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1. INTRODUCTION

Consider the following equation:

y(n) = p(x)|y|σ sgn y, n ≥ 2, σ > 1,

y = y(x), p(x) ∈ C0, x, y ∈ R
1, p(x) �= 0.

(1)

For n = 2 and p(x) = ±xβ , x > 0, β = const, this equation is known as the Emden–Fowler equation
(see, for example, [1]), which occurs in the study of a number of physical processes.

Definition 1. The solution y(x) of Eq. (1) is said to be right-continuable (left-continuable) if it is
defined in a neighborhood of +∞, (−∞).

Definition 2. The nontrivial solution y(x) of Eq. (1) is said to be right-oscillating (left-oscillating)
if, for any x belonging to its domain, there exists a x̃ > x (x̃ < x) such that y(x̃) = 0.

By a noncontinuable (nonoscillating) solution in any direction we mean a solution that is not
continuable (oscillating) in that direction.

In the present paper, we consider (right- or left-) nonoscillating continuable and noncontinuable
solutions of Eq. (1) and present asymptotic estimates of such solutions as x → ±∞ as well as of
solutions tending to infinity as x → a �= ±∞.

The following theorem [2] establishes the existence of noncontinuable nonoscillating solutions of
Eq. (1) for p(x) > 0.

Theorem 1. If p(x) > 0, then, for any number a, there exists a right-noncontinuable solution y(x)
of Eq. (1) possessing the property

lim
x→a−0

|y(i)(x)| = +∞, 0 ≤ i ≤ n− 1. (2)

A similar statement also holds for left-noncontinuable solutions of the equation under
consideration.

For the solutions indicated in Theorem 1, the following asymptotic estimates [3] are valid.
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ESTIMATES OF SOLUTIONS OF EMDEN–FOWLER TYPE EQUATIONS 101

Theorem 2. If the solution y(x) possesses property (2) for some a, then, in a left neighborhood of
the point x = a, the following inequalities hold:

b(a− x)n/(1−σ) ≤ |y(x)| ≤ B(a− x)n/(1−σ), B, b = const, B ≥ b > 0. (3)

A similar assertion is also valid for left-noncontinuable solutions of the equation under
consideration.

These theorems were first obtained by V. A. Kondrat’ev and the author in 1980 and were jointly
reported with the accompanying proofs at the Seminar on the Qualitative Theory of Differential
Equations at Moscow State University; see also [3]. Closely-related results were obtained later in other
papers (see, for example, [4]). Apparently, the proofs of these results are overburdened by many technical
details and references to other papers. In what follows, we shall present a simple and straightforward
proof of Theorem 2.

It is well known (see [4] as well as [2, Theorems 2 and 5]) that, under the condition

|p(x)| ≥ cx−n, c = const > 0, x ≥ x0 > 0, (4)

for (−1)np(x) > 0, Eq. (1) has nontrivial right-continuable nonoscillating solutions. For any such
solution, the derivatives y(i)(x), 0 ≤ i ≤ n− 1, are monotone functions and the following condition
holds:

y(i)(x) y(i+1)(x) < 0, lim
x→+∞

y(i)(x) = 0, 0 ≤ i ≤ n− 1. (5)

Theorem 3 (given below) contains asymptotic upper bounds for these solutions.
If (−1)np(x) < 0, then, under condition (4), Eq. (1) has no nontrivial right-continuable nonoscillat-

ing solutions (see [5] as well as [2, Theorems 3 and 4]).

Theorem 3. If, in Eq. (1), the following condition holds:

(−1)np(x) ≥ c1x
−m, x ≥ x0 > 0, c1,m = const, c1 > 0, m ≤ n, (6)

then its right-continuable sign-preserving solutions satisfy the following estimates:

• if n > m, then

|y(x)| ≤ Dx(m−n)/(σ−1), D = const > 0, x ≥ x0; (7)

• if n = m, then

|y(x)| ≤ D| lnx|−1/(σ−1), D = const > 0, x ≥ x0 + 1. (8)

Using Theorem 3, we can obtain the following statement refining Theorem 5 from [6].

Theorem 4. If, in Eq. (1), the following condition holds:

|p(x)| ≥ c1x
−n−β(σ−1), x ≥ x0 > 0, c1, β = const, c1 > 0, 0 ≤ β ≤ n− 1, (9)

then any right-continuable sign-preserving solution of this equation satisfies one of the follow-
ing estimates:

• if

β = 0, (−1)np(x) > 0, (10)

then

|y(x)| ≤ D|lnx|−1/(σ−1), D = const > 0, x ≥ x0 + 1; (11)
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• if

k − 1 < β < k, k ∈ {1, . . . , n − 1}, (−1)n−kp(x) > 0, (12)

then

|y(x)| ≤ Dxβ, D = const > 0, x ≥ x0; (13)

• if

β = k ∈ {1, . . . , n− 1}, (−1)n−kp(x) > 0, (14)

then

|y(x)| ≤ Dxβ| lnx|−1/(σ−1), D = const > 0, x ≥ x0 + 1; (15)

• if

k − 1 < β ≤ k, k ∈ {1, . . . , n − 1}, (−1)n−kp(x) < 0, (16)

then

|y(x)| ≤ Dxk−1, D = const > 0, x ≥ x0. (17)

Remark. If β = 0 and (−1)np(x) < 0, then, as noted above, under condition (9), Eq. (1) has no
right-continuable sign-preserving solutions.

The assertion contained in Theorems 3 and 4 can be carried over in a natural way to the
left-continuable nonoscillating solutions of Eq. (1).

2. EXAMPLES

Example 1. Consider the equation

y(n) = |y|σ sgn y, n ≥ 2, σ > 1. (18)

Let us show that it has a solution of the form (2). To be definite, we assume a = 1 in (2). Here and
elsewhere, we use the terminology adopted in [7] and [8]. The Newton polyhedron of this equation is the
segment

[Q1, Q2], Q1 = (−n, 1), Q2 = (0, σ)

the normal to which is the vector [1, β], β = n(1− σ)−1. The reduced equation corresponding to this
segment coincides with the complete equation (18). Following [7], we find its power-law solution
y(x) = c(−x+ 1)β , x < 1. By substitution, we obtain

c =
(

(−1)nβ(β − 1) · · · (β − n+ 1)
)1/(σ−1)

.

Thus,

y(x) = c(−x+ 1)β , x < 1,

is a solution of Eq. (18) for which estimates (3) become equalities.

Example 2. Let us consider another example, more complicated than the previous one. Consider the
following equation with variable coefficient:

y′′′ = (1 + x2)y2. (19)

Let us show that this equation has the solution y(x) = 60(−x)−3(1 + o(1)) obviously satisfying
estimates (3), where a = 0.
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The Newton polyhedron of this equation is a triangle with vertices Q1 = (−3, 1), Q2 = (0, 2),
Q3 = (2, 2). Consider the reduced equation corresponding to the edge [Q1, Q2]:

y′′′ = y2.

The power-law solution of this equation is of the form y = −60x−3. Let us calculate the critical
numbers of this solution (see [8, Sec. 1.4]). The first variation is of the form

d3

dx3
− 2y,

and the corresponding characteristic equation is

k(k − 1)(k − 2) + 120 = 0.

The unique real root k = −4 of this equation is not critical, because it is less than the order of the solution
of the reduced equation. Therefore, by Theorem 3.4 from [8], the complete equation (19) has a solution
of the form of the convergent power series

y = −60x−3

(

1 +
∞

∑

j=1

ajx
j

)

.

Obviously, this solution satisfies estimates (3) where a = 0.

The fact proved above can also be justified by using other considerations (such as those used in [9]).
To do this, let us make, in (19), the transformation y = (c+ z)(−x)−3, t = ln(−x), x < 0, where c is a
constant to be defined later. We obtain the equation

z′′′t − 12z′′t + 47z′t − 60(c + z) = −(c+ z)2(1 + e2t).

Setting c = 60 and denoting

z
(i)
t = ui+1, 0 ≤ i ≤ 2, u = (u1, u2, u3), ‖u‖ =

√

∑

1≤j≤3

u2j ,

we obtain the following system of equations for the function u(t) in a small neighborhood of zero:

u̇ = Au+ F (u)f(t) + g(t), ‖f(t)‖+ ‖g(t)‖ ≤ D1e
2t,

F (u) ∈ C∞, F (0) = 0, D1 = const > 0.

For a small δ > 0, this system of equations has the solution u = u(t), ‖u(t)‖ = o(eδt) as t → −∞. This
is proved by using methods similar to to those used in [9, pp. 101–106]. Hence we find that Eq. (19) has
the solution

y(x) = 60(−x)−3(1 + o((−x)δ)), x < 0, δ > 0,

satisfying estimates (3).

Example 3. Consider the equation

y(4) = x−3y2.

Its support is the segment [Q1, Q2], Q1 = (−4, 1), Q2 = (−3, 2), the normal to which is the vector
n = (1,−1). Following [7], we search for the solution of the given equation in the form y = cx−1.
By substitution, we determine c = 24. Thus, this equation has the solution y(x) = 24x−1 satisfying
estimate (7), which now becomes an equality.

Example 4. Consider the equation

y(4) = x−6y2. (20)
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This equation was studied in Theorem 4 and belongs to the case described in (14) (where β = 2).
The support of the equation is the segment [Q1, Q2], Q1 = (−4, 1), Q2 = (−6, 2). Let us make the
transformation y = x2z, t = ln(x), after which Eq. (20) becomes

z
(4)
t + 2z′′′t − z′′t − 2z′t = z2. (21)

To the right edge of the Newton polyhedron of this equation corresponds the reduced equation −2z′t = z2

whose solution is of the form z = z0(t) = 2t−1. After the replacement z = w + z0(t), Eq. (21) takes the
form

w
(4)
t + 2w′′′

t − w′′
t − 2w′

t = w2 + 4t−1w +O(t−3).

An analysis of this equation shows that it has the solution w(t) = o(t−1−δ), where δ > 0 (no proof will
be given here). This implies the existence of the following solution to Eq. (20):

y = 2x2(lnx)−1(1 + o(lnx)−δ)

satisfying estimate (15).

Example 5. Consider the equation

y(4) = −x−4−βy2, 1 < β ≤ 2. (22)

This equation was studied in Theorem 4 and belongs to the case described in (16) (where k = 2).
Consider any right-continuable positive solution y(x) of this equation. It follows from (22) that y′′′(x)
is a decreasing function. Its limit as x → +∞ cannot be negative. It also cannot be positive, because,
in this case, for large values of x, this would lead to y(x) ≥ Dx3, D = const > 0, and y(4) ≤ −D1,
D1 = const > 0, which contradicts the assumption about the positive limit of y′′′(x). Therefore, this
limit must be zero, and the function y′′(x) is increasing. Its limit as x → +∞ cannot also be positive.
Indeed, in this case, the function y(x) is increasing and, from (22), after integration on the interval
[x,+∞), we obtain

y′′′ ≥ Dx−3−βy2, D = const > 0.

But it follows from [2, Lemma 1] that, in this case, the solution y(x) cannot be right-continuable.
Thus, the limit y′′(x) must be zero; therefore, y′′(x) < 0, and the function y′(x) is decreasing. Hence
y(x) ≤ D2x, D2 = const > 0, i.e., the solution under consideration satisfies estimate (17).

The examples given above illustrate the sharpness of the results contained in the theorems stated
above.

3. PROOFS OF THE THEOREMS

Proof of Theorem 1. The proof was given in [2].

Proof of Theorem 2. Here and elsewhere, when it is necessary to show that a quantity is bounded by a
constant, we shall use the so-called “universal” constant D > 0, assuming that D +D = D, Dβ = D
(β > 0).

Obviously, it suffices to consider the solution y(x) of Eq. (1) satisfying (2) for which, in some left
neighborhood of the point a,

y(i)(x) > 0, 0 ≤ i ≤ n− 1. (23)

Let [x0, a) be an interval in which inequalities (23) hold.

Multiplying both sides of Eq. (1) by y′(x) and integrating it on the interval [x0, x), x0 ≤ x < a, we
obtain the inequality

y(n−1)(x)y′(x)− y(n−1)(x0)y
′(x0) ≥ D(yσ+1(x)− yσ+1(x0)),
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whence, obviously, it follows that, in the left neighborhood of the point a, the inequality

y(n−1)(x)y′(x) ≥ Dyσ+1(x)

holds. Without loss of generality, we assume that this is so in the interval [x0, a). Again, let us multiply
the resulting inequality by y′(x) and integrate it on this interval. As a result, we obtain the inequality
y(n−2)(y′)2 ≥ Dyσ+2 (here and elsewhere, all the functions are taken at the point x). Arguing in the
same way, we obtain the inequality

y′ ≥ Dy(σ+n−1)/n.

Integrating the resulting inequality on the interval [x, a) and taking into account (2), we obtain the
right-hand side of the required estimate (3).

Let us now present an easy proof of the left-hand side of estimate (3), which is based on arguments
from [4].

As a result of the transformation z(t) = tn−1y(a− 1/t), Eq. (1) becomes

z(n) = p̃(t)|z|σ sgn z, p̃(t) = t−n−(n−1)σ−1p

(

a− 1

t

)

. (24)

At the same time, the solution y(x) under study becomes the solution z(t) of Eq. (24) defined for
all t ≥ t0, t0 = (a− x0)

−1. In addition, a straightforward verification shows that z(i)(t) > 0, t ≥ t0,
0 ≤ i ≤ n− 1, and z(n−1)(t) → +∞ as t → +∞. This implies that, for t ≥ t0,

z(t) ≤ Dtn−1z(n−1)(t). (25)

Substituting (25) into Eq. (24) and denoting u = z(n−1)(t), we see that, for t ≥ t0, the function u(t)
satisfies the inequality u′ ≤ Duσt−n−1. The integration of this inequality on the interval [t,+∞), t ≥ t0
yields the estimate

u(t) = z(n−1)(t) ≥ Dtn/(σ−1), t ≥ t0.

Hence, obviously,

z(t) ≥ Dtn/(σ−1)+n−1, t ≥ t0;

this yields the left-hand side of the required estimate (3). Theorem 2 is proved.

In order to prove Theorem 3, we shall need the following lemmas.

Lemma 1. If condition (6), where m ≤ 0, holds in Eq. (1), then its right-continuable sign-preserv-
ing solutions satisfy estimate (7).

Lemma 2. If condition (6), where m > 0, holds in Eq. (1), then its right-continuable positive
solutions satisfy the estimate

n−1
∑

k=0

(−1)n−k(y′)n−k(yx−1)k ≥ Dyσ+n−1x−m, D = const > 0. (26)

Note that Lemma 1 is the assertion of Theorem 3 for m ≤ 0.

Proof of Lemma 1. Let us prove (7) for m = 0. Without loss of generality, we shall consider only
positive solutions of the form (5) of Eq. (1). Multiplying both sides of Eq. (1) by (−1)ny′, integrating it
on the interval [x, x1], x0 ≤ x ≤ x1, and taking into account (6), where m = 0, we can write

F (x1)− F (x)− (−1)n
ˆ x1

x
y(n−1)y′′ dx ≤ G1(x1)−G1(x),

F (x) = (−1)ny(n−1)y′, G1(x) = Dyσ+1.

(27)
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Letting x1 → +∞ in (27), we obtain the inequality

(−1)ny(n−1)y′ ≥ Dyσ+1, D = const > 0. (28)

Similarly, multiplying both sides of (28) by y′ and integrating the resulting inequality, we obtain

(−1)ny(n−2)y′′ ≥ Dyσ+2, D = const > 0.

Proceeding with the argument, we finally obtain the inequality

(−1)n(y′)n ≥ Dyσ+n−1, D = const > 0,

whose integration on the interval [x0, x] yields the required estimate (7), which here has the form

y(x) ≤ Dx−n/(σ−1), D = const > 0, x ≥ x0 > 0. (29)

For m = 0, the lemma is proved.
Let us now fix a number A, 1 < A < (σ + 1)/(σ − 1), and define the following numbers:

m0 = 0, mk = n(A+ · · ·+Ak), k = 1, 2, . . . . (30)

We shall show that our lemma holds for 0 < −m ≤ m1. We proceed just as for m = 0. Multiplying (1)
by (−1)ny′ and integrating, we obtain the inequality

F (x1)− F (x) ≤ G2(x1)−G2(x),

F (x) = (−1)ny(n−1)y′, G2(x) = Dyσ+1x−m.
(31)

Now note that if (6) holds for m < 0, then it also holds for m = 0. Therefore, estimate (29) holds, whence

G2(x) ≤ Dxβ, β =
−n(σ + 1)

σ − 1
+m1 < 0, D = const > 0, x ≥ x0 > 0.

Letting x1 → +∞ in (31), we obtain the inequality

(−1)ny(n−1)y′ ≥ Dyσ+1x−m, D = const > 0. (32)

Arguing as above, we finally obtain the inequality

(−1)n(y′)n ≥ Dyσ+n−1x−m, D = const > 0, (33)

whose integration on the interval [x0, x] yields the required estimate

y(x) ≤ Dx(−n+m)/(σ−1), D = const > 0, x ≥ x0 > 0. (34)

Thus, the assertion of Lemma 1 is proved for 0 < −m ≤ m1.
Let us argue by induction and prove that this lemma holds for any m ≤ 0. Suppose that the assertion

of the lemma holds for 0 < −m ≤ mK , K ≥ 1; let us prove it for mK < −m ≤ mK+1.
Multiplying (1) by (−1)ny′ and integrating, we obtain inequality (31). If condition (6) holds for

−m > mK , then it also holds for −m = mK . Therefore, estimate (34), where −m = mK , is valid;
whence

G2(x) ≤ Dxη, η =
−(n+mK)(σ + 1)

σ − 1
+mK+1 < 0,

D = const > 0, x ≥ x0 > 0.

Now, letting x1 → +∞ in (31), we obtain inequality (32). Arguing as above, we obtain inequality (33)
and, further, also estimate (34) for mK < −m ≤ mK+1. This concludes the proof of Lemma 1.

Proof of Lemma 2. Multiplying both sides of Eq. (1) by (−1)ny′, integrating the resulting equation on
the interval [x, x1], x0 ≤ x ≤ x1, and taking into account (6), where m > 0, we obtain

F1(x1)− F1(x) ≤ G1(x1)−G1(x) +D

ˆ x1

x
yσ+1x−m−1 dx,

F1(x) = (−1)ny(n−1)y′, G1(x) = Dyσ+1x−m, D = const > 0.

(35)
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Here have taken into account the inequality

(−1)n
ˆ x1

x
y(n−1)y′′ dx < 0.

Let us now multiply both sides of Eq. (1) by yx−1 and integrate it on the same interval [x, x1],
obtaining ˆ x1

x
yσ+1x−m−1 dx ≤ D(H1(x)−H1(x1)), H1(x) = (−1)n−1y(n−1)yx−1. (36)

Here we have used the inequality

(−1)n
ˆ x1

x
y(n−1)(yx−1)′ dx > 0.

Substituting (36) into (35) and letting x1 → +∞, we obtain the inequality

F1(x) +H1(x) ≥ Dyσ+1x−m.

Arguing by induction in a similar way, it is easy to see that the following estimate holds for any
q ∈ {0, 1, . . . , n − 1}:

y(n−q)
q

∑

k=0

(−1)n−k(y′)q−k(yx−1)k ≥ Dyσ+qx−m. (37)

Setting q = n− 1 in (37), we obtain the required estimate (26). Lemma 2 is proved.

Proof of Theorem 3. Without loss of generality, we shall only consider the positive solutions of Eq. (1).
For m ≤ 0, the assertion of the theorem is proved in Lemma 1. Consider the case 0 < m < n. Then

estimate (26) holds and, therefore, there exists a number C > 0 such that, for any x ≥ x0, either one of
the two inequalities

yx−1 > Cy(σ+n−1)/nx−m/n, (38)

−y′ > yx−1 (39)

holds or both of these inequalities simultaneously hold. Note that if (39) holds, then, in view of (26),
obviously, the following inequality also holds:

−y′ > Cy(σ+n−1)/nx−m/n. (40)

By a linear change of the variable y, we can ensure that C = 1 in (38) and (40). Below we assume that
this condition holds.

Obviously, if there exists a number x̃ ≥ x0 such that, for x ≥ x̃, inequality (38) (or (40)) holds, then
estimate (7) is valid. Now consider the case in which there is a sequence of points

xj+1 > xj ≥ x0, j = 1, 2, . . .

such that, for x ∈ Ω2q+1 = [x2q+1, x2q+2), estimate (38) holds and, for x ∈ Ω2q+2 = [x2q+2, x2q+3),
estimate (39) holds. Here inequalities (38) and (39) become equalities at the points x2q+2 and x2q+3,
respectively. The last condition obviously implies that limj→∞ xj = ∞. For x ∈ Ω2q+1, estimate (7)
obviously holds. Now consider the interval Ω2q+2.

First, let a = (n−m)(σ − 1)−1 < 1. If x ∈ Ω2q+2, then it follows from (39) that

y < y2q+2x2q+2x
−1. (41)

But y2q+2 = (x2q+2)
−a. Substituting this expression, where a = (n−m)(σ − 1)−1 < 1, into (41),

we obtain

y < (x2q+2)
1−ax−1 =

(

x2q+2

x

)1−a

x−a ≤ x−a
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and, therefore, for a < 1, estimate (7) is valid for any x ∈ Ω2q+2 with D = 1.
Now let a ≥ 1. For x ∈ Ω2q+2, integrating (40), we obtain

y <

(

(y2q+2)
(1−σ)/n +

1

a
(x(n−m)/n − x

(n−m)/n
2q+2 )

)n/(1−σ)

. (42)

Substituting y2q+2 = (x2q+2)
−a into (42), we obtain the inequality

y <

((

1− 1

a

)

x
(n−m)/n
2q+2 +

1

a
x(n−m)/n

)n/(1−σ)

≤ Dx(m−n)/(σ−1), D = an/(σ−1),

and hence estimate (7) is proved for any x ∈ Ω2q+2 with D = an/(σ−1). Thus, Theorem 3 is proved for
all m < n.

Now consider the last case in which m = n. If, at the point x, the inequality −y′ ≤ yx−1 holds, then
it follows from (26) that

−y′ > B1y
σx−1, B1 = const > 0. (43)

But if −y′ > yx−1, then, from (26), we obtain

−y′ > B2y
(σ+n−1)/nx−1, B2 = const > 0. (44)

Here the numbers B1, B2 depend only on n and the constant D from (26). Without loss of generality,
we can assume that B1 = B2 in (43) and (44). Let x1 be such that, for x ≥ x1, we have y(x) < 1.
Then (44) implies (43). Thus, for x ≥ x1, the solution y(x) satisfies inequality (43) whose integration
yields estimate (7). Theorem 3 is proved.

Proof of Theorem 4. Under condition (10), estimate (11) was proved in Theorem 3. Now let
0 < β ≤ n− 1. Let us find an integer k ∈ {1, . . . , n− 1} such that k − 1 < β ≤ k. Note that, for large
values of x, the functions y(j)(x), j ∈ {0, . . . , n− 1}, are monotone. Let us prove that, as x → +∞, all
the derivatives y(j), k ≤ j ≤ n− 1, tend to zero. Let j = n− 1 and

lim
x→+∞

y(n−1)(x) = D, 0 < D ≤ +∞

(here and elsewhere we use the “universal” constant D > 0). If p(x) > 0, then this contradicts Lemma 1
from [2]. In the case p(x) < 0, for large values of x, we have

y ≥ Dxn−1 and y(n) ≤ −Dx(n−1)σ−n−β(σ−1);

hence we obtain limx→+∞ y(n−1)(x) = −∞, which cannot be true. Now let, as x → +∞,

y(m) → C, 0 < C ≤ +∞, y(j) → 0, 1 ≤ k ≤ m < j ≤ n− 1.

Then, for large values of x, the function y(x) increases and, successively integrating Eq. (1) on the
interval [x,+∞), we obtain by induction

|y(j)| ≥ Dyσx−j−β(σ−1), j ∈ {m+ 1, . . . , n− 1}.

If y(m+1)(x) > 0, then this contradicts Lemma 1 from [2]. But if y(m+1)(x) < 0, then, taking into
account the fact that, for large values of x,

y ≥ Dxm and y(m+1) ≤ −Dxmσ−m−1−β(σ−1),

we obtain limx→+∞ y(m)(x) = −∞, which cannot be true.

Thus, we have proved that, as x → +∞, all the derivatives y(j), k ≤ j ≤ n− 1, tend to zero. In
addition, for large values of x the following condition holds:

y(j+1)(x)y(j)(x) < 0, k ≤ j ≤ n− 1. (45)

It follows from this that (−1)n−k sgn p(x)y(k)(x) > 0.
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If condition (16) holds, then y(k)(x) < 0, i.e., the function y(k−1)(x) will decrease, which obviously
implies (17).

Now let conditions (12) or (14) hold. Then the inequality y(k)(x) > 0 is valid. Further, if
limx→+∞ y(k−1)(x) < +∞, then y(x) ≤ Dxk−1, and the assertion of the theorem holds (in view of the
inequalities 0 ≤ k − 1 < β ≤ k).

Now let limx→+∞ y(k−1)(x) = +∞. Then, for large values of x, all the functions y(j)(x),
0 ≤ j ≤ k − 1 will be positive. Below we assume that these conditions hold for x ≥ x0. In addition,
y(k)(x) is a decreasing function tending to zero as x → +∞.

For large values of x, let us now show that the following estimate holds:

y(j)(x) ≥ xy(j+1)(x)

D
, 0 ≤ j ≤ k − 1. (46)

Obviously, for large values of x, in view of the decrease of the function y(k)(x) the following inequality
holds:

y(k−1)(x) = y(k−1)(x0) +

ˆ x

x0

y(k)(t) dt ≥ xy(k)(x).

Thus, estimate (46) holds for j = k − 1, D = 1.
Now assume that (46) holds for 0 < m ≤ j ≤ k − 1, x ≥ x1 > 0. Let us prove that this estimate also

holds for j = m− 1.
Let us show that, for some D1 > 0, the following two inequalities hold:

y(m−1)(x1) >
x1y

(m)(x1)

D1
, (47)

y(m)(x) ≥ ym(x)

D1
+

xy(m+1)(x)

D1
, x ≥ x1. (48)

The first of these inequalities is satisfied if

D1 > x1y
(m)(x1)(y

(m−1)(x1))
−1.

The second inequality follows from (46) for j = m and D1 ≥ D + 1.
From (47) and (48), it is easy to obtain the following estimate:

y(m−1)(x) = y(m−1)(x1) +

ˆ x

x1

y(m)(t) dt ≥ xy(m)(x)

D1
. (49)

Indeed, it follows from (47) and (48) that the difference of the functions on the left-hand and right-hand
sides of inequality (49) is positive at the point x1, while the difference of their derivatives is nonnegative
for x ≥ x1. It follows from inequality (49) that estimate (46) holds for j = m− 1. Thus, estimate (46) is
proved for all 0 ≤ j ≤ k − 1 and x ≥ x1 > 0. Hence we see that

y(x) ≥ D2x
ky(k)(x), D2 = const > 0. (50)

Substituting inequality (50) into (1), denoting z = y(k)(x), and taking into account the inequality
(−1)n−kp(x) > 0, we obtain the equation

(−1)n−kz(n−k) = zσp1(x),

p1(x) ≥ D3x
−q, q = n− k + (β − k)(σ − 1),

D3 = const > 0, x ≥ x1 > 0.

Applying Theorem 3 to this equation, we obtain either

z = y(k)(x) ≤ D4x
β−k, D4 = const > 0

if k − 1 < β < k or

z = y(k)(x) ≤ D4(lnx)
−1/(σ−1), D4 = const > 0

if β = k. Integrating these inequalities, we obtain, respectively, estimates (13) and (15).
Theorem 4 is proved.
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