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INTRODUCTION
In quantum mechanics, when studying states localized near a stable equilibrium, an important

role is played by systems with Hamiltonians of the form
“oscillator” + “perturbation”. (1)

In particular, these systems were studied from the viewpoint of normal forms (see, e.g., [1–4]) and
from the viewpoint of general semiclassical approximation theory (see [6–9]). After the quantum
averaging of system (1), the perturbation turns out to commute with the leading term, i.e., with the
oscillator. In other words, the averaged perturbation becomes an element of the symmetry algebra
of the oscillator.

If the frequencies of the oscillator are not in resonance, then the symmetry algebra is trivial and
commutative. The complicated behavior of the dynamics and spectrum happens under a resonance.
In this case, the symmetry algebra is noncommutative.

The simplest example of resonant oscillator is the isotropic one, which has equal frequencies
for all the n degrees of freedom. The symmetry algebra here is the simple Lie algebra su(n). In
particular, the two-dimensional case n = 2 (the Schwinger model) was studied in [10–14], and the
three-dimensional case (n = 3) in [15–17].

In the anisotropic resonant case, for a generic set of commensurable frequencies, the symmetry
algebra is no longer a Lie algebra. It is described by finitely many nonlinear permutation relations.
This fact was discovered in [18–20]. In this generic case, a nontrivial problems arises: describe
a finite basis of generators of the symmetry algebra. For a generic n-dimensional resonance, the
construction of the basis is unknown. At present, there is only an existence proof for a finite basis
and an upper bound for the number of its elements, see [19].

In the present paper, the problem posed in [19] is solved for the first nontrivial case n = 3. For
a generic three-frequency resonance oscillator, we give a complete description of the finite minimal
basis of generators of the algebra of its symmetries. This description was announced in [21].

The author thanks M. V. Karasev for setting the problem and for useful discussions.

1. SYMMETRIES OF A RESONANT OSCILLATOR

The quantum oscillator with frequencies ω1, . . . , ωn is described by the Hamiltonian

Ĥ =
1

2

n
∑

j=1

(

− ~
2∂2/∂q2

j + ω2
j q2

j − ~ωj

)

. (2)

This operator acts with respect to the variables q1, . . . , qn in the space L2(Rn). Assume that the
parameter ~ and all frequencies ωj are positive.

As was shown in [19], studying the symmetry algebra of the operator Ĥ (i.e., the algebra of

operators in L2(Rn) commuting with Ĥ) can be reduced to studying the cases for which the
following resonance condition is satisfied:

all the frequencies ωj are integer and pairwise coprime. (3)
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Proposition 1. In the case of resonance (3), the algebra of symmetries of the oscillator (2) is
generated by the operators

ẑ∗lẑm. (4)

Here the operators ẑ = (ẑ1, . . . , ẑn) are defined by the formula ẑj =
(

~∂/∂qj + ωjqj

)

/
√

2ωj , the

operators ẑ∗ = (ẑ∗1 , . . . , ẑ∗n) are adjoint to ẑ, and the vectors l = (l1, . . . , ln) and m = (m1, . . . ,mn)
satisfy the conditions n

∑

j=1

ωj(lj − mj) = 0, lj ,mj ∈ Z+. (5)

Note that there are infinitely many generators of type (4), (5). They are not independent. Some
of them can be represented as polynomials in other generators. Therefore, there is a problem of
extracting smallest subsets from the large set of generators (4), (5).

Definition 1. By a basis we mean a minimal subset of the set of generators (4), (5) still
generating the entire algebra of symmetries.

In the two-frequency case (for n = 2), the problem of extracting the minimal basis of generators
can be solved easily (see [19]).

Proposition 2. For n = 2, a basis of the set of generators (4), (5) is formed by the four

operators Ŝ1 = ẑ∗1 ẑ1, Ŝ2 = ẑ∗2 ẑ2, Â = ẑ∗ω1
2 ẑω2

1 , and Â∗ = ẑ∗ω2
1 ẑω1

2 .

In the case of multifrequency resonance (n > 3), the problem of extracting the basis is much
more difficult. The following fact was proved in [19].

Proposition 3. For any n ∈ N, there exists a finite basis of generators (4), (5).

In the present paper, the problem of explicit description of the basis is solved in the three-
frequency case (n = 3).

2. BASIS AND MINIMAL VECTORS

Each generator (4) is uniquely determined by the pair of vectors l,m ∈ Z
n
+ satisfying condition

(5). Therefore, the problem of extracting the finite basis of generators (4), (5) can be reformulated
in the language of vectors.

To this end, we introduce the notion of minimal vector. Choose a frequency vector ω ∈ N
n.

A vector ρ ∈ Z
n with integer Cartesian coordinates ρj is referred to as a resonance vector if it is

orthogonal to the frequency vector, i.e., n
∑

j=1

ωjρj = 0. (6)

The set of all resonance vectors is called the resonance lattice and denoted by R = R[ω].
Since all the frequencies ωj are positive, it follows that the Cartesian coordinates of the resonance

vector cannot be of the same sign. We say that a resonance vector ρ ∈ R belongs to the normal
sublattice Rj1,...,jk ⊂ R if its Cartesian coordinates with indices j1, . . . , jk are nonnegative and the
other coordinates are nonpositive. Therefore, since k can take any values between 1 and n − 1,
the total number of normal sublattices is

∑n−1
k=1 Ck

n = 2n − 2.

For example, for n = 2, there are only two normal sublattices, R1 and R2; for n = 3, there are
six normal sublattices, namely, R1, R2, R3, R12, R23, and R31.

The union of all normal sublattices gives the entire resonance lattice R.
If all Cartesian coordinates of the resonance vector ρ are nonzero, then it belongs to only one

normal sublattice. Such a vector ρ is called an internal vector of the given sublattice. If at least
one of the coordinates of the resonance vector ρ is zero, then it belongs to the intersection of at
least two normal sublattices. Such a vector is called a face vector of these sublattices.

For example, for j1 6= j2, the intersection Rj1 ∩Rj2 consists of the zero vector only, and the inter-
section Rj1 ∩Rj1,j2 consists of all resonance vectors whose coordinate with index j1 is nonnegative,
the coordinate with index j2 is zero, and the other coordinates are nonpositive.

Note that each normal sublattice is an additive semigroup.
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Definition 2. A nonzero resonance vector is said to be minimal if it is not the sum of any two
nonzero vectors in a normal sublattice.

Denote the set of all minimal vectors by M = M[ω].

Proposition 4 [19, 21]. Any resonance vector ρ can be decomposed into the sum of minimal
vectors with nonnegative coefficients,

ρ =
∑

κ∈Mρ

nρ
κ

κ, nρ
κ
∈ Z+, Mρ ⊂ M. (7)

Here Mρ stands for the set of minimal vectors in the intersection of all normal sublattices to which
the vector ρ belongs.

Note that the decomposition (7) is not unique in general.

By Proposition 4, one can reduce the problem of extracting a finite basis of generators (4), (5)
to the problem of describing the set M of minimal vectors.

Introduce the following auxiliary notation. For each resonance vector ρ, define the vectors
ρ+, ρ− ∈ Zn

+ by the rule

ρ+
j

def
=

{

ρj , ρj > 0,

0, ρj 6 0,
ρ−j

def
=

{

0, ρj > 0,

−ρj , ρj 6 0
(j = 1, . . . , n). (8)

Theorem 1. Let the resonance condition (3) be satisfied. Then the operators

Ŝj
def
= ẑ∗j ẑj (j = 1, . . . , n), Âρ

def
= ẑ∗ρ+

ẑρ−

(ρ ∈ M) (9)

form a basis of generators of the symmetry algebra of the n-frequency oscillator (2). Here M stands
for the set of all minimal vectors.

To prove Theorem 1, we need the following lemma.

Lemma 1. Assume that the resonance vectors κ and θ belong to the same normal sublattice.

Then (a) (κ + θ)± = κ
± + θ±, (b) κ

+
j θ−j (j = 1, . . . , n).

Proof of Theorem 1. Note first that the operators Ŝj and Âρ can be represented in the form

(4), (5). In representation (4), the operator Ŝj corresponds to the vectors l = m = ∆(j), where ∆(j)

stands for the vector whose jth coordinate is equal to 1 and the other coordinates are zero. The
operator Âρ in representation (4) corresponds to the vectors l = ρ+ and m = ρ−; these vectors
satisfy conditions (5), because ρ+ − ρ− = ρ is a resonance vector (see (6)).

Let us now show that any generator ẑ∗lẑm (4), (5) can be represented as a polynomial in
operators (9). First, consider the case in which the vectors l and m (5) satisfy the additional
condition

ljmj = 0 (j = 1, . . . , n). (10)

Then it follows from (5), (6), and (8) that ρ
def
= l − m is a resonance vector and that ρ+ = l and

ρ− = m. By Proposition 4, ρ can be decomposed into a linear combination ρ =
∑

κ∈Mρ
nρ

κ
κ of

minimal vectors κ in a subset Mρ belonging to the normal sublattice. Here the coefficients nρ
κ

are
nonnegative. Therefore, Lemma 1 can be applied to the vectors nρ

κ
κ, which gives

l = ρ+ =
∑

κ∈Mρ

nρ
κ

κ
+, m = ρ− =

∑

κ∈Mρ

nρ
κ

κ
−, κ̃

+
j

˜̃κ
−

j = 0 (j = 1, . . . , n; κ̃, ˜̃κ ∈ Mρ).

Hence, for the generator (4), (5), (10), we have the representation

ẑ∗lẑm =
∏

κ∈Ml−m

(ẑ∗κ
+

)nl−m
κ ·

∏

κ∈Ml−m

(ẑκ
−

)nl−m
κ

in which any two multipliers commute, [ẑ∗κ̃
+

, ẑ∗
˜̃
κ

+

] = [ẑ∗κ̃
+

, ẑ
˜̃
κ

−

] = [ẑκ̃
−

, ẑ
˜̃
κ

−

] = 0 (κ̃, ˜̃κ ∈
Ml−m). Transposing these multipliers, we obtain the following expression for the generator (4),
(5), (10) in terms of the generators (9):

ẑ∗lẑm =
∏

κ∈Ml−m

(ẑ∗κ
+

ẑκ̃
−

)nl−m
κ =

∏

κ∈Ml−m

(Â
κ
)nl−m

κ .

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 16 No. 4 2009



MINIMAL BASIS OF THE SYMMETRY ALGEBRA 521

Assume now that the vectors l and m satisfying (5) do not satisfy the additional condition (10),

i.e., for some j, we have ljmj 6= 0. Then lj > 1 and mj > 1. In this case, the vectors l′
def
= l − ∆(j)

and m′ def
= m − ∆(j) also satisfy conditions (5). Therefore,

ẑ∗lẑm = ẑ∗l′ ẑm′

(Ŝj − ~m′
j), (11)

which expresses the generator ẑ∗lẑm in terms of the generators Ŝj and ẑ∗l′ ẑm′

. (Here we have used

the commutation relation Ŝj ẑk = ẑk(Ŝj − ~ δjk).) Applying formula (11) several times, we can

express ẑ∗lẑm in terms of Ŝ1, . . . , Ŝn and ẑ∗l̃ẑm̃, where l̃ and m̃ satisfy conditions (5), (10). Hence,
any generator (4), (5) can be represented as a polynomial in the generators (9).

It remains to show that no generator of the form (9) can be represented as a polynomial in the
other generators in (9). The operators (9) can be represented in the form

Ŝj = sj(
2

ẑ∗,
1

ẑ), Âρ = aρ(
2

ẑ∗,
1

ẑ),

where the symbols sj(z, z) = zjzj and aρ(z, z) = zρ+

zρ−

are the polynomials in the variables z =
(z1, . . . , zn) ∈ C

n and the complex conjugate variables z Hence, it suffices to prove our statement
for symbols only. Moreover, since the symbols sj and aρ are monomials, the assumption that one of
the generators (9) can be represented as a polynomial in the other generators (9) implies that the
symbol of this generator is the product of the other symbols raised to certain powers. This follows
from the fact that the noncommutative product of polynomials in z and z is equal to their usual
commutative product plus a polynomial of lower degree. For example, if Âρ can be polynomially

expressed in terms of Ŝj (j = 1, . . . , n) and Âσ (σ ∈ M, σ 6= ρ), then

aρ(z, z) =
n

∏

j=1

sj(z, z)kj ·
∏

σ∈M, σ 6=ρ

aσ(z, z)nσ ,

where kj and nσ are some nonnegative integers. Equating the exponents of z and z on the left- and
right-hand sides of this formula, we obtain the vector relations

ρ± =
n

∑

j=1

kj∆
(j) +

∑

σ∈M, σ 6=ρ

nσσ±, (12)

which imply that the minimal vector ρ = ρ+ − ρ− can be decomposed into a linear combination
ρ =

∑

σ∈M, σ 6=ρ nσ σ of nonzero vectors σ with nonnegative integer coefficients nσ. By the definition

of the minimal vector, this is possible only if this linear combination contains vectors σ̃ and ˜̃σ
belonging to different normal sublattices (nσ̃ 6= 0 and n˜̃σ 6= 0). There is at least one index j for

which the jth coordinates of the vectors have opposite signs, i.e., σ̃j
˜̃σj < 0. Therefore, we have the

inequality (nσ̃ σ̃ + n˜̃σ
˜̃σ)±j < nσ̃ σ̃±

j + n˜̃σ
˜̃σ
±

j . Hence,

ρ±j =
(

∑

σ∈M, σ 6=ρ

nσ σ
)±

j
<

∑

σ∈M, σ 6=ρ

nσ σ±
j .

However, this contradicts relations (12). Therefore, the generator Âρ cannot be represented as a

polynomial in the other generators (9). Obviously, Ŝj cannot be represented as polynomials in the
other generators (9) either. Thus, the operators (9) satisfy the conditions for a basis.

Remark 1. By Theorem 1, the basis of generators (4), (5) is related to the set M of minimal
vectors. Therefore, the basis of generators (4), (5) can naturally be referred to as minimal basis.

3. SET M OF MINIMAL VECTORS IN THE CASE OF n = 3

Thus, the problem in question is reduced to the problem of describing the set M of minimal
vectors. We give the solution of the latter problem in the three-frequency case (n = 3). Let us first
describe the set R of resonance vectors for n = 3. Consider the Diophantine equation

µω1 + νω2 + ω3 = 0 (13)
for the unknown integers µ and ν.
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Lemma 2. Let ω1, ω2, and ω3 be pairwise coprime positive integers. Then there is a unique
solution of Eq. (13) such that 0 6 ν 6 ω1 − 1. (14)
In particular, if ω1 = 1, then this solution is given by µ = −ω3 and ν = 0. If ω1 > 2, then ν > 1.

Proof. Consider the set of numbers of the form νω2 + ω3, where ν ∈ {0, 1, . . . , ω1 − 1}. Divide
each of these numbers by ω1 with the remainder, νω2 + ω3 = dω1 + r, 0 6 r 6 ω1 − 1. Note
that, since ω1 and ω2 are coprime and inequality (14) holds, different values of the parameter ν are
associated with different remainders r. Therefore, the number of values attained by r coincides with
the number of values of ν, and hence is equal to ω1. Therefore, r takes (only once) all the values in
the set {0, 1, . . . , ω1−1}. In particular, for some ν (which is unique), the corresponding remainder is

zero. For this value of ν, the number νω2 +ω3 is divisible by ω1, i.e., µ
def
= −

νω2 + ω3

ω1
is an integer.

These numbers (µ, ν) form a pair giving a unique solution of Eq. (13) satisfying condition (14).

For each k ∈ Z+, introduce the notation

ν(k) = kν (mod ω1), µ(k) = −
kω3 + ν(k)ω2

ω1
, (15)

where ν is the solution of the Diophantine equation (13) with condition (14). The numbers µ(k)

and ν(k) are integer, and 0 6 ν(k) 6 ω1 − 1. If k = 0, then µ(0) = ν(0) = 0; for k = 1, we obtain
µ(1) = µ and ν(1) = ν.

Proposition 5. In the three-frequency case, under condition (3), the resonance lattice R =
R23 ∪R31 ∪R12 ∪R1 ∪R2 ∪R3 has the following structure.

The normal sublattice R23 consists of the resonance vectors

(µ(k) − lω2, ν
(k) + lω1, k), k ∈ Z+, l ∈ Z+. (16)

The vectors of the other normal sublattices R31 and R12 can be obtained from the description of
the vectors in R23 by cyclic permutation of the indices 1, 2, 3. The vectors in the normal sublattice
Rj have the form (−σ), where σ is the resonance vector in the sublattice Rkl, and k and l are the
indices complementing the index j to the triple of the indices 1, 2, 3.

Proof. Let n = 3. By definition, the normal sublattice R23 consists of the vectors with Cartesian
coordinates (x, y, k), where k ∈ Z+ and (x, y) are integer solutions of the equation

xω1 + yω2 + kω3 = 0 (17)
under the conditions

x 6 0, y > 0. (18)
It follows from the second formula in (15) that (x, y) = (µ(k), ν(k)) is a particular solution of the
inhomogeneous equation (17). Since the frequencies ω1 and ω2 are coprime, the general solution of
the corresponding homogeneous equation x̃ω1 + ỹω2 = 0 has the form (x̃, ỹ) = (−lω2, lω1), where
l ∈ Z. Hence, the general solution of Eq. (17) is given by the formula (x, y) = (µ(k)− lω2, ν

(k)+ lω1).
It remains to note that conditions (18) are satisfied for l > 0. As a result, we see that the normal
sublattice R23 consists of the vectors (16).

The other statements in Proposition 6 are obvious.

Let us now describe the set M of minimal vectors in the case of n = 3.

Theorem 2. In the three-frequency case, under condition (3), the minimal vectors in the reso-

nance lattice R = R23 ∪R31 ∪R12 ∪R1 ∪R2 ∪R3 have the following structure.

If ω1 = 1, then there are no internal minimal vectors in the sublattice R23.

If ω1 > 2, then all internal minimal vectors in the sublattice R23 are determined by the sequence

(µ(k), ν(k), k), k = 1, . . . , ω1 − 1, (19)
and the vector with index k is preserved in the sequence (19) only if ν(k) < ν(j) for any j
in {1, . . . , k − 1}.

The face minimal vectors in R23 have the form

(−ω3, 0, ω1) ∈ R23 ∩R3, (−ω2, ω1, 0) ∈ R23 ∩R2. (20)

The minimal vectors in the normal sublattices R31 and R12 can be obtained from the above
description of the vectors in R23 by cyclic permutation of the indices 1, 2, 3.
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The minimal vectors in the normal sublattices Rj have the form (−σ), where σ is the minimal

vector in the sublattice in Rkl and k and l are the indices complementing the index j to the triple
of the indices 1, 2, 3.

To prove Theorem 2, we need the following lemma.

Lemma 3. Let ω1 and ω2 be coprime. Then, for any values of j, k ∈ Z+, only one of the following

two conditions is possible for the numbers (15): either ν(j+k) = ν(j) + ν(k) and µ(j+k) = µ(j) + µ(k)

or ν(j+k) = ν(j) + ν(k) − ω1 and µ(j+k) = µ(j) + µ(k) + ω2.

Proof of Lemma 3. It follows from (15) that ν(j+k)−ν(j)−ν(k) can be divided by ω1. However,
the numbers ν(j+k), ν(j), and ν(k) satisfy the conditions 0 6 ν(j+k) 6 ω1 − 1, 0 6 ν(j) 6 ω1 − 1,
and 0 6 ν(k) 6 ω1 − 1. Therefore, 2 − 2ω1 6 ν(j+k) − ν(j) − ν(k) 6 ω1 − 1. Only two numbers in
the family {2 − 2ω1, 3 − 2ω1, . . . , ω1 − 1} are divisible by ω1. These are 0 and −ω1. Hence, either
ν(j+k) − ν(j) − ν(k) = 0 or ν(j+k) − ν(j) − ν(k) = −ω1. In the first case, µ(j+k) − µ(j) − µ(k) = 0 by
(15). In the other case, µ(j+k) − µ(j) − µ(k) = ω2.

Proof of Theorem 2. It is sufficient to describe the minimal vectors in the normal sublat-
tice R23. Recall that the sublattice R23 consists of the vectors (µ(k) − lω2, ν

(k) + lω1, k), k ∈ Z+,
l ∈ Z+ (see (16)). We are to extract the subset of minimal vectors from this set.

First, consider the vectors corresponding to the value k = 0, i.e., ρ(l) def
= (−lω2, lω2, 0), l ∈ Z+.

These are the face vectors in the intersection R23 ∩ R2. For l > 2, the vector ρ(l) is not minimal,
because it can be decomposed into the sum of two nonzero vectors from the sublattice R23, ρ(l) =
ρ(l−1) + ρ(1). Further, for l = 0, we obtain the zero vector ρ(0). By Definition 2, this vector is also
not minimal. Finally, for l = 1, we obtain the vector ρ(1) = (−ω2, ω1, 0). Let us show that this

vector is minimal. Assume that ρ(1) can be represented as the sum ρ(1) = ρ̃ + ˜̃ρ of vectors ρ̃ and
˜̃ρ in the same normal sublattice. Then the coordinates with index 3 of these vectors must be zero.

Hence, ρ̃ = (−j̃ω2, j̃ω1, 0) and ˜̃ρ = (−˜̃jω2,
˜̃jω1, 0), where j̃ and ˜̃j stand for some integers such that

j̃ + ˜̃j = 1. Since ρ̃ and ˜̃ρ belong to the same normal sublattice, j̃ and ˜̃j cannot have opposite signs.

Hence, one of the numbers j̃ and ˜̃j vanishes, and therefore one of the vectors ρ̃ and ˜̃ρ is zero. Thus,
we have proved that ρ(1) is minimal.

Now let k > 1. Note first that, for l > 1, the vector (16) is not minimal, because it can be
decomposed into the sum of vectors in the normal sublattice R23, (µ(k) − lω2, ν

(k) + lω1, k) =
(µ(k), ν(k), k) + (−lω2, lω1, 0). Therefore, we must look for the minimal vectors in the sublattice

R23 only among the vectors σ(k) def
= (µ(k), ν(k), k), k ∈ N.

Let us try to represent σ(k) as the sum of two nonzero vectors σ̃ and ˜̃σ in R23,
σ(k) = σ̃ + ˜̃σ. (21)

It is clear that the coordinates with index 3 of the vectors σ̃ and ˜̃σ are some nonnegative integers

k̃ and ˜̃k such that k̃ + ˜̃k = k. Consider the following two possible cases separately.

(a) One of the numbers k̃ and
˜̃
k is zero, and the other number is equal to k. To be definite,

assume that k̃ = 0 and
˜̃
k = k. Then σ̃ = (−mω2,mω1, 0) by Proposition 5, where m ∈ Z+. However,

σ̃ = 0 for m = 0 and, for m > 1, it follows from (21) that the coordinate with index 2 of the vector
˜̃σ is negative, ˜̃σ2 = σ

(k)
2 − σ̃2 = ν(k) − mω1 6 ν(k) − ω1 < 0. Hence ˜̃σ /∈ R23. Therefore, there is no

decomposition (21) in which k̃ or ˜̃k vanishes.

We also note that, if k = 1, then k cannot be decomposed into the sum k = k̃ + ˜̃k, k̃ > 0, ˜̃k > 0,

in any way which differs from that treated above, where k̃ = 0 and ˜̃k = 1 (or, conversely, k̃ = 1

and
˜̃
k = 0). Therefore, the vector σ(1) is minimal.

(b) k > 2 and both the numbers k̃ and
˜̃
k are positive. Then, by Proposition 5, the resonance

vectors σ̃ and ˜̃σ have the form σ̃ = (µ(k̃) − l̃ω2, ν
(k̃) + l̃ω1, k̃) and ˜̃σ = (µ(

˜̃
k) −

˜̃
lω2, ν

(
˜̃
k) +

˜̃
lω1,

˜̃
k),
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where l̃ and ˜̃l are some nonnegative numbers. On the other hand, it is easy to see that the numbers

l̃ and ˜̃l are nonpositive. Indeed, it follows from relation (21) (for the coordinate with index 2) that

l̃ω1 6 ν(k̃) + l̃ω1 = σ̃2 6 σ
(k)
2 = ν(k) 6 ω1 − 1. This implies that l̃ 6 0. We can similarly prove that

˜̃
l 6 0. Hence, l̃ =

˜̃
l = 0.

Thus, if a decomposition (21) in case (b) exists, then it is of the form (µ(k), ν(k), k) = (µ(k̃), ν(k̃), k̃)

+ (µ(k−k̃), ν(k−k̃), k − k̃), where 1 6 k̃ 6 k − 1. By Lemma 3, for each k̃, 1 6 k̃ 6 k − 1, one

of the following two cases is possible: either ν(k) = ν(k̃) + ν(k−k̃) and µ(k) = µ(k̃) + µ(k−k̃) or

ν(k) = ν(k̃) + ν(k−k̃) − ω1 and µ(k) = µ(k̃) + µ(k−k̃) + ω2. Hence, for k > 2, the vector σ(k) can be
represented as the sum (21) of nonzero vectors in a normal sublattice if and only if the relation

ν(k) = ν(k̃) + ν(k−k̃) holds for some k̃ ∈ {1, 2, . . . , k − 1}. For the vector σ(k) to be minimal, it is

necessary and sufficient that ν(k) = ν(k̃) + ν(k−k̃) − ω1 for any k̃ ∈ {1, 2, . . . , k − 1}.

It remains to note that the relation ν(k) = ν(k̃) + ν(k−k̃) − ω1 is equivalent to the inequality

ν(k) < ν(k̃). Hence, for k > 2, the vector σ(k) is minimal if and only if ν(k) < ν(k̃) for any
k̃ ∈ {1, 2, . . . , k − 1}.

In conclusion, we note that ν(ω1) = 0. Therefore, if k > ω1 + 1, then ν(k) > 0 = ν(k̃) for k̃ = ω1.
Hence, for k > ω1 + 1, the vector σ(k) is not minimal.

However, if k = ω1, then, for the vector σ(k) = σ(ω1) = (−ω3, 0, ω1), the minimality condition

0 < ν(k̃) is satisfied for any k̃ ∈ {1, 2, . . . , ω1 − 1}. Indeed, since the frequencies ω1 and ω3 are

coprime, the numbers ν and ω1 are also coprime by relation (13). Hence, k̃ν is divisible by ω1

only if k̃ is a multiple of ω1. Hence, for any k̃ ∈ {1, 2, . . . , ω1 − 1}, the number ν k̃ = k̃ν (mod ω1)
is greater than zero. Therefore, the vector σ(ω1) is minimal. The vector σ(ω1) is a face vector. It
belongs to the intersection R23 ∩R3.

For 1 6 k 6 ω1 − 1, all the three coordinates of the vector σ(k) are nonzero. Hence, σ(k) is an
internal vector of the sublattice R23.

Corollary 1. In the three-frequency case (n = 3), the number |M| of minimal resonance vectors

has the upper bound |M| 6 2
∑3

j=1 ωj .

Proof. The number of internal minimal vectors in the normal sublattice R23 coincides with the
number of internal minimal vectors in R1 and, according to (19), does not exceed ω1 − 1. Similar
estimates hold for the sublattices R31 (and for R2) and R12 (and for R3); in this case, the frequency
ω1 is replaced by ω2 or ω3. Thus, the total number of internal minimal vectors does not exceed

2[(ω1 − 1) + (ω2 − 1) + (ω3 − 1)] = 2
∑3

j=1 ωj − 6, and the total number of face minimal vectors

(see (20)) is equal to 6.

4. QUANTUM RESONANCE ALGEBRA

Following [21], let us describe the resonance algebra of the quantum n-frequency oscillator (2)
in the case of positive frequencies satisfying the resonance condition (3). Introduce the following
notation. For each pair of vectors α, β ∈ Z

n, define the vector [α|β] with the Cartesian coordinates

by the formula [α|β]j
def
= min{α−

j , β+
j } − min{β−

j , α+
j } (j = 1, . . . , n). Here the notation (8) was

used.
For any a ∈ R and m ∈ Z, write

(a)m
def
=







(a + ~) . . . (a + ~m) for m > 1,

1 for m = 0,

a(a − ~) . . . (a − ~(|m| − 1)) for m 6 −1.

(22)

For the vectors s ∈ R
n and ρ ∈ Z

n, set (s)ρ
def
= (s1)ρ1

· · · (sn)ρn
, where each of the multipliers is

given by (22). Further, for a pair of vectors ρ, σ ∈ Z
n, we define the polynomial gρ,σ on R

n by the

formula gρ,σ(s)
def
= (s − ~ρ)[σ|ρ], s ∈ R

n.
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Theorem 3.

(a) The algebra of symmetries of the quantum n-frequency oscillator Ĥ (2) in the case of positive

frequencies satisfying the resonance condition (3) is generated by the operators Ŝ = (Ŝ1, . . . , Ŝn)

and Âρ (ρ ∈ M) defined in (9). Here M is the set of minimal resonance vectors in Z
n.

(b) The operators Ŝj and Âρ satisfy the following quantum constraints and commutation rela-
tions.

Quantum constraints of Hermitian type:

Ŝ∗
j = Ŝj , Â∗

ρ = Â−ρ (23)
for any j ∈ {1, . . . , n} and any ρ ∈ M.

Quantum constraints of commutative type:
∏

ρ

(Âρ)
kρ =

∏

σ

(Âσ)lσ (24)

for any families of minimal vectors ρ and σ in the same normal sublattice and for the numbers
kρ, lσ ∈ N such that

∑

ρ

kρρ =
∑

σ

lσσ. (25)

Quantum constraints of noncommutative type: if the minimal vectors ρ and σ do not
belong to the same normal sublattice and ρ 6= −σ, then

ÂρÂσ = gρ,σ(Ŝ)
∏

κ∈Mρ+σ

(Â
κ
)nρ+σ

κ , (26)

where nρ+σ
κ

are the coefficients of decomposition (7) of the vector ρ + σ in minimal vectors from
Mρ+σ.

Commutation relations:
[Ŝj , Ŝk] = 0, [Ŝj , Âρ] = ~ρjÂρ, [Â−ρ, Âρ] = ~F−ρ,ρ(Ŝ) (27)

for any j, k ∈ {1, . . . , n} and ρ ∈ M, where the polynomials Fρ,σ are given by the formula

Fρ,σ
def
= (gρ,σ − gσ,ρ)/~. (28)

(c) Relations (23), (24), (26), (27) have the Casimir element
∑n

j=1 ωjŜj. In representation (9),

this element coincides with the Hamiltonian (2) of the oscillator,
∑n

j=1 ωjŜj = Ĥ.

Remark 2. Relation of the form (25) is said to be reducible if the coefficients kρ and lσ can be
represented as the sum kρ = k′

ρ+k′′
ρ , lσ = l′σ+l′′σ , where k′

ρ, k
′′
ρ , l′σ, l′′σ ∈ Z+ and (

∑

ρ k′
ρ)·(

∑

ρ k′′
ρ ) 6= 0

are such that
∑

ρ k′
ρ ρ =

∑

σ l′σ σ. In the other cases, relation (25) is said to be irreducible.

Note that the number of irreducible relations (25), and hence the number of constraints of
commutative type (24), is finite (see [21]).

Remark 3. The product
∏

κ∈Mρ+σ
(Â

κ
)nρ+σ

κ on the right-hand side of (26) is well defined,

because, due to constraints of commutative type, it does not depend on the choice of decomposition
(7) of the vector ρ + σ in minimal vectors.

Remark 4. In fact, the set of constraints of noncommutative type (26) consists of the commu-
tation relations

[Âρ, Âσ ] = ~Fρ,σ(Ŝ)
∏

κ∈Mρ+σ

(Â
κ
)nρ+σ

κ ,

where Fρ,σ is defined in (28), and the anticommutation relations

[Âρ, Âσ ]+ =
(

gρ,σ(S) + gσ,ρ(S)
)

∏

κ∈Mρ+σ

(Â
κ
)nρ+σ

κ . (26 ′)

We call relations (26 ′) the actual constraints of noncommutative type.

The set of constraints of commutative type (24) also contains commutation relations. These
are the constraints (24) corresponding to the vector equalities ρ + σ = σ + ρ for the vectors
ρ, σ ∈ M belonging to the same normal sublattice. Eliminating the commutation relations from the
set of constraints (24), we obtain the set of actual constraints of noncommutative type. The actual
constraints in this set need not be independent. More precisely, the number of independent actual
constraints is equal to |M| − n + 1, where |M| is the number of minimal vectors.
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Definition 3. An algebra with involution generated by the elements Ŝj (j = 1, . . . , n) and Âρ

(ρ ∈ M) satisfying the relations (23), (24), (26), (27) is referred to as a resonance algebra.

An abstract resonance algebra (not necessarily represented by the realization (9)) was considered
in [21], where the properties of the structure functions gρ,σ of this algebra were studied, the commu-
tation relations following from (23), (24), (26), (27) were obtained, the irreducible representations
of the resonance algebra in Hilbert spaces of polynomials were constructed, and the constructions
of the reproducing measure and coherent states were presented.

Since, for n = 3, the description of the set M was found in Section 3, we can explicitly present
actual constraints and the commutation relations determining the resonance algebra. Here we
consider only two examples.

Example 1. Let n = 3 and ω = (1, 2, 3). Then there are 10 minimal resonance vectors M =

{±α,±β,±γ,±δ,±ε}, where α
def
= (−3, 0, 1), β

def
= (2,−1, 0), γ

def
= (0, 3,−2), δ

def
= (1,−2, 1), and

ε
def
= (1, 1,−1).

In the sublattice R23, there are no internal minimal vectors. The face minimal vectors in R23

are α ∈ R23 ∩R3 and −β ∈ R23 ∩R2.

The sublattice R31 contains one internal minimal vector δ and two face vectors: β ∈ R31 ∩ R1

and −γ ∈ R31 ∩R3. They satisfy the relation β + (−γ) = 2δ.

The sublattice R12 also contains one internal minimal vector ε and two face vectors: γ ∈ R12∩R2

and −α ∈ R12 ∩R1 with the relation γ + (−α) = 3ε.

The minimal vectors in the sublattice R1 are −α and −β, in the sublattice R2, these are the
vectors −δ, −β, and γ, and in the sublattice R3, these are the vectors −ε, −γ, and α.

The resonance algebra is determined by the constraints (23) of Hermitian type, by the following
actual constraints of commutative and noncommutative type:

ÂβÂ−γ = (Âδ)
2, ÂγÂ−α = (Âε)

2,

[Âα, Âβ ]+ = 2(Ŝ2
1 + 2~Ŝ1 + 3~

2)Â−ε, [Âα, Âγ ]+ = 2(Ŝ3 + ~)Â−βÂ−δ,

[Âα, Âδ]+ = (2Ŝ1 + 3~)(Â−ε)
2 [Âα, Â−δ ]+ = (2Ŝ3 + ~)(Â−β)2,

[Âα, Âε]+ = (2Ŝ1Ŝ3 + ~Ŝ1 + 3~Ŝ3)Â−β , [Âβ , Âγ ]+ = (2Ŝ2 − ~)(Âε)
2,

[Âβ , Â−δ]+ = 2(Ŝ1Ŝ2 − ~
2)Âε, [Âβ , Âε]+ = (2Ŝ2 + ~)Â−α,

[Âβ , Â−ε]+ = 2Ŝ1Âδ, [Âγ , Â−ε]+ = (2Ŝ2Ŝ3 + 2~Ŝ2 − ~Ŝ3 − 4~
2)Â−δ,

[Âγ , Âδ]+ = 2(Ŝ2
2 Ŝ3 + ~Ŝ2

2 − 3~
2Ŝ2 + 2~

2Ŝ3 + 2~
3)Âε,

[Âδ , Âε]+ = (2Ŝ2Ŝ3 + ~Ŝ2 + 2~Ŝ3)Âβ , [Âδ, Â−ε]+ = (2Ŝ1 + ~)Â−γ ,

and by the following commutation relations: [Âα, Â−β ] = 0, [Âα, Â−γ ] = 0,

[Âα, Â−ε] = 0, [Âβ , Â−γ ] = 0, [Âβ , Âδ] = 0, [Âγ , Â−δ] = 0, [Âγ , Âε] = 0,

[Âα, Âβ ] = 6~(Ŝ1 + ~)Â−ε, [Âα, Âγ ] = −2~Â−βÂ−δ, [Âα, Âδ] = 3~(Â−ε)
2,

[Âα, Â−δ] = −~(Â−β)2, [Âα, Âε] = ~(3Ŝ3 − Ŝ1)Â−β , [Âβ , Âγ ] = 3~(Âε)
2,

[Âβ , Â−δ] = 2~(Ŝ1 − Ŝ2)Âε, [Âβ , Âε] = ~Â−α, [Âβ , Â−ε] = −2~Âδ ,

[Âγ , Â−ε] = ~(2Ŝ2 − 3Ŝ3 − 4~)Â−δ, [Âγ , Âδ ] = 2~(Ŝ2
2 − 3Ŝ2Ŝ3 − 3~Ŝ2 + 2~

2)Âε,

[Âδ, Âε] = ~(2Ŝ3 − Ŝ2)Âβ , [Âδ, Â−ε] = −~Â−γ ,

[Ŝ1, Ŝ2] = 0, [Ŝ2, Ŝ3] = 0, [Ŝ3, Ŝ1] = 0,

[Ŝ1, Âα] = −3~Âα, [Ŝ1, Âβ ] = 2~Âβ , [Ŝ1, Âδ] = ~Âδ , [Ŝ1, Âγ ] = 0, [Ŝ1, Âε] = ~Âε,

[Ŝ2, Âα] = 0, [Ŝ2, Âβ ] = −~Âβ , [Ŝ2, Âγ ] = 3~Âγ , [Ŝ2, Âδ] = −2~Âδ, [Ŝ2, Âε] = ~Âε,

[Ŝ3, Âα] = ~Âα, [Ŝ3, Âβ ] = 0, [Ŝ3, Âγ ] = −2~Âγ , [Ŝ3, Âδ] = ~Âδ, [Ŝ3, Âε] = −~Âε,
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[Â−α, Âα] = ~(Ŝ3
1 − 9Ŝ2

1 Ŝ3) − 3~
2(Ŝ2

1 + 3Ŝ1Ŝ3) + 2~
3(Ŝ1 − 3Ŝ3),

[Â−β , Âβ ] = ~(4Ŝ1Ŝ2 − Ŝ2
1) + ~

2(Ŝ1 + 2Ŝ2),

[Â−γ , Âγ ] = ~(9Ŝ2
2 Ŝ2

3−4Ŝ3
2 Ŝ3)+~

2(9Ŝ2Ŝ
2
3 +3Ŝ2

2 Ŝ3−2Ŝ2
2)+~

3(6Ŝ2
2 +6Ŝ2

3−17Ŝ2Ŝ3)−2~
4(2Ŝ2+3Ŝ3),

[Â−δ, Âδ ] = ~(Ŝ1Ŝ
2
2 + Ŝ2

2 Ŝ3 − 4Ŝ1Ŝ2Ŝ3) + ~
2(Ŝ2

2 − Ŝ1Ŝ2 − Ŝ2Ŝ3 − 2Ŝ1Ŝ3) − ~
3Ŝ2,

[Â−ε, Âε] = ~(Ŝ1Ŝ3 + Ŝ2Ŝ3 − Ŝ1Ŝ2) + ~
2Ŝ3.

Thus, in this example, the number of generators is 13 (Âα, . . . , Âε with their conjugates and Ŝ1,

Ŝ2, Ŝ3), and the number of independent actual constraints is 8. The quantum manifold determined
by these constraints is of dimension 5.

Example 2. Let n = 3, and ω = (1, 1, N), where N ∈ {1, 2, 3}. Then the set of minimal
resonance vectors is M = {±ρ(0), . . . ,±ρ(N),±σ}, where ρ(k) = (N − k, k,−1), σ = (1,−1, 0).

For any N , there are no internal minimal vectors in the sublattice R23, and the face minimal
vectors are −ρ(0) ∈ R23 ∩R3 and −σ ∈ R23 ∩R2.

The sublattice R31 does not contain internal minimal vectors either, and the face minimal vectors
are σ ∈ R31 ∩R1 and −ρ(N) ∈ R31 ∩R3.

In the sublattice R12, there are N + 1 minimal vectors: ρ(0), . . . , ρ(N). The face vectors are
ρ(0) ∈ R12 ∩ R1 and ρ(N) ∈ R12 ∩ R2. The number of internal minimal vectors depends on N . If
N = 1, then there are no internal minimal vectors. If N > 2, then there are N −1 internal minimal
vectors: ρ(1), . . . , ρ(N−1). For N = 2, the minimal vectors in the sublattice R12 satisfy only one
irreducible relation,

ρ(0) + ρ(2) = 2ρ(1). (29)

For N = 3, in addition to (29), there are four irreducible relations 2ρ(0) +ρ(3) = 3ρ(1), ρ(0) +2ρ(3) =
3ρ(2), ρ(1) + ρ(3) = 2ρ(2), and ρ(0) + ρ(3) = ρ(1) + ρ(2).

The minimal vectors in the sublattice R1 are ρ(0) and σ, in the sublattice R2, the vectors −σ
and ρ(N), and in the sublattice R3, the vectors −ρ(0), . . . ,−ρ(N).

The minimal vectors in different sublattices satisfy the relations ρ(k)+σ = ρ(k−1) (k = 1, . . . , N),
−ρ(k) +σ = −ρ(k+1) (k = 0, . . . , N −1), −ρ(l) +ρ(k) = (l−k)σ (k = 0, . . . , N −1, l = k +1, . . . , N).

The resonance algebra is determined by the constraints (23) of Hermitian type and the following
relations.

Actual constraints of commutative type:
— for N = 1, there are no such constraints;

— for N = 2, Âρ(0)Âρ(2) = (Âρ(1))2;

— for N = 3, Âρ(0)Âρ(2) = (Âρ(1))2, (Âρ(0))2Âρ(3) = (Âρ(1))3, Âρ(0)(Âρ(3))2 = (Âρ(2))3, Âρ(1)Âρ(3)

= (Âρ(2))2, Âρ(0)Âρ(3) = Âρ(1)Âρ(2) .

Actual constraints of noncommutative type:

[Âσ , Âρ(k) ]+ = (2Ŝ2 − ~(k − 2))Âρ(k−1) (k = 1, . . . , N),

[Âσ , Â−ρ(k) ]+ = (2Ŝ1 + ~(N − k))Â−ρ(k+1) (k = 0, . . . , N − 1),

[Â−ρ(l) , Âρ(k) ]+ =
(

(Ŝ1)N−l (Ŝ2 + ~l)−k Ŝ3 + (Ŝ1 − ~(l − k))l−N (Ŝ2)−k (Ŝ3 + ~)
)

(Âσ)l−k

(0 6 k < l 6 N).
Commutation relations:

[Âσ, Âρ(0) ] = 0, [Âσ, Â−ρ(N) ] = 0, [Âρ(k) , Âρ(l) ] = 0 (0 6 k < l 6 N),

[Âσ , Âρ(k) ] = ~kÂρ(k−1) (k = 1, . . . , N),

[Âσ, Â−ρ(k) ] = −~(N − k)Â−ρ(k+1) (k = 0, . . . , N − 1),

[Â−ρ(l) , Âρ(k) ] =
(

(Ŝ1)N−l (Ŝ2 + ~l)−k Ŝ3 − (Ŝ1 − ~(l − k))l−N (Ŝ2)−k (Ŝ3 + ~)
)

(Âσ)l−k

(0 6 k < l 6 N),
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[Â−σ, Âσ] = ~(Ŝ2 − Ŝ1), [Ŝ1, Ŝ2] = 0, [Ŝ2, Ŝ3] = 0, [Ŝ3, Ŝ1] = 0,

[Ŝ1, Âσ] = ~Âσ, [Ŝ1, Âρ(l) ] = ~(N − l)Âρ(l) ,

[Ŝ2, Âσ] = −~Âσ, [Ŝ2, Âρ(l) ] = ~lÂρ(l) ,

[Ŝ3, Âσ] = 0, [Ŝ3, Âρ(l) ] = −~Âρ(l) (l = 0, 1, . . . , N).

Thus, for N = 1, the number of generators of the resonance algebra is 9, and the number
of independent constraints is 4; for N = 2, the number of generators is 11, and the number
of independent constraints is 6; for N = 3, the number of generators is 13, and the number
of independent constraints is 8. In all these cases, the quantum manifold determined by these
constraints is of dimension 5.
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