂−(x1, x2), B̂+(x′
1, x

′
2)] = δ(x1 − x′

1)δ(x2 − x′
2),

[B̂±(x1, x2), B̂±(x′
1, x

′
2)] = 0,

[b̂±(x, s), B̂±(x′
1, x

′
2)] = [b̂±(x, s), B̂∓(x′

1, x
′
2)] = 0.

(14.9)

Let Φ0 be the vacuum operator in F with the properties

b̂−(x, s)Φ0 = 0, B̂−(x1, x2)Φ0 = 0. (14.10)

The variable x lies on a three-dimensional torus L × L × L, denoted by T. The discrete variable s,
s = 0, 1, . . . , is called the index (number) or statistical spin. Any vector Φ in F is uniquely representable
in the form

Φ =
∞∑

k=0

∞∑
M=0

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M

× Φk,M(x1, s1; . . . ;xk, sk; y1, y2; . . . ; y2M−1, y2M )

× b̂+(x1, s1) · · · b̂+(xk, sk)B̂+(y1, y2) · · · B̂+(y2M−1, y2M )Φ0, (14.11)

where the function Φk,M(x1, s1; . . . ;xk, sk; y1, y2; . . . ; y2M−1, y2M ) is symmetric under permutations of
the pairs of variables (xj , sj) and (xi, si) and under permutations of the pairs of variables (y2j−1, y2j) and
(y2i−1, y2i). In the bosonic case, we introduce the subspace FSymm

k,M consisting of vectors Φ such that
Φk′,M ′ = 0 for (k′,M ′) �= (k,M) and Φk,M is a symmetric function of x1, x2, . . . , xk, y1, y2, . . . , y2M . In
the fermionic case, we introduce the subspace FAsymm

k,M consisting of vectors Φ such that Φk′,M ′ = 0
for (k′,M ′) �= (k,M) and Φk,M is an antisymmetric function of x1, x2, . . . , xk, y1, y2, . . . , y2M . The

orthogonal projection operator from the space F onto the subspace FSymm
k,M has the form[27], [101]

Π̂Symm
k,M =

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M
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× b̂+(x1, s1) · · · b̂+(xk, sk)B̂+(y1, y2) · · · B̂+(y2M−1, y2M )

× Symm
x1...xky1...y2M

(b̂−(x1, s1) · · · b̂−(xk, sk)B̂−(y1, y2) · · · B̂−(y2M−1, y2M ))

× exp
(
−

∞∑
s=0

ˆ
dx b̂+(x, s)b̂−(x, s) −

¨
dy dy′ B̂+(y, y′)B̂−(y, y′)

)
, (14.12)

where Symmx1...xky1...y2M
is the symmetrization operator with respect to x1, . . . , xk, y1, . . . , y2M and the

operators b̂+(x, s), b̂−(x, s), B̂+(y, y′), and B̂−(y, y′) are Wick ordered [85]. The orthogonal projection
operator from the space F onto the subspace FAsymm

k,M has the form [27]

Π̂Asymm
k,M =

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M

× b̂+(x1, s1) · · · b̂+(xk, sk)B̂+(y1, y2) · · · B̂+(y2M−1, y2M )

× Asymm
x1...xky1...y2M

(b̂−(x1, s1) · · · b̂−(xk, sk)B̂−(y1, y2) · · · B̂−(y2M−1, y2M ))

× exp
(
−

∞∑
s=0

ˆ
dx b̂+(x, s)b̂−(x, s) −

¨
dy dy′ B̂+(y, y′)B̂−(y, y′)

)
,

where Asymmx1...xky1...y2M
is the antisymmetrization operator with respect to x1, . . . , xk, y1, . . . , y2M .

Here and further on, unless otherwise stipulated, the operators b̂+(x, s), b̂−(x, s), B̂+(y, y′), and
B̂−(y, y′) are assumed to be Wick ordered.

We consider a system of N identical particles on the torus T. We assume that the Hamiltonian for N
bosons or fermions has the form

ĤN = − �
2

2m

N∑
j=1

∆j +
N∑

j=1

N∑
l=j+1

V (xj − xl). (14.13)

According to [27], the ultrasecond-quantized Hamiltonian of the form

ĤB =
∞∑

k=0

∞∑
M=0

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M

× b̂+(x1, s1) · · · b̂+(xk, sk)B̂+(y1, y2) · · · B̂+(y2M−1, y2M )Ĥk+2M

× Symm
x1...xky1...y2M

(b̂−(x1, s1) · · · b̂−(xk, sk)B̂−(y1, y2) · · · B̂−(y2M−1, y2M ))

× exp
(
−

∞∑
s=0

ˆ
dx b̂+(x, s)b̂−(x, s) −

¨
dy dy′ B̂+(y, y′)B̂−(y, y′)

)
(14.14)

corresponds to the operator (14.13) in the bosonic case. And in the fermionic case, the corresponding

operator ĤF is expressed by a similar formula in which the operator Symm is replaced with Asymm.

By analogy with (14.13) and (14.14), the ultrasecond-quantized operator Â is associated [27] with each
N-particle operator,

ÂN

(
2
x1, . . . ,

2
xN ;−i

1
∂

∂x1
, . . . ,−i

1
∂

∂xN

)
.
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For example, in the bosonic case, the ultrasecond-quantized identity operator of the form

ÊB =
∞∑

k=0

∞∑
M=0

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M

× b̂+(x1, s1) · · · b̂+(xk, sk)B̂+(y1, y2) · · · B̂+(y2M−1, y2M )

× Symm
x1...xky1...y2M

(b̂−(x1, s1) · · · b̂−(xk, sk)B̂−(y1, y2) · · · B̂−(y2M−1, y2M ))

× exp
(
−

∞∑
s=0

ˆ
dx b̂+(x, s)b̂−(x, s) −

¨
dy dy′ B̂+(y, y′)B̂−(y, y′)

)
, (14.15)

which is the sum of projections (14.12), is associated with the identity operator. Similarly, the
ultrasecond-quantized identity operator in the fermionic case has the form

ÊF =
∞∑

k=0

∞∑
M=0

Π̂Asymm
k,M ,

and the operator Symm in formula (14.15) is replaced with Asymm.

We consider the eigenvalue problem

ĤB,FΦ = λÊBΦ, ÊΦ �= 0, (14.16)

in the bosonic and fermionic cases. The validity of the following assertion was proved in [27]: on the

subspaces FSymm
k,M and FAsymm

k,M of the space F , the corresponding operators ĤB and ĤF coincide

with the operator Ĥk+2M after they are acted upon by the projection onto the N-dimensional
subspace (see formula (14.22) below). Therefore, the eigenvalues λ for problem (14.16) in the bosonic
and fermionic cases coincide with the corresponding eigenvalues of the operators ĤN in (14.13). When
the commutators between the operators b̂−(x, s) and b̂+(x, s) and also between B̂−(x, y) and B̂+(x, y)
are of the order of smallness 1/N , the asymptotic expressions for the solutions of problem (14.16) are
determined by the extremum points of the pseudosymbol corresponding to problem (14.16).

For an arbitrary second-quantized operator Â, the pseudosymbol of the ultrasecond-quantized

operator Â corresponding to the former operator is given by the formula [27]

AB,F[b∗( · ), b( · ), B∗( · ), B( · )] =
Sp(ρ̂B,FÂ)
Sp(ρ̂B,F)

.

In the bosonic case, the pseudosymbol has the form

HB[b∗( · ), b( · ), B∗( · ), B( · )] =
{ ∞∑

k,M=0

1
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk dy1 · · · dy2M

× b∗(x1, s1) · · · b∗(xk, sk)B∗(y1, y2) · · ·B∗(y2M−1, y2M )Hk+2M

× Symm
x1...xky1...y2M

(b(x1, s1) · · · b(xk, sk)B(y1, y2) · · ·B(y2M−1, y2M ))
}

×
{ ∞∑

k′,M ′=0

1
k′!M ′!

∞∑
s′1=0

· · ·
∞∑

s′
k′=0

ˆ
· · ·

ˆ
dx′

1 · · · dx′
k′ dy′1 · · · dy′2M ′

× b∗(x′
1, s

′
1) · · · b∗(x′

k′ , s′k′)B∗(y′1, y
′
2) · · ·B∗(y′2M ′−1, y

′
2M ′)
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× Symm
x′
1...x′

k′y
′
1...y′

2M′

(b(x′
1, s

′
1) · · · b(x′

k′ , s′k′)B(y′1, y
′
2) · · ·B(y′2M ′−1, y

′
2M ′))

}−1

. (14.17)

In the fermionic case, the pseudosymbol is expressed similarly with the only distinction that Symm
in (14.17) is replaced with Asymm. The identity for the pseudosymbol (14.17)

HB[b∗( · ), b( · ), B∗( · ), B( · )] =
Sp(ρ̂BĤ)
Sp(ρ̂B)

, (14.18)

where Ĥ and ρ̂B are the second-quantized operators,

Ĥ =
ˆ

dx ψ̂+(x)
(
− �

2

2m
∆
)

ψ̂−(x) + +
1
2

¨
dx dy V (x, y)ψ̂+(y)ψ̂+(x)ψ̂−(y)ψ̂−(x), (14.19)

holds in the bosonic case. Here ρ̂B depends on the functions b(x, s) and B(y, y′),

ρ̂B =
∞∑

k=0

∞∑
M=0

1
k!M !(k + 2M)!

( ∞∑
s=0

¨
dx dx′ b(x, s)b∗(x′, s)ψ̂+(x)ψ̂−(x′)

)k

×
(¨

dy1 dy2 B(y1, y2)ψ̂+(y1)ψ̂+(y2)
)M

×
(¨

dy′1 dy′2 B(y′1, y
′
2)ψ̂

−(y′1)ψ̂
−(y′2)

)M

exp
(
−
ˆ

dz ψ̂+(z)ψ̂−(z)
)

, (14.20)

where ψ̂+(x) and ψ̂−(x) are the respective Wick-ordered bosonic creation and annihilation opera-
tors [85]. In the fermionic case, a similar identity holds,

HF[b∗( · ), b( · ), B∗( · ), B( · )] =
Sp(ρ̂FĤ)
Sp(ρ̂F)

,

where Ĥ and ρ̂F are the second-quantized operators

Ĥ =
ˆ

dx ψ̂+(x)
(
− �

2

2m
∆
)

ψ̂−(x) +
1
2

¨
dx dy V (x, y)ψ̂+(x)ψ̂+(y)ψ̂−(y)ψ̂−(x),

ρ̂F =
∞∑

k=0

∞∑
M=0

1
k!M !(k + 2M)!

(¨
dy1 dy2 B(y1, y2)ψ̂+(y1)ψ̂+(y2)

)M

×
∞∑

s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 dx′

1 · · · dxk dx′
k (x1, s1)b∗(x′

1, s1) · · · b(xk, sk)b∗(x′
k, sk)

× ψ̂+(x1) · · · ψ̂+(xk)P̂0ψ̂
−(x′

k) · · · ψ̂−(x′
1)
(¨

dy′1 dy′2 B(y′1, y
′
2)ψ̂

−(y′2)ψ̂
−(y′1)

)M

,

(14.21)

where ψ̂+(x) and ψ̂−(x) are the fermionic creation and annihilation operators in this case and P̂0 is the
projection operator onto the vacuum vector of the fermionic Fock space.

We introduce the ultrasecond-quantized number-of-particles operators in the space F [27],

N̂B =
∞∑

k=0

∞∑
M=0

(k + 2M)Π̂Symm
k,M , N̂F =

∞∑
k=0

∞∑
M=0

(k + 2M)Π̂Asymm
k,M . (14.22)

In the bosonic case, the pseudosymbol of the operator N̂B has the form

NB =
{ ∞∑

k=0

∞∑
M=0

k + 2M
k!M !

∞∑
s1=0

· · ·
∞∑

sk=0

ˆ
· · ·

ˆ
dx1 · · · dxk+2M
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× b∗(x1, s1) · · · b∗(xk, sk)B∗(xk+1, xk+2) · · ·B∗(xk+2M−1, xk+2M )

× Symm
x1...xk+2M

(b(x1, s1) · · · b(xk, sk)B(xk+1, xk+2) · · ·B(xk+2M−1, xk+2M ))
}

×
{ ∞∑

k′=0

∞∑
M ′=0

1
k′!M ′!

∞∑
s′1=0

· · ·
∞∑

s′
k′=0

ˆ
· · ·

ˆ
dz1 · · · dzk′+2M ′ b∗(z1, s

′
1) · · · b∗(zk′ , s′k′)

× B∗(zk′+1, zk′+2) · · ·B∗(xk′+2M ′−1, xk′+2M ′)

× Symm
z1...zk′+2M′

(b(z1, s
′
1) · · ·B(zk′+2M ′−1, zk′+2M ′))

}−1

. (14.23)

In the corresponding formula for the fermionic case, Symm is replaced with Asymm.

14.3. The Symbol of an Ultrasecond-Quantized Operator

We first note that the above definition of the pseudosymbol does not reflect the thermodynamic
asymptotic behavior quite fully, although it in fact agrees with the Bogolyubov–Dirac rule according
to which the creation and annihilation operators in the leading asymptotic term should be set equal to
c-numbers. Therefore, we define the symbol correctly (i.e., introduce the true symbol). Let an operator
Ĥ have the form

Ĥ =
L∑

l=1

ˆ
· · ·

ˆ
dx1 · · · dxl ψ̂

+(x1) · · · ψ̂+(xl)

× Hl

(
2
x1, . . . ,

2
xl;−i

1
∂

∂x1
, . . . ,−i

1
∂

∂xl

)
ψ̂−(xl) . . . ψ̂−(x1). (14.24)

Then in the case of ultrasecond quantization without creation and annihilation operators B̂±(x, y) for
pairs of particles, the identity

Ĥ = ÊÂ (14.25)

where Â is an operator in F defined by the relation

Â =
L∑

l=1

∞∑
s1=0

· · ·
∞∑

sl=0

ˆ
· · ·

ˆ
dx1 · · · dxl b̂

+(x1, s1) · · · ψ̂+(xl, sl)

× Hl

(
2
x1, . . . ,

2
xl;−i

1
∂

∂x1
, . . . ,−i

1
∂

∂xl

)
b̂−(xl, sl) · · · b̂−(x1), (14.26)

holds for the operators Ĥ and Ê defined above.
If ultrasecond quantization also takes the creation and annihilation operators into account for the

pairs of particles, then identity (14.25) also holds, but the operator Â has a more complicated form

than (14.26). For example, if the operator Ĥ is a particular case of operator (14.24) for L = 2, then Â
has the form

Â =
∞∑

s=0

ˆ
dx b̂+(x, s)

(
− h2

2m
∆
)

b̂−(x, s)

+
¨

dx dy B̂+(x, y)
(
− h2

2m
(∆x + ∆y)

)
B̂−(x, y)
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+
1
2

∞∑
s1=0

∞∑
s2=0

¨
dx dy V (x, y) b̂+(x, s1)b̂+(y, s2)b̂−(y, s2)b̂−(x, s1)

+
∞∑

s=0

˚
dx dy dz (V (x, y) + V (x, z))b̂+(x, s)B̂+(y, z)B̂−(y, z)b̂−(x, s)

+
¨

dx dy V (x, y)B̂+(x, y)B̂−(x, y)

+
1
2

˘
dx dy dz dw V (x, y)B̂+(x, y)B̂+(z,w)

× (B̂−(y,w)B̂−(x, z) + B̂−(w, y)B̂−(z, x)

+ B̂−(y, z)B̂−(w, x) + B̂−(z, y)B̂−(x,w)). (14.27)

If the operators B̂±(x, y) and b̂±(x, y) in (14.26) and (14.27) are set equal to c-numbers, then we obtain
the (true) symbol corresponding to the asymptotic representation in the thermodynamic limit.

14.4. The Case of an Even Number of Neutrons

We consider a system of N identical bosons of mass m located on a torus T whose diameters are L1,
L2, and L2. We assume that the bosons interact between themselves and that the interaction potential
has the form

V (N1/3(x − y)), (14.28)

where V (ξ) is a finitely supported even function and x and y are the boson coordinates on T. The
boundary condition on the side L1 is assumed to be periodic, and the zero-derivative condition is imposed
along the side L2. We note that interaction potential (14.28) depends on N whose radius decreases as
N increases with the average number of particles with which one particle interacts remaining constant.

For ultrasecond quantization over the pairs, the explicit expression for the ultrasecond-quantized

operator Ĥ corresponding to the bosonic system in question is given in (14.24). As discussed above,
this ultrasecond-quantized operator satisfies the identity

Ĥ = ÊÂ, (14.29)

where Ê is the ultrasecond-quantized identity operator and Â is an operator in the second-quantization
space. It can be easily verified that identity (14.29) is satisfied by an operator of the form

Â =
¨

dx dy B̂+(x, y)
(
− �

2

2m
(∆x + ∆y) + V (N1/3(x − y))

)
B̂−(x, y) +

+ 2
˘

dx dy dx′ dy′ V (N1/3(x − y))B̂+(x, y)B̂+(x′, y′)B̂−(x, x′)B̂−(y, y′), (14.30)

where B̂+(x, y) and B̂−(x, y) are the respective bosonic creation and annihilation operators for a pair
of particles in the Fock ultrasecond-quantization space. By identity (14.29), to find the asymptotic
expression as N → ∞ for the spectrum of the bosonic system under consideration, we must find the
corresponding asymptotic expression for operator (14.30).

Because the product of function (14.28) and N converges weakly to the Dirac delta function as
N → ∞, the expression for the operator Â in the right-hand side of (14.30) involves the small parameter
1/N before the second term in this limit case. This means that to find asymptotic representations for
eigenvalues and eigenfunctions of Â, we can use the classical methods developed in [61]. The asymptotic
formulas for eigenvalues and eigenfunctions are determined by the symbol of the operator (14.30), and
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this symbol is the true symbol for the ultrasecond-quantized problem. The true symbol corresponding
to operator (14.30) is the functional defined for the pair of functions Φ+(x, y) and Φ(x, y)

H[Φ+( · ),Φ( · )] =
¨

dx dy Φ+(x, y)
(
− �

2

2m
(∆x + ∆y)

)
Φ(x, y) +

+ 2
˘

dx dy dx′ dy′ (NV (N1/3(x − y)))Φ+(x, y)Φ+(x′, y′)Φ(x, x′)Φ(y, y′).

(14.31)

The conservation law for the number of particles in the system implies the condition¨
dx dy Φ+(x, y)Φ(x, y) =

1
2

(14.32)

for Φ+(x, y) and Φ(x, y).
According to the asymptotic methods in [61], to each solution of the system of equations

ΩΦ(x, y) =
δH

δΦ+(x, y)
, ΩΦ+(x, y) =

δH
δΦ(x, y)

(14.33)

that also satisfies condition (14.32), there corresponds an asymptotic series of eigenfunctions and
eigenvalues for operator (14.30) as N → ∞. It follows from the explicit form of true symbol (14.31)
that system of equations (14.33) can be written in the form

ΩΦ(x, y) = − �
2

2m
(∆x + ∆y)Φ(x, y)

+
¨

dx′ dy′ (NV (N1/3(x − y)) + NV (N1/3(x′ − y′)))Φ+(x′, y′)Φ(x, x′)Φ(y, y′),

ΩΦ+(x, y) = − �
2

2m
(∆x + ∆y)Φ+(x, y)

+ 2
¨

dx′ dy′ (NV (N1/3(x − x′)) + NV (N1/3(y − y′)))Φ(x′, y′)Φ+(x, x′)Φ+(y, y′).

Let vq be the coefficients in the Fourier series expansion for the potential NV (N1/3x) on the torus
(L1, L2, L2),

vq =
1

L1L2
2

ˆ
T

e−iqxNV ( 3
√

Nx) dx, v−q = vq. (14.34)

The exact solutions of system (14.34) are the functions

Φ+
k1,k2

=
1

L1L2
2

e−ik1(x+y) cos(k2(x − y)), (14.35)

Φk1,k2 =
1

L1L2
2

∞∑
l=0

ϕk2,le
ik1(x+y)eil(x−y) (14.36)

with the eigenvalue

Ω =
h2

m
(k2

1 + k2
2) + v0 + v2k2 , (14.37)

where ϕk2,l has the form

ϕk2,l =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−bl

2
+

1
2

√
b2
l − 1, l2 > k2

2,

−bl

2
− 1

2

√
b2
l − 1, l2 < k2

2,

1
2
, l = k2.

(14.38)
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Here, we have

bl =
(h2/m)(l2 − k2

2) − (v0 + v2k2)
vl−k2 + vl+k2

,

where bl = b−l and ϕk2,l = ϕk2,−l (if V (ξ) → 0, then ϕk2,l → 0). The vectors k1 and k2 play the role
of parameters labeling the Bogolyubov solutions of this system. The vector �k1/m is equal to the flow
velocity along the capillary for the bosonic system, and k2 is the wave vector of the transverse mode.

We note that bl → ∞ as |l| → ∞ because

|vl| =
1

L1L2
2

ˆ
NT

e−ilξ/NV (ξ) dξ ≤ 1
L1L2

2

ˆ
NT

|V (ξ)| dξ <
1

L1L2
2

ˆ
R3

|V (ξ)| dξ. (14.39)

(Here, NT is the torus with diameters NL1, NL2, and NL2.) Therefore, we have

ϕk,l
∼=

1
b2
l

, (14.40)

and series (14.36) hence converges absolutely.
We split series (14.36) into two parts: a sum over l ≤ N1/6 and a sum over l > N1/6. To an accuracy

of N−1/6, the terms in the first sum converge to

bl →
h2(l2 − k2

2)
2mV0

− 1 def= b0
l ,

ϕk2,l → −bl

2
± 1

2

√
b2
l − 1 def= ϕ0

k2,l

(14.41)

as N → ∞, which can be easily obtained using the change of variable 3
√

Nx = ξ in (14.34).
By (14.40), the other sum tends to zero as O(N−1/6). Therefore, the system of equations (14.34)

supplemented with condition (14.32) has the family of solutions

Φ+
k (x, y) =

1
L1L2

2

cos(k(x − y)),

Φk(x, y) =
1

L1L2
2

∑
l

ϕk,le
il(x−y)

(14.42)

for k1 = 0 as N → ∞. Here, k and l are three-dimensional vectors of the form 2π(0, n2/L2, n3/L2), n2

and n3 are integers, and ϕk,l in (14.38) become

ϕ0
k2,l =

1
2V0

(
�

2

2m
(k2

2 − l2) + V0 ±

√(
�2

2m
(k2

2 − l2) + V0

)2

− V 2
0

)
(14.43)

in this case, where we take the plus sign by virtue of the selection rules. Finally,

V0 =
1

L1L2
2

ˆ
R3

dxV (x). (14.44)

The vector k in formulas (14.42) plays the role of a parameter labeling the various solutions of system of
equations (14.34), (14.32). Solutions (14.42) are standing waves, and there is no flow in the series that
correspond to them.

The leading term of the asymptotic expression for the eigenvalues in the series corresponding to
solution (14.35), (14.36) is equal to the value of symbol (14.31) on these functions multiplied by N ,

Ek1,k2 = N

(
�

2(k2
1 + k2

2)
2m

+
V0

2

)
. (14.45)

Apart from the system of equations (14.34), the asymptotic expressions for the eigenvalues and
eigenfunctions, in particular, the subsequent terms after Ek1,k2 , are also determined by solutions of
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the system of variational equations for the system of Hamilton equations. The system of variational
equations for (14.34) has the form

(Ω − λ)F (x, y) = − �2

2m
(∆x + ∆y)F (x, y)

+ 2N
¨

dx′ dy′
(
V ( 3

√
N(x − y)) + V ( 3

√
N(x′ − y′))

)
×
(
G(x′, y′)Φ(x, x′)Φ(y, y′) + Φ+(x′, y′)F (x, x′)Φ(y, y′)

+ Φ+(x′, y′)Φ(x, x′)F (y, y′)
)
,

(Ω + λ)G(x, y) = − �
2

2m
(∆x + ∆y)G(x, y)

+ 2N
¨

dx′ dy′
(
V ( 3

√
N(x − x′)) + V ( 3

√
N(y − y′))

)
×
(
F (x′, y′)Φ+(x, x′)Φ+(y, y′) + Φ(x′, y′)G(x, x′)Φ+(y, y′) +

+ Φ(x′, y′)Φ+(x, x′)G(y, y′)
)
.

(14.46)

To find the quasiparticle spectrum, among all the solutions of the system of variational equations, we
must select the ones satisfying the selection rule stated in [102] for the complex germ in the case of
non-self-adjoint operators with a real spectrum.

If k2 = 0, then the asymptotic series associated with this solution is the Bogolyubov series corre-
sponding to the flow velocity �k1/m. The quasiparticle spectrum for this series is given by the well-
known formula

λl =

√(
�2l2

2m
+ V0

)2

− V 2
0 − �

2lk1

m
. (14.47)

We consider the case k2 �= 0. Substituting solutions (14.35), (14.36) in (14.46) and taking the
symmetry into account, we find that the solutions of the system of variational equations have the form

Gl(x, y) = u1,l(ei(−k1+k2)x+i(−k1+l)y + ei(−k1+k2)y+i(−k1+l)x)

+ u2,l

(
ei(−k1−k2)x+i(−k1+2k2+l)y + ei(−k1−k2)y+i(−k1+2k2+l)x

)
,

Fl(x, y) = −v1,l

(
ei(k1+k2)x+i(k1+l)y + ei(k1+k2)y+i(k1+l)x

)
− v2,l

(
ei(k1−k2)x+i(k1+2k2+l)y + ei(k1−k2)y+i(k1+2k2+l)x

)
+

∑
l′ �=l, l+2k2

wl,l′
(
ei(k1+k2+l−l′)x+i(k1+l′)y + ei(k1+k2+l−l′)y+i(k1+l′)x

)
,

(14.48)

where l �= −k2, and the numerical coefficients u1,l, u2,l, v1,l, v2,l, and wl,l′ are found from an infinite
system of equations. This system contains a closed subsystem of four equations for the coefficients u1,l,
u2,l, v1,l, and v2,l that can be written in the standard form

λ̃X = MX, (14.49)
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where λ̃ = λ + �2

m (k1, l), and X is the column vector of the form

X =

⎛⎜⎜⎜⎜⎜⎜⎝
u1,l

u2,l

v1,l

v2,l

⎞⎟⎟⎟⎟⎟⎟⎠ .

Using Eqs. (14.48) and (14.49), we obtain the matrix M whose elements are of the form

M =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

Bl +
vl−k2

2

v2k2+vl+k2
2

− vl+k2+vl−k2
2

0

v2k2+vl+k2
2

Bl+2k2 +
vl+3k2

2
0 − vl+k2+vl+3k2

2

2(v0 + vl−k2)ϕk2,l (v2k2 + vl+k2) (ϕk2,l + ϕk2,l+2k2) −Bl −
vl−k2

2
− v2k2+vl+k2

2

(v2k2 + vl+k2) (ϕk2,l + ϕk2,l+2k2) 2(v0 + vl+3k2)ϕk2,l+2k2 − v2k2+vl+k2
2

−Bl+2k2 − vl+3k2
2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

,

where

Bl =
�

2

2m
(l2 − k2

2) + (vl−k2 + vl+k2)ϕk2,l −
v2k2

2
.

The exact solution of relation (14.48) was obtained in [103]. It has the form

λk1k2,l = −�
2

m
(k1, l) +

√√√√ξk2,l +
√

ξ2
k2,l − 4ηk2,l

2
, (14.50)

where ξk,l, ηk,l is determined below in (14.51)–(14.55).

Below k2 is denoted by k. The expansion of ξk,l with respect to a = �
2

2m is of the form

ξk,l = −1
2
(vl+k + v2k)(vl+3k + vl−k − 2v2k)

+ a
(
l2(vl+3k + vl−k − 2v2k) + k2(3vl+3k − 2v2k − vl−k) + 4(l, k)(vl+3k − v2k)

)
+ 2a2

(
l4 + 5k4 + 8((k, l))2 + 2l2k2 + 4l2(k, l) + 12k2(k, l)

)
, (14.51)

where (k, l) denotes the inner product of the vectors k and l, while the second and third powers of k and l
denote the second and fourth powers of the moduli of these vectors. The expansion of ηk,l with respect
to a is of the form

ηk,l = −a

2
(l2 + k2 + 2(k, l))(vl+k + v2k)

× (2vl+3kvl−k − vl+3kv2k + vl+3kvl+k − v2kvl−k − 2v2kvl+k + vl+kvl−k)

+ a2η
(2)
k,l + a3η

(3)
k,l + a4η

(4)
k,l , (14.52)

where

η
(2)
k,l = −8((l, k))2v2kvl−k − 8((l, k))2vl+kvl−k + 4k2(l, k)(v2k)2

− 4k2(l, k)(vl+k)2 − 3
2
k4v2kvl−k + 4l2(l, k)(v2k)2 − 1

2
l4vl+kvl+3k

− 1
2
l4vl+kvl−k − 3

2
l4v2kvl+3k +

5
2
k4v2kvl+3k − 1

2
k4vl+kvl+3k

− l4v2kvl+k − 2l2k2(vl+k)2 −
9
2
k4vl+kvl−k − 4l2(l, k)(vl+k)2 − 3

2
l4v2kvl−k
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+ l4vl−kvl+3k − 3k4vl−kvl+3k + 3k4v2kvl+k + 2l2k2(v2k)2 + 2l2k2vl−kvl+3k

− 4l2(l, k)vl+kvl−k − 4l2(l, k)v2kvl+k − 4l2(l, k)v2kvl+3k − 8l2(l, k)v2kvl−k

+ 4l2(l, k)vl−kvl+3k − 12k2(l, k)vl+kvl−k + 4k2(l, k)v2kvl+k + 4k2(l, k)v2kvl+3k

− 8k2(l, k)v2kvl−k − 4k2(l, k)vl−kvl+3k − 5l2k2v2kvl−k + l4(v2k)2 − k4(vl+k)2

+ k4(v2k)2 − 4((l, k))2(vl+k)2 + 4((l, k))2(v2k)2 − l2k2v2kvl+3k − 2l2k2v2kvl+k

− 3l2k2vl+kvl−k + l2k2vl+kvl+3k − l4(vl+k)2, (14.53)

η
(3)
k,l = 16k2((l, k))2v2k − 16k2((l, k))2vl−k + 20k4(l, k)v2k − 24k4(l, k)vl−k + 4l4(l, k)vl+3k

− 16l2((l, k))2v2k + 16l2((l, k))2vl−k − 5l2k4vl+3k + 2l2k4v2k + 3l2k4vl−k + l4k2vl+3k

− 12l4(l, k)v2k + 8l4(l, k)vl−k − 6l4k2v2k + 4k4(l, k)vl+3k + 5l4k2vl−k − 8l2k2(l, k)v2k

− 8l2k2(l, k)vl+3k + l6vl+3k − 9k6vl−k + 6k6v2k + 3k6vl+3k + 16l2k2(l, k)vl−k

− 2l6v2k + l6vl−k, (14.54)

η
(4)
k,l =

(
l4 + 2l2k2 + 4l2(l, k) − 3k4 − 4k2(l, k)

)2
. (14.55)

Formulas (14.51)–(14.55) with l �= −k2 determine the quasiparticle spectrum for the series cor-
responding to solutions (14.35), (14.36). After the application of the selection rules for the complex
germ in the non-self-adjoint situation [102], it follows from explicit formulas (14.51)–(14.55) that the
quasiparticle spectrum contains only positive eigenvalues. Consequently, the series corresponding to
smooth solution (14.35), (14.36) for k2 �= 0 is metastable. In what follows, we assume that L1 � L2.

We consider the Bogolyubov series corresponding to the flow with velocity �k0/m along the capillary,
where k0 = 2π(n1/L1, 0, 0). For the bosonic system under consideration, the leading asymptotic term
for the eigenvalues in this series is equal to

N

(
�

2k2
0

2m
+

V0

2

)
. (14.56)

We now assume that the relation between L1 and L2 admits a pair k1, k = 2π(0, n2/L2, n3/L2) such
that the corresponding value of symbol (14.31) in (14.45) exactly coincides with leading asymptotic
term (14.56). This means that there can be resonance between superfluid states in the Bogolyubov
series and nonsuperfluid states in the nonmetastable series corresponding to branching solutions [104].
If L1 is very large, then resonance is also possible in the case of the eigenvalue series corresponding to
the branching solutions close to expression (14.56) and not necessarily coinciding with it. The existence
of this resonance indicates the possibility of transition from the superfluid state to the metastable one,
from which the system then passes to a lower energy level, and this indicates the loss of superfluidity.

The minimum energy corresponding to the nonmetastable series relates to the case

k = 2π(0, 1/L2, 0),

and according to formula (14.45), it is given by the expression

Emin = N

(
�

2(2π)2

2mL2
2

+
V0

2

)
. (14.57)

Comparing (14.57) and (14.56), we conclude that no resonance is possible if the modulus of the flow
velocity v is less than a certain bound,

|v| < vc(L2) ≡
2π�

mL2
=

h

mL2
, (14.58)
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which corresponds to the appearance of a vortex filament. The expression vc(L2) in the right-hand side
of (14.58) increases as the capillary thickness L2 decreases. If L2 is less than 2π�/(mvcL), where vcL

is the Landau critical velocity, then it is substantially larger than the Landau critical velocity determined
by (14.47), and superfluidity disappears in this case as the Landau velocity is attained. But as L2

increases, the resonance between superfluid and nonmetastable states sets in at velocities less than
the Landau velocity, and this accounts for the dependence of the critical velocity on the thickness of the
capillary.

As we showed in [77], the Landau curve and the Bogolyubov quasiparticles are preserved in the
classical limit, and all the conditions therefore remain applicable for the classical liquid. Consequently,
under the condition v < h/(mL2), where L2 is the nanotube diameter, the following mathematical fact
occurs: the classical liquid in a nanotube must be superfluid.

For finite values of l, we have obtained series that provide decay. But large values of l play a certain
role in the Bogolyubov formula, and we therefore consider the situation with these large values. In this
case, Vl does not converge to V0 as N → ∞. Consequently, Eqs. (14.48) and (14.49) lead to a more
exact matrix M whose elements have the forms

M11 = Bl +
vl−k2

2
, M12 = M21 =

v2k2 + vl+k2

2
,

M13 = −vl+k2 + vl−k2

2
, M14 = M23 = 0, M22 = Bl+2k2 +

vl+3k2

2
,

M24 = −vl+k2 + vl+3k2

2
, M31 = 2(v0 + vl−k2)ϕk2,l,

M32 = M41 = (v2k2 + vl+k2)(ϕk2,l + ϕk2,l+2k2), M33 = −Bl −
vl−k2

2
,

M34 = M43 = −v2k2 + vl+k2

2
M42 = 2(v0 + vl+3k2)ϕk2,l+2k2,

M44 = −Bl+2k2 −
vl+3k2

2
,

where

Bl =
�

2

2m
(l2 − k2

2) + (vl−k2 + vl+k2)ϕk2,l −
v2k2

2
.

It is clear that

vl+k2 + vl+3k2 = vl−k2 + vl+k2 + O

(
1
N

)
(14.59)

holds uniformly with respect to l as l → ∞. (To show this, it suffices to make a type-(14.39) change of
variable.) Therefore, the matrix M can be represented approximately as a block matrix,

M =

⎛⎝C −VlE

D −C

⎞⎠ ,

where E is the 2×2 identity matrix and Vl = (vl−k2 + vl+k2)/2. We also introduce the notation
V +

l = (vl+k2 + v2k2)/2 and V −
l = (vl−k2 + v0)/2. The eigenvalues corresponding to Eq. (14.49) after

application of the selection rules become

λk1,k2,l = −2ak1(k2 + l)

+
(

1
2
(a(l2 − k2

2) + Vl − V +
l )2 +

1
2
(a(l21 − k2

2) + Vl − V +
l )2 + V +2

l − V 2
l
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+
1
2
(a(l21 + l2 − 2k2

2) + 2Vl − 2V +
l )
√

a2(l21 − l2)2 + 4V +2

l

)1/2

, (14.60)

where a = �
2/(2m) and l1 = l + 2k2. In this case, we have

λk1,k2,l = −2ak1l + ((al2 + Vl − V +
l )2 + V +2

l − V 2
l + 2(al2 + Vl − V +

l )|V +
l |)1/2,

Vl = vl, V +
l = V −

l =
vl + v0

2
for k2 = 0. Formally setting k2 = 0, we obtain the well-known Bogolyubov formula

λ1,l = −�
2

m
k1l +

√(
�2l2

2m
+ vl

)2

− v2
l , (14.61)

where the Fourier transform of the potential vl tends to zero for l � 3
√

N and the kinetic term then starts
playing the dominant role.

We assume that L2 is much greater than some standard length, for example, the electron radius
r0, and although L1 � L2, we can choose a sufficiently large integer n. In other words, we have
L2/r0 → ∞ and L1/r0 → ∞, but the vector k1 = (n/L1, 0, 0) is finite because n → ∞. In the language
of nonstandard analysis, this means that L2 is an infinitely large (nonstandard) number, L1 and n1 are
nonstandard numbers of higher order, and k1 = (n/L1, 0, 0) is a standard finite number. In this case, k2

is equal to an infinitely small (nonstandard) zero, i.e., k2
∼= 0, and k1 is a standard number.

14.5. The Case of an Odd Number of Neutrons

We consider the system of Hamilton equations for fermions

ΩΦ(x, y) = − �
2

2m
(∆x + ∆y)Φ(x, y) +

+ 2N
¨

dx′ dy′ (V (x − y) + V (x′ − y′))Φ+(x′, y′)Φ(x, x′)Φ(y′, y),

ΩΦ+(x, y) = − �
2

2m
(∆x + ∆y)Φ+(x, y) +

+ 2N
¨

dx′ dy′ (V (x − x′) + V (y − y′))Φ(x′, y′)Φ+(x, x′)Φ+(y′, y).

(14.62)

The functions Φ+(x, y) and Φ(x, y) are antisymmetric and satisfy normalization condition (14.32). We
represent the interaction potential in the form of a Fourier series,

NV (x) =
∑

p

vpe
ipx, vp =

1
L1L

2
2

ˆ
dxNV (x)e−ipx, vp = v−p. (14.63)

We seek the solution of system of equations (14.62), (14.32) in the form

Φ+
k1,k2

(x, y) =
1

L1L2
2

e−ik1(x+y) sin(k2(x − y)),

Φk1,k2(x, y) =
1

L1L
2
2

∑
l

ϕk2,le
il(x−y)+ik1(x+y),

(14.64)

where k1, k2, and l are three-dimensional vectors of the form 2π(n1/L1, n2/L2, n3/L2) and n1, n2, and
n3 are integers. The numbers ϕk2,l must satisfy the condition ϕk2,l = −ϕk2,−l. After the substitution,
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the eigenvalue is equal to

Ω =
�

2

m
(k2

1 + k2
2) + v2k2 − v0,

and the numbers ϕk2,l are

ϕk2,l = − ibk2,l

2
± 1

2

√
1 − b2

k2,l, bk2,l ≡
�2

m (l2 − k2
2) + v0 − v2k2

vl−k2 − vl+k2

.

We note that bk2,l = −bk2,−l. We set

ϕk2,l = − ibk2,l

2
+

1
2

vl−k2 − vl+k2

|vl−k2 − vl+k2 |

√
1 − b2

k2,l.

Then ϕk2,l is equal to −ϕk2,−l. For the latest work on carbon nanotube transport, see [105]–[107].
We consider the system of variational equations for fermions

(Ω − λ)F (x, y) = − �
2

2m
(∆x + ∆y)F (x, y)

+ 2N
¨

dx′ dy′
(
V ( 3

√
N(x − y)) + V ( 3

√
N(x′ − y′))

)
× r
(
G(x′, y′)Φ(x, x′)Φ(y′, y) + Φ+(x′, y′)F (x, x′)Φ(y′, y)

+ Φ+(x′, y′)Φ(x, x′)F (y′, y)
)
,

(Ω + λ)G(x, y) = − �
2

2m
(∆x + ∆y)G(x, y)

+ 2N
¨

dx′ dy′
(
V ( 3

√
N(x − x′)) + V ( 3

√
N(y − y′))

)
×
(
F (x′, y′)Φ+(x, x′)Φ+(y′, y) + Φ(x′, y′)G(x, x′)Φ+(y′, y)

+ Φ(x′, y′)Φ+(x, x′)G(y′, y)
)
.

(14.65)

The solutions of system (14.65) are

Gl(x, y) = u1,l

(
ei(−k1+k2)x+i(−k1+l)y − ei(−k1+k2)y+i(−k1+l)x

)
+ u2,l

(
ei(−k1−k2)x+i(−k1+2k2+l)y − ei(−k1−k2)y+i(−k1+2k2+l)x

)
,

Fl(x, y) = v1,l

(
ei(k1+k2)x+i(k1+l)y − ei(k1+k2)y+i(k1+l)x

)
+ v2,l

(
ei(k1−k2)x+i(k1+2k2+l)y − ei(k1−k2)y+i(k1+2k2+l)x

)
+

∑
l′ �=l, l+2k2

wl,l′
(
ei(k1+k2+l−l′)x+i(k1+l′)y − ei(k1+k2+l−l′)y+i(k1+l′)x

)
,

(14.66)

where l �= −k2 and the numerical coefficients u1,l, u2,l, v1,l, v2,l, and wl,l′ are found from an infinite
system of equations. This system of equations contains a closed subsystem of four equations for the
coefficients u1,l, u2,l, v1,l, and v2,l that can be written in standard form (14.49).

The matrix M has the elements

M11 = Bl +
vl−k2

2
, M12 = M21 =

vl+k2 − v2k2

2
,

M13 =
vl−k2 − vl+k2

2
, M14 = M23 = 0,
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M22 = Bl+2k2 +
vl+3k2

2
, M24 =

vl+3k2 − vl+k2

2
,

M31 = 2i(vl−k2 − v0)ϕk2,l, M32 = M41 = i(v2k2 − vl+k2)(ϕk2,l+2k2 − ϕk2,l),

M33 = −Bl −
vl−k2

2
, M34 = M43 = −vl+k2 − v2k2

2
,

M42 = 2i(v0 − vl+3k2)ϕk2,l+2k2, M44 = −Bl+2k2 −
vl+3k2

2
,

where

Bl =
�

2

2m
(l2 − k2

2) + i(vl+k2 − vl−k2)ϕk2,l −
v2k2

2
.

After the selection rules are applied, the eigenvalues corresponding to Eq. (14.49) also contain
positive quasiparticles for k2 �= 0. For k2 = 0, the eigenvalues are given by

λ1,l = −�
2

m
lk1 ±

�
2l2

2m
, λ2,l = −�

2

m
lk1 ±

∣∣∣∣�2l2

2m
+ vl − v0

∣∣∣∣.
This means that we take the vectors k2 = (0, 1/L2, 0) and k1 = (n/L1, 0, 0). If n � 1 and consequently
k1 � k2, then the velocity vector of the liquid is directed predominantly along the tube. As before, let
L1 = ∞, L2 = ∞, and n = ∞ be nonstandard numbers, let L1 � L2, and let k1 be a standard number.
Then k2

∼= 0, and ϕk2,l assumes nonstandard values for k2
∼= 0. But if 0 ≤ l ≤

√
k2M , where M ≤ ∞,

i.e., 0 ≤ l ≤ ∞, then ϕk2,l can be regarded as a standard number. For k2
∼= 0, taking the selection rule

into account, by analogy with formula (14.61) in the boson case, we obtain

λ2,l = −�
2

m
lk1 +

∣∣∣∣�2l2

2m
+ vl − v0

∣∣∣∣. (14.67)

By Sec. 1.2, we have

vl − v0 ∼ −4π|l| lim
r→∞

r4V (r)

as |l| → 0, and because V (r) is an attractive potential as r → ∞, we have

−4π lim
r→∞

r4V (r) = c > 0.

The modulus tends to infinity as �
2l2/(2m) as l → ∞ because vl tends to infinity as 1/|l|2. Hence, the

behavior of the modulus in (14.67) is similar to the variation of the Landau curve for bosons. By analogy
with the Landau criterion, the criterion for k1 has the form

|k1| ≤
m

�2
min

l

∣∣∣∣vl − v0

|l| +
�

2|l|
2m

∣∣∣∣.
Of course, constraint (14.58) also applies here.

Thus, we see that the major role in fermionic superfluidity is played by the attraction at long distances,
while the repulsion at short distances is important for the appearance of bosonic superfluidity. In both
cases, the transition to the condensate state (for pairs in the Fermi liquid) is a phase transition that has
no relation to superfluidity.
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