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Abstract—The notions of boundary and minimal hard classes of graphs, united by the term “critical
classes,” are useful tools for analysis of computational complexity of graph problems in the family
of hereditary graph classes. In this family, boundary classes are known for several graph problems.
In the paper, we consider critical graph classes in the families of strongly hereditary and minor closed
graph classes. Prior to our study, there was the only one example of a graph problem for which
boundary classes were completely described in the family of strongly hereditary classes. Moreover,
no boundary classes were known for any graph problem in the family of minor closed classes. In this
article, we present several complete descriptions of boundary classes for these two families and some
classical graph problems. For the problem of 2-additive approximation of graph bandwidth, we find
a boundary class in the family of minor closed classes. Critical classes are not known for this problem
in the other two families of graph classes.
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INTRODUCTION

A graph class is a set of simple graphs closed under isomorphism. A graph class is hereditary if
it is closed under vertex deletion. Any hereditary class (and only a hereditary class) of graphs X can be
defined by a set S of its forbidden induced subgraphs. This is denoted by X = Free(S). If a hereditary
graph class can be defined by a finite set of forbidden induced subgraphs then it is called finitely defined.

In this article, alongside the family H of all hereditary graph classes, we consider its two subfamilies.
The first is the family SH of all strongly hereditary graph classes, i.e., the classes closed under vertex
and edge deletion. The second is the family M of all minor closed graph classes, i.e., of strongly
hereditary classes closed also under edge contraction. Each strongly hereditary graph class X can be
defined by a set S of its forbidden subgraphs, and we write X = Frees(S). Obviously, SH can be defined
by a finite set of forbidden subgraphs if and only if it can be defined by a finite set of forbidden induced
subgraphs. Therefore, the term finitely defined class has the same meaning in SH as in H. By the
known Robertson–Seymour theorem [20], each minor closed class X can be defined by a finite set S of
its forbidden minors; we write this as X = Freem(S).

Let Π be a graph problem in the class NP. The term “graph problem” is understood intuitively: this is
a question that must be answered for given input data one of which is a graph.

Definition 1. A hereditary graph class is called Π-easy if the problem Π is polynomially solvable in
this class. A hereditary graph class is called Π-hard if it is not Π-easy.

Throughout the article, we assume that P �=NP, and this assumption is not explicitly included in the
statements of the results. For example: If Π is NP-hard in some hereditary class then the class is Π-
hard. Another example is given by the assertion that, for a problem Π, every hereditary class is either
only Π-easy or only Π-hard.
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100 MALYSHEV

The notion of boundary graph class serves as a useful tool for the analysis of computational
complexity of a graph problem in the family of hereditary graph classes, and especially on the family of
finitely defined classes. This notion was introduced in [5] for the independent set problem and generalized
in [6] to the case of an arbitrary graph problem in the class NP. Prior to the present article, the notion of
a boundary graph class was considered only within the family H, and here we extend this notion to the
case of all three families H, SH, and M.

Definition 2. Let F ∈ {H, SH, M}. A graph class X is called (Π, F)-limit if there exists an infinite
sequence X1 ⊇ X2 ⊇ . . . consisting of Π-hard graph classes each of which belongs to F and such that
X =

⋂∞
i=1 Xi.

Definition 3. An inclusion-wise minimal (Π, F)-limit class is called (Π, F)-boundary.

The meaning of this notion is revealed by Theorem 1, which can be proved in the same way as the
corresponding assertions in [5, 6]:

Theorem 1. Let F ∈ {H, SH}. A finitely defined class in F is Π-hard if and only if it includes
a (Π, F)-boundary class. A minor closed class is Π-hard if and only if it includes a (Π, M)-
boundary class.

Thus, by Theorem 1, knowledge of all the boundary graphs leads to a complete classification of all
finitely defined classes (or all minor closed) by the complexity of a graph problem. Moreover, Theorem 1
implies that boundary classes exist for any NP-complete graph problem since the class of all graphs can
be defined by an empty set of forbidden (induced) graphs or by the empty set of forbidden minors.

It was proved in [2] that, for the edge 3-coloring problem and the family H, the set of boundary classes
has the continuum cardinality, which indirectly confirms the fundamental impossibility of obtaining
a complete description of the set of boundary classes for this problem. By analogy with arguments in [2],
one can prove the validity of this result also for the family SH.

Definition 4. Let F ∈ {H, SH, M}. A class in F is called F-minimal Π-hard if every its proper
subclass in F is already Π-easy.

Henceforth we unite the notions of a (Π, F)-boundary graph class and an F-minimal Π-hard graph
class by the term “F-critical class.”

It was proved in [3] that, for some classical problems on graphs, the family H contains no minimal
classes. It is not hard to prove (by analogy with the corresponding arguments in [3]) that, for some
problems on graphs, minimal hard classes are either absent in SH.

The notions of (Π, M)-boundary class and M-minimal Π-hard class are identical for every problem Π;
moreover, the set of (Π, M)-boundary graph classes is at most countable for every problem Π. This easily
follows from the Robertson–Seymour theorem.

Boundary graph classes are known for some graph problems in the family H [2, 4–7]. However, prior
to the results of the present article, there was the only one example of a graph problem (the independent
set problem) for which boundary classes were revealed in SH [5]. Moreover, no boundary class was
known for any graph problem in M.

The goal of this article is to establish the boundariness of some graph classes in SH and M for some
graph problems. Namely, we give a complete description of the family of boundary classes for SH and M

and a number of classical graph problems. Note that at present there is only one example of a problem
admitting a complete description of boundary classes in H [4]. It is interesting that the results obtained
for SH and M differ for the same graph problems. Another main result is a proof of the M-criticality of
some graph class for the problem of 2-additive approximation of graph bandwidth. Note that neither
H-critical classes nor SH-critical classes are known for this problem and the problem of the graph
bandwidth.
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1. NOTATIONS

We use the following notations: Δ(G) is the greatest vertex degree of a graph G; N [x] is the set of all
neighbors of a vertex x plus x; Pn is the simple path with n vertices; Sunn is the graph with all vertex
degrees not exceeding 3 obtained from a simple cycle with n vertices by adding n pairwise nonadjacent
vertices each of which is adjacent to exactly one vertex in the cycle; Kp,q is the complete bipartite graph
with p vertices in one part and q vertices in the other part.

Given naturals a and b such that a ≤ b, denote by a, b the set of naturals ranging from a to b.

2. SH-BOUNDARY AND M-CRITICAL GRAPH CLASSES
FOR SOME GRAPH PROBLEMS

In this section, we consider two concrete classes of graphs. They are the set of all planar graphs Pl
and the class T consisting of all possible graphs whose each connected component having at least two
vertices is homeomorphic to P2 or K1,3.

The proof of the fact that some graph class is a boundary class for some graph problem splits into two
steps. It is first proved that the class is a limit class for the problem under consideration and then that it is
minimal as a limit class. As a rule, the second step (i.e., the proof of minimality) is far more complicated
than the first. However, in application to the pairs (T , SH) and (Pl, M), there is some general argument
making it possible to overcome this difficulty for a number of graph problems. It uses the notions of the
cliquewidth [12] and treewidth [9] of a graph and the following three facts connected with these notions:
for a class X ∈ SH not including T , the cliquewidth of every graph in X is at most some constant C1(X )
[11], and for a minor closed class Y not including Pl, the treewidth of every graph in Y is at most some
constant C2(Y) [19].

The following assertion holds for many graph problems: For every a priori given constant C, the
problem can be solved in polynomial time in the class of graphs for each of which the cliquewidth (or
treewidth) is at most C [8–10, 12, 16].

Theorem 1. If the class T is (Π, SH)-limit and the problem Π is polynomially solvable on
graphs with bounded cliquewidth then T is the only (Π, SH)-boundary class. If Pl is Π-hard
and Π is polynomially solvable on graphs with bounded treewidth then Pl is the only (Π, M)-
boundary class.

Proof. We will prove only the first part of the theorem since the second is proved similarly.

Suppose that there is a (Π, SH)-boundary class X different from T . Since T is (Π, SH)-limit, we
have T � X . Therefore, for some graph G ∈ T ,

X ⊆ Frees({G}).
Hence, in every monotone decreasing sequence consisting of Π-elements of SH and converging to X ,
there is an element contained in the class Frees({G}). There exists a constant C(G) such that the
cliquewidth of any graph of class Frees({G}) is at most C(G). The problem Π is polynomially solvable
on graphs with bounded cliquewidth, and hence in Frees({G}); a contradiction to Theorem 1.

The proof of Theorem 1 is complete.

The class T turns out to be (Π, H)-limit for many graph problems Π [6]. These include the
independent set problem, the induced matching problem, and the dominating set problem. By analogy
with the arguments in [6], for each of them, we can show the limitness of the class T also in the family SH.
The class Pl is hard for these three problems [1]. Each of these problems is polynomially solvable on
graphs of bounded cliquewidth [12, 15, 16] or bounded treewidth [9]; therefore, by Theorem 2, for each of
them, the class T is the only boundary class in SH, and the class Pl is the only boundary class in M.
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3. AN M-CRITICAL GRAPH CLASS FOR THE PROBLEM
OF 2-ADDITIVE APPROXIMATION OF GRAPH BANDWIDTH

Definition 5. A numeration of a graph G is any injective mapping fG : V (G) −→ 1, |V (G)|. The
width of fG is

max
(u,v)∈E(G)

|fG(u) − fG(v)|.

Definition 6. The bandwidth of G, denoted by b(G), is the minimum of the lengths of the widths of
all its possible numerations of G.

Definition 7. The bandwidth problem (briefly, the BW problem) for a given graph G and a number k
consists in determining whether b(G) ≤ k.

The BW problem is a classical NP-complete graph problem [1].
In this article, we consider the problem of the 2-additive approximation of the bandwidth of a given

graph. The BW+2 problem for a given graph G and number k consists in determining whether b(G) ≤
k + 2. We can give the following informal interpretations of both problems: the BW problem is concerned
with the exact calculation of the bandwidth of a given graph G, and the BW+2 problem deals with the
search for a number b′(G) such that b(G) ≤ b′(G) ≤ b(G) + 2. The BW+2 problem is NP-complete
in the class of all graphs. This follows from the NP-hardness for every ε > 0 of the problem of the
approximation of graph bandwidth with multiplicative error 1 + ε [13] and the existence of an algorithm of
complexity O(2O(k)nk+1) for the recognition of the validity of the inequality b(G) ≤ k for a given graph G
with n vertices [21].

Lemma 1. Let G be an arbitrary graph. If H is an induced subgraph of G then b(H) ≤ b(G). If
G1, . . . , Gp are the connected components of G then b(G) = max(b(G1), . . . , b(Gp)).

Proof. Consider an arbitrary optimal numeration fG of G and the set {i | ∃v ∈ V (H), fG(v) = i}.
Order the elements of the latter increasingly. Let nv be the number of v ∈ V (H) in this ordering.
Obviously,

|nu − nv| ≤ |fG(u) − fG(v)|
for any adjacent vertices u and v in H . Consider the numeration of H in which each vertex v ∈ V (H)
gets the number nv. Obviously, its width is at most b(G). Hence, b(H) ≤ b(G).

Since each of the connected components G1, . . . , Gp is an induced subgraph in G, we have b(G) ≥
max(b(G1), . . . , b(Gp)). Consider optimal numerations fG1, . . . , fGp of the graphs G1, . . . , Gp respec-

tively. For all i ∈ 1, p and each v ∈ V (Gi), add to fGi(v) the number
∑i−1

j=1 b(Gj). Such shifts generate
a numeration of G of width b(G) = max(b(G1), . . . , b(Gp)). Hence, b(G) = max(b(G1), . . . , b(Gp)).

Lemma 1 is proved.

Alongside the BW+2 problem, in this article, we also consider 1-caterpillars and cyclic 1-caterpillars.

Definition 8. A graph is called a 1-caterpillar if it can be obtained by adding to a simple path, called
supporting, several pairwise nonadjacent vertices (possibly none) each of which is adjacent with exactly
one vertex in the path.

Definition 9. A cyclic 1-caterpillar is a graph obtained by adding to a simple cycle, called
supporting, of pairwise nonadjacent vertices (possibly none) each of which is adjacent exactly with
one vertex in the cycle.

In [17], Miller proved

Lemma 2. There exists an optimal numeration of a 1-caterpillar with supporting path
(v1, . . . , vk) such that, for each i, the numbers of the elements of N [vi] \ {vi−1, vi+1} coincides with
the range of naturals

[ i−1∑

j=1

|N [vj ] \ {vj−1, vj+1}| + 1,
i∑

j=1

|N [vj ] \ {vj−1, vj+1}|
]

.
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It follows from Lemma 2 that the result of the identification of an end of any simple path with any of
the ends of the supporting path of an arbitrary 1-caterpillar has the same bandwidth as the 1-caterpillar
itself.

Let a graph H be a cyclic 1-caterpillar with n vertices having exactly k vertices of degree 2. We will
assume that k > 0; otherwise, H is a simple cycle and b(H) = 2. Remove from H all vertices belonging
to balls of radius 2 centered at the vertices of H , each vertex being of degree greater than 2. In the
resulting disjoint sum of simple paths, consider a path P ′ � (u1, . . . , us) of maximal length. Obviously,
if a path P ′ is nonempty then the graph H ′ � H \ P ′ is a 1-caterpillar. We will further prove that if Δ(H)
and s are large enough (in terms of k) then

b(H ′) ≤ b(H) ≤ b(H ′) + 2.

In what follows, we will need some discrete function num(i, q) in which i is a natural argument and
q is a natural parameter greater than or equal to 2. It is defined as follows: Remove from the set of naturals
all numbers dividing by q. In the so-obtained sequence, put the ith term to be equal to num(i, q).

Lemma 3. Given i,

num(i, q) ≤ i + 2
⌊

i + 1
q

⌋

+ 1.

For each i and j such that |i − j| ≤ q, we have |num(i, q) − num(j, q)| ≤ q + 2.

Proof. Obviously, the difference num(i + 1, q) − num(i, q) is equal to 1 or 2 for all i. Moreover,

num(i + 1, q) − num(i, q) = 2

if and only if num(i, q) ≡ −1 (mod q). Such i’s (for which num(i, q) is comparable with −1 modulo q)
will be referred to as growth points. Obviously, each segment of the set of naturals containing q
elements has either one or two growth points. Therefore,

|num(i, q) − num(j, q)| ≤ q + 2

for every i and j with |i − j| ≤ q. The segment 1, q − 1 contains exactly one growth point. The segment
q, i contains exactly i − q + 1 elements; thus, this segment contains at most

2
( ⌊

i + 1 − q

q

⌋

+ 1
)

= 2
⌊

i + 1
q

⌋

growth points. Hence, the segment 1, i contains at most 2�(i + 1)/q� + 1 growth points. Hence, for
each i, we have

num(i, q) ≤ i + 2
⌊

i + 1
q

⌋

+ 1.

Lemma 3 is proved.

Lemma 4. If Δ(H) ≥ 8k + 4 and s ≥ 8k + 10 then b(H ′) ≤ b(H) ≤ b(H ′) + 2.

Proof. Suppose that Δ(H) = Δ and b(H ′) = b. Obviously, n ≤ k(Δ + s + 3). Since the graph H ′

contains K1,Δ as an induced subgraph and b(K1,Δ) ≥ �Δ/2�, by Lemma 1, we have b ≥ �Δ/2� >
Δ/2 − 1. Check the inequality 2�n/b� + 3 ≤ s. Indeed,

2
⌊

n

b

⌋

+ 3 ≤ 2
n

b
+ 3 <

2k(Δ + s + 3)
Δ
2 − 1

+ 3 =
4k(Δ + s + 3) + 3(Δ − 2)

Δ − 2
.

Verify that the last number is at most s. To this end, it suffices to prove that

s(Δ − 2 − 4k) > 4kΔ + 3Δ + 12k.
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Since Δ ≥ 4 + 8k, we have s(Δ − 2 − 4k)/Δ ≥ s/2. Clearly, 4k + 3 + 12k/Δ ≤ 4k + 5, and hence
s/2 ≥ 4k + 3 + 12k/Δ since s ≥ 8k + 10.

Let i∗ be the maximal number such that num(i∗, b) ≤ n. By construction of num(i, q), we have
num(i∗, b) ≥ n − 2. Check that i∗ + s ≥ n. Indeed, s ≥ 2�n/b� + 3. Show that i∗ ≥ n − 2�n/b� − 3.
Suppose that i∗ < n − 2�n/b� − 3. By Lemma 3,

num(i∗, b) ≤ i∗ + 2
⌊

i∗ + 1
b

⌋

+ 1.

The right-hand side is less than

n − 2�n/b� − 2 + 2�n/b� = n − 2;

a contradiction to the choice of i∗.
Consider a subpath P � (u1, . . . ) in P ′ such that the graph H∗ � H \ V (P ) contains i∗ vertices.

Such a subpath necessarily exists because i∗ + s ≥ n. Clearly, H∗ is a 1-caterpillar. By Lemma 2, we
can assume that, in some optimal numeration fH∗ of H∗, the neighbor of u1 not belonging to P has
number 1, while the neighbor of the second end of P not belonging to P has number i∗. Also by Lemma 2,
we have

b(H∗) = b(H ′).

Given i ∈ 1, i∗, assign to the vertex of H∗ with number i the number num(i, b). Each element of

1, n \
i∗⋃

i=1

{num(i, b)}

either divides by b or lies in {n− 1, n} by the definition of num(i, q) and the inequality num(i∗, b) ≥ n− 2.
For each i ∈ 1, �n/b�, assign to the ith vertex of P (counting from u1) the number ib. To the remaining
vertices of P , injectively assign the numbers in the set

1, n \
(

i∗⋃

i=1

{num(i, b)} ∪
�n/b�⋃

i=1

{ib}
)

(if there are some). Obviously, we have constructed a numeration of H . Its width is at most b + 2 by
Lemma 3. By Lemma 1, b ≤ b(H).

The proof of Lemma 4 is complete.

Given a family F ∈ {H, SH, M} and a class X , refer as the F-closure of X to the set of all graphs that
are induced subgraphs of graphs in X (if F = H) or subgraphs of graphs in X (if F = SH), or minors of
graphs in X (if F = M). Denote the M-closure of the class of all cyclic 1-caterpillars by CC.

Theorem 2. The class CC is (BW+2, M)-critical.

Proof. It is known that, for every ε > 0, the problem of the approximation of graph bandwidth with
multiplicative error 2 − ε is NP-hard in the class of all cyclic 1-caterpillars [13]. This and the result
of [21] imply that the class CC is BW+2-hard. Prove that each of its proper minor closed subclasses is
BW+2-easy, which implies the theorem.

Let G′ be an arbitrary graph in CC. There exists a cyclic 1-caterpillar G for which G′ is a minor.
Denote the number of vertices in G by n. Clearly,

CC ∩ Freem({G′}) ⊆ CC ∩ Freem({G}).
Let H be an arbitrary graph in CC ∩ Freem({G}). Each of its components is either a cyclic 1-caterpillar
or a 1-caterpillar, and there is at most one component of the first type. The BW problem is polynomially
solvable in the class of 1-caterpillars [17]. By this and Lemma 1, we may assume that H is isomorphic to
a cyclic 1-caterpillar. The number of vertices in H each of which has degree at least 3 does not exceed 2n;
otherwise, the graph Sun2n is a minor of H . The last is impossible since any cyclic 1-caterpillar with
at most n vertices is a minor in Sun2n.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 11 No. 1 2017



CRITICAL ELEMENTS 105

It is not hard to propose a numeration of H with width bounded by some linear function of Δ(H).
To this end, take an arbitrary cyclic vertex of H and assign number 1 to it. With respect to this vertex, we
can define the notions of right and left vertices of H . For enumerating the left vertices, we will use only
even numbers, and for enumerating the right vertices, only odd numbers. Therefore, if Δ(H) ≤ 16n + 3
then the bandwidth of H is bounded by some linear function of n. If Δ(H) ≥ 16n + 4 and the distance
between any two vertices of H each of which has degree at least 3 is at most 16n + 9 then the supporting
cycle of H has at most 2(16n + 9)n vertices. It is known that, for any fixed number C, the BW problem
is polynomially solvable in the class of graphs for which there are at most C vertices such that each
edge of the graph is incident to one of these vertices [14]. Owing to this and a result from [21], we may
assume that Δ(H) ≥ 16n + 4 and the distance between two cyclic vertices of H each of which has
degree at least 3 is at least 16n + 10. By Lemma 4, from the graph H we can construct a 1-caterpillar
having bandwidth from b(H) to b(H) + 2. This and a result from [17] imply the validity of the theorem.

Note that, at present, for the BW and BW+2 problems in the families H and SH, there are known
neither boundary classes nor minimal hard classes. It is only possible to observe that the H-closure
of the set of all 1-caterpillars (denoted by C) is as a (BW, H)-limit class as a (BW+2, H)-limit class.
A similar result also holds for the family SH.

Lemma 5. For each of the problems BW and BW+2, the class C is limit in the family H.

Proof. Observe that the BW and BW+2 problems are NP-complete in the class of cyclic 1-caterpillars.
For the BW problem, this was proved in [18], and for the BW+2 problem, this follows from [13, 21].
Since further arguments for the BW and BW+2 problems are quite similar, we will consider only the BW
problem.

The set of all cyclic 1-caterpillars is infinite and countable. Enumerate the elements of this set and
obtain some sequence G1, G2, . . . . Put X0 to be equal to CC. This class is BW-hard [18]. For each i > 0,
denote the set Xi−1 ∩ Free({Gi}) by Xi. Show that the class Xi is BW-hard for each i. Indeed, the
set Xi−1 \ Xi consists of cyclic 1-caterpillars for each of which the graph Gi is an induced subgraph.
Consequently, for all such cyclic 1-caterpillars, the length of a sporting cycle is fixed. Due to this and
a result from [14], for each i, the BW problem is polynomially solvable in Xi−1 \ Xi. This implies that
the class Xi is BW-hard for each i. By this fact, the chain of inclusions X1 ⊇ X2 ⊇ . . . , and the equality⋂∞

i=1 Xi = C, C is a (BW,H)-limit class.
Lemma 5 is proved.
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