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Abstract
The volume fraction of water related to myelin (fmy) is a promising MRI index for in vivo

assessment of brain myelination, that can be derived from multi-component analysis of T1

and T2 relaxometry signals. However, existing quantification methods require rather long

acquisition and/or post-processing times, making implementation difficult both in research

studies on healthy unsedated children and in clinical examinations. The goal of this work

was to propose a novel strategy for fmy quantification within acceptable acquisition and

post-processing times. Our approach is based on a 3-compartment model (myelin-related

water, intra/extra-cellular water and unrestricted water), and uses calibrated values of

inherent relaxation times (T1c and T2c) for each compartment c. Calibration was first per-

formed on adult relaxometry datasets (N = 3) acquired with large numbers of inversion

times (TI) and echo times (TE), using an original combination of a region contraction

approach and a non-negative least-square (NNLS) algorithm. This strategy was compared

with voxel-wise fitting, and showed robust estimation of T1c and T2c. The accuracy of fmy

calculations depending on multiple factors was investigated using simulated data. In the

testing stage, our strategy enabled fast fmy mapping, based on relaxometry datasets

acquired with reduced TI and TE numbers (acquisition <6 min), and analyzed with NNLS

algorithm (post-processing <5min). In adults (N = 13, mean age 22.4±1.6 years), fmy maps

showed variability across white matter regions, in agreement with previous studies. In

healthy infants (N = 18, aged 3 to 34 weeks), asynchronous changes in fmy values were

demonstrated across bundles, confirming the well-known progression of myelination.
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Introduction

Myelination is a crucial process of the white matter maturation. Although there is a critical
need for in vivo quantitative assessment of myelination in many clinical conditions encom-
passing most neurodevelopmental disorders, there is still no gold-standard for its evaluation.
Whereas myelination can be assessed using conventional Magnetic Resonance Imaging (MRI)
and Diffusion Tensor Imaging (DTI) parameters [1–3], these methods provide only indirect
and non-specificmeasures of the myelin content as they also reflect other tissue properties
[4,5]. Recent advances in MR relaxometry have proposed a novel index: the volume fraction
of water related to myelin (fmy), which has shown good correlation with the myelin amount
[6] and seems relevant for quantifying the progression of white matter myelination [7–9]. fmy

corresponds to the fraction of water volume trapped by the myelin sheaths relative to the total
water volume within an imaging voxel, and can be derived from a multi-component analysis
of relaxometry signals [10,11]. The number of compartments, corresponding to different
pools of water within a voxel, usually varies from 2 to 4, and includes myelin-related compart-
ment, intra/extra-cellularwater, and unrestrictedwater (such as observed in the cerebro-spi-
nal fluid CSF).

The most conventional approaches for fmy quantification rely on the calculation of T2
spectrum, and define fmy in each voxel as the ratio between the signal with T2 below 40-
50ms, and the total water signal [6,11–16]. Similar strategies have been proposed for T2� [17]
and T1 spectra [18]. However, reliable estimation of a spectrum requires acquisition of
relaxometry signals with a large number of sampling points (N>32 for echo times TE or
inversion times TI) [10,11], making the acquisition protocol impractically long for unsedated
infants and children. Alternative approaches are based on multi-compartment models of MR
relaxometry signals, which take into account the relative contributions of different compart-
ments: fitting these models against acquired measurements enables to estimate the volume
fractions of the various compartments [9,19,20]. In such models, differences in relaxometry
signals across voxels might be explained either by different compartment fractions, or by var-
iations in their magnetic properties (i.e. intrinsic relaxation times) due to variations in their
biophysical properties (axonal diameters, myelin thickness, myelin compactness, axonal den-
sity, etc.). Unless a priori assumptions are made on the compartment relaxation times [9],
such models are described by non-linear equations, and the robustness of their fitting relies
on the sampling strategy, the number of measurements and the optimization algorithm.
mcDESPOT sequences were the first approach that allowed to reduce the acquisition time:
for instance, in infants between 3 and 9 months of age, the total imaging time (including
sequences for B0 and B1 corrections [21]) can be reduced down to 18min on a 3T scanner [8].
Unfortunately this duration remains rather long for unsedated pediatric subjects. In addition,
long post-processing times (~14 hours per subject on an 8-core Intel I7 machine [19]) are
inevitable due to the model non-linearity imposing the use of time-consuming stochastic
model fitting. The goal of this study was thus to design and test a novel strategy for fast fmy

quantification, based on reasonable acquisition and post-processing times, which could be
applied for instance in infants.

Strategy and Hypotheses for Fast fmy Quantification

Let us first introduce the general concepts and hypotheses of our approach. It is based on a
3-compartment relaxation model adapted from [9], and uses a 2-stage strategy (calibration
then testing), which imposes little a priori assumptions on the compartment relaxation proper-
ties. Details on the fitting procedures are provided in the “Materials and Methods” section.
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A 3-Compartment Model

A compartmental model aims to decompose the measured NMR signals at the voxel level into
components characterized by different relaxation times corresponding to different intra-voxel
compartments [19,22–24]. The variability in measured signals observed across voxels could
then be explained by differences in the relative compartments’ fractions within those voxels.
Within each voxel, we considered three compartments with their own inherent relaxation
times: myelin-related water, intra/extra-cellularwater, and unrestrictedwater (further referred
to as CSF compartment). The 3-compartment model (Eq 1–4) links the volume fractions (fc) of
compartments (c) and their inherent relaxation times (T1c and T2c), with the T1-weighted
measurements (ST1) acquired for NTI inversion times (TIm) and the T2-weighted measure-
ments (ST2) acquired for NTE echo times (TEk).

X3

c¼1

fc ¼ 1; fmy 2 ½0; fmyMAX �; fie;csf 2 ½0; 100%� ð1Þ;

ST1ðTImÞ ¼ S0 1 � 2exp � TIm=T1
� �� �

; m ¼ 1::NTI ð2Þ;

1=T1 ¼
X3

c¼1

fc
�

T1c ð3Þ;

ST2ðTEkÞ ¼ S0

X3

c¼1

fcexp � TEk=T2c

� �
; k ¼ 1::NTE ð4Þ;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

The first equation of this model merely states that there are only 3 compartments (my—
myelin-related water, ie—intra/extra-cellular water, and unrestrictedwater compartment),
with fractions varying from 0 to fmyMAX or 100% [9,19,25–27]. Eq 2 describes the classical rela-
tionship betweenT1 relaxometry signal, inversion and relaxation times. Eq 3 assumes a “fast
exchange” model of T1-weighted signal: between-compartmentwater mixing times are
assumed to be short compared with within-compartment T1 relaxation times. Eq 4 assumes a
“slow exchange” model of T2-weighted signal: T2 relaxation times are assumed to be short
compared with the time it takes water molecules to exchange between compartments. The
validity of this model assumptions was verified in [9].

Fitting such a non-linear 3-compartment model (Eq 1–4) with a limited number of mea-
surements is an ill-posedproblem. However, if we pre-calculate T1 using Eq 2, and fix T1c and
T2c for each compartment c in Eq 3, only 3 parameters are unknown (i.e. the compartment
fractions fc), and the model becomes linear. Such a model can be easily fitted based on a reason-
able number of measurements and using standard non-negative least-square (NNLS) algo-
rithms [28].

A 2-Stage Strategy

In the adult brain, some variability in T1 and T2-weighted signals measured at the voxel level is
observed across brain tissues and regions. Here we assume that this variability can be fully
explained by differences in the volume fractions of compartments, while T1c and T2c for each
compartment c can be considered constant across voxels and subjects as they characterize the
tissue magnetic properties. In this context, we implemented the following 2-stage strategy to
reliably estimate fmy maps. First, because T1c and T2c might depend on the acquisition protocol
(B0 field, sequences, etc.), a dedicated calibration procedure became mandatory. To this aim,
we used datasets acquired in healthy adults with a large number of measurements, to compute
the T1c and T2c values and ensure a robust fit of the full 3-compartment relaxation times (Eq
1–4) to be used next. This “calibration stage” was achieved by an original combination of a
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region contraction approach and a standard NNLS algorithm. Second, the model complexity
was reduced by fixing T1c and T2c in the “testing stage”, which allowed us to compute fmy maps
from datasets acquired using a significantly reduced imaging protocol relying on a small num-
ber of measurements. To check the validity of our hypothesis, we compared fmy, T1c and T2c

values computed with voxel-wise model fitting, and at the calibration and testing stages. The
impact of several factors on fmy accuracywas also investigated.

Besides, compartmental models have enabled the efficient description of changes related to
brain maturation in the recent years [8,9,29]. Here we evaluated whether fmy maps could be
computed in infants with the same approach, based on reduced datasets relying on few mea-
surements. As detailed in the “Discussion” section, we assumed that T1c and T2c do not evolve
throughout development, and that age-related decreases in T1 and T2 relaxation times mea-
sured at the voxel level are exclusively explained by age-related changes in intra-voxel compart-
ments fractions.

Materials and Methods

Datasets and MRI Acquisition

We acquired different datasets in adult and infant subjects. All acquisitions were performed on
a 3T MRI system (Tim Trio, Siemens Healthcare, Erlangen, Germany), equipped with a whole
body gradient (40mT/m, 175T/m/s) and a 32-channel receive-only head coil. To measure T1
and T2 relaxometry signals, single-shot spin-echo (SE) echo-planar-imaging (EPI) sequences
were used to acquire interleaved axial slices covering the whole brain (70/50 slices for adults/
infants) with a 1.8 mm isotropic spatial resolution (field-of-view= 23cm, matrix = 128x128,
slice thickness = 1.8mm). For T1 relaxometry, an inversion recovery (IR) SE-EPI sequence
with different TI values was used (TE = 38ms, TR = TI + 21s/15s for adults/infants; partial Fou-
rier sampling factor of 5/8). For T2 relaxometry, a SE-EPI sequence with different TE values
was used (TR = 21.7s/15.5s for adults/infants, parallel imaging with GRAPPA factor 2, partial
Fourier sampling factor of 6/8). Anatomical images were further acquired for registration: in
adults, T1-weighted (T1w) images with a 1mm isotropic spatial resolution using a 3D fast gra-
dient inversion recovery sequence (MPRage); in infants, T2-weighted (T2w) images with a spa-
tial resolution of 1x1x1.1mm3 using a 2D turbo spin echo sequence.

Calibration datasets in adults. To calibrate T1c and T2c of each compartment c, we
acquired data on 3 healthy adult volunteers (1 female, 2 males, mean age: 23.2±2 years) using
long protocols, based on large numbers (N = 30–60) of TI (sampled between 100ms and
3100ms) and TE (sampled between 30ms and 340ms) leading to acquisition times between 35
and 47min (S1 Table and S1 Fig). The TI and TE samplings were denser at the beginning of the
sampling range to ensure good parameters estimation for the fast-relaxing myelin-related com-
partment with low T1my and T2my.

Reduced datasets in adults and infants. The strategy was tested in two groups using short
acquisition protocols: an adult group of 13 healthy subjects (6 females, 7 males, mean age: 22.4
±1.6 years), and a group of 18 healthy infants born at term (8 girls, 10 boys), with a matura-
tional age (i.e. chronological age corrected for gestational age at birth) between 3 and 21 weeks
for 17 infants, plus one infant of 34 weeks old. A reduced number of measurements was
acquired. For T1 relaxometry, 8 different TIs (from 250 to 1500ms every 250ms, 2000 and
2500ms) were used, leading to a scan duration of 3min03s/2min11s (adults/infants). For T2
relaxometry, 8 linearly spaced TE values were used betweenTE = 50 and 260ms, leading to a
scan duration of 4min/2min51s. To identify different white matter bundles used as regions-of-
interest for fmy quantification, a non-diffusionweighted image (b = 0 s/mm2) and 30 diffusion-
weighted (DW) images (b = 700 s/mm2) were acquired using a DW-SE-EPI sequence
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(TE = 72ms, TR = 14s/10s, parallel imaging GRAPPA factor 2, partial Fourier sampling factor
6/8) within an acquisition time of 7min56s/5min40s.

The study protocol was approved by the regional ethical committee for biomedical research
from Kremlin-Bicêtre (for adult experiments: CPP #2008-A00241-54; for infant experiments:
INSERM 123 011, CPP #05 14). All parents and adult subjects gave written informed consents.
The infants were spontaneously asleep during MR imaging (the protocol length was sufficiently
short to be acquired during the nap). Particular precautions were taken to minimize noise
exposure, by using customized headphones and covering the magnet tunnel with special noise
protection foam (“plastison”, Serenata, http://www.serenata.tm.fr/product.php?id_product=
17). We also restrained the slew rate of MR gradients in EPI acquisitions. To reduce motion,
the infants’ heads were gently restricted by the headphones and MRI foam pads.

Data Post-Processing

Data preparation. All data were pre- and post-processed using PTK toolkit and Connec-
tomist software both developed in-house at NeuroSpin [30,31]. For T1 and T2 relaxometry
images, the signal-to-noise ratio (SNR) was computed as the ratio between the mean signal
from the brain (without ventricles) to the standard deviation of the noise from the image back-
ground. For all TIs and TEs, the SNR of T1 and T2 relaxation images was above 5.3 and 6.2
respectively. These noise levels allowed us to approximate the non-centered chi-noise present
in GRAPPA-reconstructed images by a Gaussian noise, and thus to use NNLS estimators.

In each subject, T1 and T2 relaxometry images were co-registeredwith anatomical images
using affine transformations maximizing their mutual information. A brain mask was com-
puted from the T2-weighted images with the highest SNR (corresponding to the lowest TE),
based on thresholding and mathematical morphology tools (combination of opening and clos-
ing). All images were masked with this brain mask. Quantitative T1 and T2 maps were further
computed.

Computation of reference fmy maps. In the calibration datasets (3 adults), we first per-
formed a voxel-wise fitting of the 3-compartment model (Eq 1–4), to estimate fc, T1c and T2c

for each compartment c in each brain voxel. We aimed to both ensure that there was no partic-
ular regional dependence of T1c and T2c, and to compute reference fmy maps. The upper
boundary for fmy was set to 40%. An original combination of a region contraction approach
[19,32] and a standard NNLS algorithm [28] was used (Fig 1). This procedure was pro-
grammed in Python using NumPy and SciPy libraries. The initial search ranges for the individ-
ual compartment T1c and T2c were set based on literature evidence [9,19,33,34] and to ensure
their continuity:

• for myelin-related compartment: T1my 2 [300; 570] ms, T2my 2 [1; 40] ms

• for intra/extra-cellularwater compartment: T1ie 2 [570; 1600] ms, T2ie 2 [40; 200] ms

• for CSF compartment: T1csf 2 [1600; 4000] ms, T2csf 2 [200; 2000] ms.

In each voxel, random T1c and T2c values were first selected from the corresponding search
ranges using uniform random distributions. Then the simplified model (with corresponding
T1c and T2c) was fitted using a NNLS algorithm. The fitting error was calculated by increasing
the weight of Eq 3 (describing T1 relaxation) proportionally to the number of TI points: this
was performed to balance the contributions of T1 (only one equation in the model) and T2
(TE equations) in the fitting error computation. Similar to [19], this step was repeated 10000
times in each voxel, and the best 100 selections of T1c and T2c values (i.e. providing the smallest
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fitting errors) were used to contract the search ranges. After contraction, the whole procedure
was re-started: 90% of random T1c and T2c values were chosen from the new search ranges,
while the remaining 10% were selected from the initial ranges to avoid falling into a local mini-
mum. This fitting procedure was executed until both the fitting errors and the difference
between the ranges boundaries became less than 1%. For each voxel, this procedure took
around 70-80sec on Intel I3 machine using a single core CPU (the algorithm convergence is
illustrated in S2 Fig), leading to around 120 hours per subject for the central slices of the brain
(covering the ventricles, corpus callosum and basal ganglia, i.e. containing portions of all three
compartments).

At the same time, fmy maps were computed using Eq 1–4 by fixing T1c and T2c based on the
literature: either according to [9] (T1my = 350ms, T1ie = 850ms, T1csf = 2800ms, T2my = 10ms,
T2ie = 40ms, T2csf = 130ms) or [19] (T1my = 465ms, T1ie = 9665ms, T1csf = 3500ms, T2my =
12ms, T2ie = 90ms, T2csf = 250ms). The resulting fmy maps were compared with maps obtained
with voxel-wise fitting, with the aim to demonstrate that T1c and T2c values could not be sim-
ply taken from the literature but required specific calibration for our acquisition protocol.

Calibration of the 3-compartment relaxationmodel. T1c and T2c were then calibrated
on the same datasets, using the same fitting procedure as for the voxel-wise estimation, except
that it was performed at the slice level and not at the voxel level for two reasons: to save compu-
tation time, and to increase the fitting accuracy (as detailed below, calculation errors decrease
with the number of voxels used for fitting). In each of the 3 subjects, we considered the same 10
central slices as they contained portions of all three compartments. The total fitting error was
calculated over all voxels within each slice independently (averaged number per slice: 5718

Fig 1. Schematic representation of the fitting algorithm. The fitting procedure was performed either for each voxel (voxel-wise

approach) or for each slice (calibration approach) independently. The fitting steps were repeated until both the fitting error and the

differences between the upper and lower borders of the search ranges became less than 1%.

doi:10.1371/journal.pone.0163143.g001
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±406). Once the calibration was performed for each slice, T1c and T2c were set to the weighted
averages over all slices of all subjects (10 slices x 3 subjects, weighted with inversed fitting
errors). These calibrated values were compared with T1c and T2c distributions obtained with
the voxel-wise approach. The resulting fmy maps were also compared with the reference fmy

maps. This calibration stage took approximately 24 hours per subject.

Checking the Accuracy and Limits of the Calibration Stage

Selectionof fmy upper boundary. We explored the effect of fmy upper boundary at the cal-
ibration stage, since it was shown to have a considerable impact on fmy values derived from the
relaxometry model based on mcDESPOT protocol [35]. It has been shown that the quality of
model fitting (sum-of-square of residuals) using stochastic region contraction approach is the
best when the upper boundary is between 0.3 and 0.5 and is insensitive to changes within this
range [35]. Thus the search interval for fmy was initially set to [0; 0.4], and we also considered
two other upper boundaries (0.3 and 0.5) at the calibration stage, to compare the estimated T1c

and T2c, and fmy maps. Given the results, the upper boundarywas fixed to 0.4 in the following
tests.

Impact of TI/TE numbers on the calibration of T1c and T2c. We investigated the impact
of TI and TE numbers on the estimation of T1c and T2c, to make sure that each calibration
dataset had enough sampling points for reliable calibration. From the initial dataset with 60 TI/
TE sampling points (subject #3, S1 Fig), we progressively removed data points in a regular
manner from 60 down to 10 points (S1 Fig), and we performed independent calibrations for
each resulting dataset.

Evaluating the fitting accuracyusing simulated data. We also checked using simulated
data whether the proposed calibration strategy provided reliable computation of fmy values. T1
and T2 relaxometry signals were simulated using Eq 2–4 at all TI and TE sampling points. We
fixed T1c and T2c values either equal to those identified at the calibration stage or as in previous
studies [9,19,34,35] (T1my = 465ms, T1ie = 965ms, T1csf = 3500ms, T2my = 12ms, T2ie = 90ms,
T2csf = 250ms). Different compartment fractions were considered, as possibly observed in the
white matter: fmy = [5,10,15,20,25,30,40]%, fcsf = [0,1,2,3,4,5]% and fie = (100 − fmy − fcsf)%. Sim-
ulated signals were additionally corrupted with a Gaussian noise with a dispersion varying
from 0 to 20% relative to signal values. Then the calibration procedure was applied to simulated
signals to identify the compartment fractions as well as T1c and T2c. The error in fmy calculation
was estimated as the averaged absolute percent difference between identified and simulated val-
ues. We also investigated how the number of voxels used for the model fitting impacted fmy

errors. In theory, calculation errors are proportional to the inversed square root of the voxel
number [36]. Thus, simulations were performed for voxel numbers equal to [12, 22, . . ., 752 =
5625], and errors were fitted with the inverse square root function. Finally, we compared fmy

calculation errors obtained in simulations using both T1 and T2 relaxometry signals together,
vs. only T2 relaxometry signal.

Testing the Calibration Model and Measuring fmy over White Matter

Bundles

In the testing stage, fmy maps were computed in both the calibration and reduced datasets by
fixing T1c and T2c to those determined at the calibration stage. For the whole brain of each sub-
ject, this stage took less than 5 min. We checked that down-sampling the calibration datasets
(to match the 8 TIs and 8 TEs of the reduced datasets) had no significant impact on the gener-
ated fmy maps. Similarity between fmy distributions computed from the adult calibration and
reduced datasets was assessed by ad-hoc χ2 test [37]. For each adult and infant reduced dataset,
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fmy was further quantified and averaged over different white matter bundles. To do so, DW
images were co-registeredwith anatomical images using affine transformations, and corrected
for motion and eddy current artifacts [38]. 18 projection, association, commissural and limbic
bundles maturing at different times and rates were reconstructed in each subject according to a
4-order analytical Q-ball model [39], regularized 3D tractography [40], and manually delin-
eated regions of interest [41]. In the adult group, fmy value in each bundle was compared with
quantitative T1 and T2 relaxation times based on correlation across subjects. In the infant
group, fmy age-related changes were assessed. Infant values were further normalized by the cor-
responding average from the adult group to address the degree of bundles myelination rela-
tively to the adult mature stage [42].

Results

Calibration vs Voxel-Wise Fitting Approach

In the calibration datasets, the voxel-wise fitting procedure provided fmy maps of high quality
(Fig 2a). Across voxels, T1c and T2c estimations varied to some extent over the whole search
ranges, but in a completely random way (Fig 3), suggesting these magnetic properties can be
considered as stable across brain regions. The resulting mean T1c and T2c values (±standard
deviations SD) were:

• for myelin-related water compartment: T1my = 360±39ms, T2my = 18±8ms

• for intra/extra-cellularwater compartment: T1ie = 1482±29ms, T2ie = 53±12ms

• for unrestrictedwater (CSF) compartment: T1csf = 3431±78ms, T2csf = 852±79ms.

In the same datasets, the calibration procedure resulted in the following T1c and T2c estima-
tions (mean±SD over the 10 slices of the 3 subjects):

• for myelin-related water compartment: T1my = 357 ± 21ms, T2my = 18 ± 5ms

• for intra/extra-cellularwater compartment: T1ie = 1483 ± 17ms, T2ie = 52 ± 6ms

• for unrestrictedwater (CSF) compartment: T1csf = 3441 ± 36ms, T2csf = 858 ± 47ms.

These values were close to the distribution peaks revealed by the voxel-wise procedure (no
statistical difference: t-test, p>0.4). The resulting fmy maps (Fig 2b) had similar distributions of
values across the 3 subjects (ad-hoc χ2 test, p>0.95), and similar visual appearances with voxel-
wise fmy maps (Fig 2a), with differences smaller than 3% (histogram in Fig 2b). These results
suggested that our slice-wise calibration procedure was successful in comparison with the
voxel-wise procedure. On the contrary, fixing T1c and T2c according to the literature was inad-
equate as fmy maps displayed much smaller values than voxel-wise maps in most voxels, and
were not consistent across subjects (Fig 2c and 2d). fmy values were very low in the grey matter,
despite the known presence of myelin in both the cortex and deep grey nuclei. These observa-
tions confirmed that the calibration stage was necessary to estimate reliable T1c and T2c given
our acquisition framework.

Factors Influencing the Calibration Stage

Selectionof fmy upper boundary. We investigated how the initial upper search boundary
for fmy impacted the estimated fmy, T1c and T2c values at the calibration stage. With a [0, 0.4]
interval, quite high fmy values were observed in the adult white matter (Fig 2b), in comparison
with previous studies [7,9]. When changing the upper boundary to 0.3 and 0.5 for the 3
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Fig 2. fmy maps in the 3 calibration adult subjects. For each subject, fmy maps were computed according

to different strategies based on either the complete datasets (a-e) or datasets with reduced numbers of

measurements (f). Maps were first estimated without fixing T1c and T2c, using voxel-wise fitting (a) or slice-

wise fitting (b: maps computed at the calibration stage). Second, T1c and T2c were fixed according to the

literature (from [9] and [19] in c and d respectively), or to calibrated values (e, f). Maps are displayed in
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radiological convention. Histograms show the number of voxels with a given fmy difference (in %) between

each fmy map and the reference map (a).

doi:10.1371/journal.pone.0163143.g002

Fig 3. Variations of the compartments relaxation times across voxels. In the first three rows,

histograms show distributions of T1c and T2c estimations (for myelin-related water, intra/extra-cellular water,

and CSF compartments) obtained from voxel-wise fitting within the search ranges, across all voxels of the 3

calibration datasets. T1c and T2c maps (presented for subject #3) did not reveal any regional dependence. In

the bottom row, distributions of quantitative T1 and T2 values obtained from mono-exponential fittings at the

voxel-level are shown, as well as T1 and T2 maps (subject #3).

doi:10.1371/journal.pone.0163143.g003
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calibration datasets, we observed a strong impact on fmy maps (S3 Fig): higher upper boundary
resulted in higher fmy values in all 3 subjects. However, the estimated T1c and T2c were very
close (S2 Table). Of interest, when the upper boundarywas set to 0.4, distributions of fmy values
across the 3 subjects were the most similar (i.e. they had the biggest overlap, S3 Fig), and stan-
dard deviations for T1c and T2c estimations were the lowest (S2 Table). These results suggested
that fixing the upper boundary for fmy to 0.4 was valid although it might provide high fmy

values.
Accuracyof the calibration strategy. We further assessed whether our calibration strategy

was sensitive to different acquisition parameters (sampling points, noise level). First, reducing
the number of calibration TI and TE points until N = 25 for both T1 and T2 relaxometry sig-
nals, had no significant effect on T1c and T2c calibration in subject #3 (ad-hoc paired t-test
between T1c and T2c values from individual slices: p>0.06, S4 Fig). This suggested that our cal-
ibration stage was performed in a stable manner across all 3 subjects despite the different num-
bers of TI and TE points.

Application of the calibration strategy to simulated data showed that as the noise level
increased, reliable calculation of fmy values required increasing the number of voxels used to esti-
mate the compartment relaxation times (Fig 4a). In agreement with previously conducted simu-
lations [19], the average estimation errors were less than 10% even for a noise level of 20% of the
signal values, on condition that more than 2000 voxels were used simultaneously (Fig 4a). In
simulations with a 20% noise level and a number of voxels higher than 5000, we observed that
estimation errors decreasedwith increasing fmy values, and that maximal errors did not exceed
15% for fmy values of 5% (Fig 4b). This suggested that the number of voxels considered in our
calibration stage (~5718±406 voxels for each slice) was sufficient for reliable fmy estimation.

Besides, in identical conditions (same noise level, number of voxels, compartment fractions,
T1c and T2c), removing T1 relaxation from the model (i.e. removing Eq 3) significantly reduced
the accuracy of fmy calculations as compared to the full model (ad-hoc paired t-test, p< 10−6).
This demonstrated that modeling T1 and T2 relaxometry signals together was more appropri-
ate than considering T2 relaxation alone, this was probably because we could not sample T2
signals for very short TE as compared with the very low T2my value as discussed below.

Evaluation of the Testing Stage

Fixing T1c and T2c with calibrated values. In the calibration datasets, fixing T1c and T2c

with calibrated values to fit the 3-compartment model had little effect on fmy maps, whether
the number of data points was kept complete (Fig 2e) or reduced to 8 TI and 8 TE values
matching those of the reduced datasets (Fig 2f). The average absolute differences between the
reference fmy maps and fmy maps computed with fixed calibrated T1c and T2c were very low
(-0.3±1.8%; Fig 2e and 2f).

fmy maps in the reduceddatasets. In adults, fmy maps from the reduced datasets were very
similar to the maps from the calibration datasets, both in terms of visual appearance (Figs 2 vs
5) and distribution of fmy values (ad-hoc χ2 test: p>0.95). In infants, fmy maps showed the mye-
lination progression describedby post-mortem studies [43]. Within white matter, the youngest
infants had high fmy values only in the posterior limb of the internal capsule, and fmy values
progressively increasedwith age in a caudo-rostral direction, from the center of the brain to
the periphery (Fig 5).

fmy Quantification in White Matter Bundles

fmy in the adult bundles. In adults, fmy values were highly variable across bundles (Fig 6a
and 6b): from 0.14 in the spino-thalamic tract up to 0.36 in the optic radiations. In the spino-
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thalamic tract, surprisingly low values and high inter-individual variability were probably due
to subtle misalignment between fmy maps and DW images in the brainstem of some adults.
High variability in fmy values was also observed in the genu of corpus callosum, possibly due to
partial volume effects with the ventricle CSF. In all bundles, fmy values were strongly correlated
with T1 values across adult subjects (R2> 0.95), but not with T2 values.

fmy in the infant bundles. In infants, fmy values were smaller than in adults and below 0.05
for most bundles (on average over the group) (Fig 6b). The highest fmy values were observed in
the cortico-spinal and spino-thalamic tracts and in the optic radiations, which are known to
myelinate early on. According to the 3-compartment model, age-related changes in T1 and T2
relaxation times (measured at the voxel level) over the infant group could be explained by age-
related changes in the compartment fractions, notably by changes in fmy values. For instance,
in the middle cortico-spinal tract, we observed that fmy changed from 5% at 3 weeks of age to
17% at 21 weeks, in relation with changes in fie from 89% to 80%, and in fcsf from 6% to 3%.

Fig 4. fmy calculation accuracy at the calibration stage assessed in numerical simulations. (a) The fmy calculation errors were calculated for simulated

fmy = [5,10,15,20,25,30,40]% and fcsf = [0,1,2,3,4,5]%, and the resulting average values were represented as a function of the number of voxels used for the

model fitting [12, 22, . . ., 752 = 5625], for different noise levels (from 0 to 20%). As expected, relationship between the fmy calculation errors and the number of

voxels could be described by inverse square root relationship (R2 > 0.75). (b) For a noise level of 20%, calculation errors for different simulated fmy values

were averaged for voxel numbers higher than 5000 ([712, . . ., 752]) and fcsf = [0,1,2,3,4,5]%, considering T1c and T2c values fixed according to our calibration

stage (set1) or to previous studies (set2 [9,19,34,35]). (c, d) Examples of the theoretical and estimated T2 (c) and T1 (d) relaxation signals for data simulated

with fmy = 20%, fie = 78%, fcsf = 2% and T1c and T2c fixed according to our calibration stage.

doi:10.1371/journal.pone.0163143.g004
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Fig 5. T1, T2 and fraction maps computed in reduced datasets. Quantitative T1 (a) and T2 (b) maps are presented for infants at different ages and for an

adult subject, with corresponding anatomical images (T2w for infants / T1w for the adult). Axial slices are displayed in radiological convention. T1 and T2

maps show the expected decreases with age. Fraction maps for the compartments of myelin-related water fmy (c), intra/extra-cellular water fie (d) and

unrestricted water fcsf (e) obtained at the testing stage are also presented. In agreement with the known age-related decrease in water content, fcsf

decreased with age in most voxels except in the CSF, while fmy increased in white matter regions with myelination. Interestingly, the early increase in fie
during infancy was followed by a decrease from 34 weeks on in locations where fmy showed concomitant sharp increase (i.e. posterior limb of the internal

capsule and optic radiations).

doi:10.1371/journal.pone.0163143.g005
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Fig 6. fmy quantification across white matter bundles in infants and adults. (a) White matter bundles reconstructed with tractography (adapted from

[42]). (b) fmy values across bundles in infants (light) and adults (dark). (c) Age-related changes in infants’ normalized fmy values (in % of the mean adult

values) for the same bundles. Lines show significant linear regressions with age (R2 > 0.58, p<0.015), for all bundles except the spino-thalamic tract.

Abbreviations: Projection bundles: cortico-spinal tract CST (inf—inferior, mid—middle, sup—superior portions), spino-thalamic tract STT, optic radiations

OR, anterior limb of the internal capsule ALIC; Association bundles: external capsule EC, arcuate fasciculus AF, superior SLF and inferior ILF longitudinal

fascicles, uncinate fasciculus UF, fronto-occipital fasciculus FOF; Limbic and Commissural bundles: fornix FX, inferior CGinf and superior CGsup parts of

the cingulum; corpus callosum: genu CCg, body CCb and splenium CCs.

doi:10.1371/journal.pone.0163143.g006
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According to Eq 3 and calibrated T1c and T2c, T1 was expected to change from 1321 to 979ms,
in agreement with experimental observations (the measured T1 changed from 1322 to 978ms
on average over the tract). These results were coherent with our initial hypothesis that age-
related changes in relaxometry signals and T1 / T2 relaxation times (measured at the voxel
level), could be modeled exclusively by age-related changes in the compartment fractions.

fmy values normalized by the mean values from the adult group increasedwith age (from 3 to
21 weeks) in all bundles but in an asynchronous manner (Fig 6c): in certain bundles (e.g. spino-
thalamic tract, cortico-spinal tract, external capsule, fornix, optic radiations), normalized fmy

values increased earlier than in other bundles (e.g. arcuate and uncinate fasciculi, anterior limb
of the internal capsule, corpus callosum). In all bundles except the spino-thalamic tract, linear
regressions could describe these age-related increases over this short developmental period.
However, since certain bundles had zero fmy values in the youngest infants, non-linear fitting
may be more pertinent for describing the earliest subtle changes in bundle myelination [29].

Discussion

In this work we proposed an original 2-stage approach for fast fmy quantification, based on a
3-compartment model (myelin-related water, intra/extra-cellular water, unrestrictedwater) of
T1 and T2 relaxometry signals. At the first stage, we calibrated the compartment inherent
relaxation times (T1c and T2c) using data acquired in healthy adult subjects with a long acquisi-
tion protocol. At the second stage, fmy maps could be computed using a simplified linear model
and relaxometry data acquired with a short acquisition protocol more adequate for a pediatric
population.

Is This 2-Stage Strategy Valid to Quantify fmy in the Adult Brain?

Checking the measures of fmy, T1c and T2c. One may first wonder whether our main
hypothesis (i.e. fixing the compartment relaxation times to identical values across all brain
regions and tissues) is valid in the adult brain. Indeed, when we applied a voxel-wise fitting to
the calibrating datasets, T1c and T2c did not show any regional dependence across voxels, and
their distributions showed mean values close to those identified during calibration. Further-
more differences in fmy values across methods were rather low (<3% Fig 2a, 2b and 2e). Thus
local variations in T1c and T2c were not expected to significantly vitiate our results in adults.
However, these magnetic properties likely depend on acquisition protocol, and fixing their val-
ues based on the literature (Fig 2c and 2d) was less reliable than considering calibrated values.
Similarly, in future studies with different acquisition settings, calibrating T1c and T2c values
would be required rather than applying the values reported here.

At the calibration stage, the initial search ranges for T1c and T2c were selected based on liter-
ature evidence [9,19,34,35], and identified values were in agreement with reported values
[6,9,33,44]. Before fixing T1c and T2c to compute fmy maps in the reduced datasets, we checked
that their calibration was stable by 1) showing that all calibration datasets had enough sampling
points for robust estimation of the compartment magnetic properties (S4 Fig); 2) verifying
using simulated data that the proposed calibration procedure resulted in reliable estimations of
fmy values even in the presence of noise in relaxometry signals (Fig 4a and 4b); 3) proving that
fixing these relaxation times and down-sampling the calibration datasets did not change the
generated fmy maps (Fig 2e and 2f). Experiments with simulated data further suggested that in
the presence of noise, calculation of fmy values might not be reliable on a voxel-wise level, and
that increasing the number of voxels used to calibrate T1c and T2c was then required (Fig 4a).

Comparisonwith other methods. With our approach, the calibration stage naturally
required long acquisition (>35min) and post-processing times (up to 24 hours, without
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parallel computing). However, it must be performed only once for a given acquisition protocol
(magnetic field, acquisition sequences, spatial resolution, etc.), and could be drastically acceler-
ated using parallel computing. The main advantage of this approach is that, once calibration is
performed, fmy values can be computed over the whole brain within much shorter acquisition
(~5/7min for 50/70 slices with 1.8mm isotropic resolution, in infants/adults correspondingly)
and post-processing times (<5min) than in previous studies. Indeed, in conventional multi-
compartment relaxometry imaging studies [11], acquisition time takes up to 15 min for 8–12
contiguous slices because estimation of the T2 spectrumrequires acquisition of the relaxometry
data with a large number of TE. Although alternative approaches using mcDESPOT protocol
[8] have enabled to shorten the acquisition time (between 18 and 25 min for a 1.8mm isotropic
whole brain coverage on a 3T scanner, including B0 and B1 corrections [21], or around 10–12
min without these corrections [7]), these times remain quite long for unsedated infants, and
rather long post-processing times (i.e. ~14 hours per subject [19]) are still required. Thus,
using the proposed strategy can save at least 10 min of acquisition time and ~14 hours of post-
processing time.

Our computed fmy values were higher than in most previous studies of infants [7,9] and
adults [45], despite some exceptions [26,28]. Simulations suggested that our strategy was reli-
able even in the presence of noise in relaxometry signals. Nevertheless, local variations in the
biophysical tissue properties and hence, in T1c and T2c across voxels might have introduced
some additional “physiological” noise, leading to slight overestimation of fmy values (indeed,
fmy values from the calibration stage were slightly higher than voxel-wise fmy values). It should
also be noted that our model did not directly take into account the exchange between the differ-
ent compartments: it only assumed that this exchange was fast relatively to T1 relaxation and
slow relatively to T2 relaxation but it did not explicitly use exchange rate constants. Although
these assumptions are generally true [9], ignoring exchange between compartments may also
result in systematic bias [19,35]. However, including exchange through additional free parame-
ters (exchange rate constants), would prevent the model to be linear, and our post-processing
strategy would lose in reliability and speed. Similarly, our model neglected susceptibility differ-
ences across compartments, which might interfere particularly at high magnetic field, when
these differences may impact the compartments relaxation. Correcting this would require to
model a local susceptibility field gradient with a sinc function, but at the expense of an addi-
tional free parameter (i.e. the gradient amplitude). With fast-gradient echo sequences and in
mcDESPOT protocols [21], not correcting for B0 and B1 field inhomogeneitiesmight lead to
errors in fmy calculations (e.g. overestimated fmy values [46]) since the signal is spatially depen-
dent on the accuracy of the net flip angle. However, our protocol to measure T1 and T2 mag-
netic properties was based on spin echo EPI sequences, with repetition times much longer than
T1 relaxation times, and MR signal was sampled for different TIs and TEs respectively. Thus
inhomogeneities in B0 and B1 fields would impact images in the same way at all different TIs
and TEs, and might corrupt proton density maps but without any impact on T1 and T2
estimations.

Eventually, our potential bias in high fmy values may arise from the stochastic fitting strategy
used during calibration. Actually, in white matter structures, voxel-wise region contraction
approach tend to assign fmy values to the upper part of the initial search interval, and the corre-
sponding T2my values to the lower part of the initial search interval [35]. Thus the initially
selected search interval for fmy may have a considerable impact on fmy values. Indeed, we
observed a strong impact on fmy maps when the upper boundarywas changed from 0.4 to 0.3
or 0.5: higher boundary resulted in higher fmy values, and the 0.4 boundary provided the high-
est similarity in fmy distributions across the 3 subjects while the compartment relaxation times
were stable. These observations point out to a main limitation of the present approach and
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possibly of other approaches using stochastic model fitting, meaning that fmy values strongly
depend on the model fitting parameters. fmy quantification is also very sensitive to acquisition
settings, including field strength, phase rewinding, sampling schemes of the inversion- and
echo-times, voxel size, etc. [12,14,33,46]. This also justified the requirement to calibrate T1c

and T2c instead of considering values from the literature. As a consequence, quantitative com-
parisons of fmy values across studies remain difficult.

Modeling both T1 and T2 relaxometry signals to measure fmy. As myelin-related com-
partment has rather fast relaxation properties (e.g. T2my~20ms), robust estimation of its frac-
tion from T2 spectrumrequires to start TE sampling with small values [10–12]. In this study,
single-shot EPI sequences were used to keep the acquisition time as short as possible; and such
short TEs could not be achieved, mainly due to the further lines of the partial k-space located
before the echo time [47]. This means that even at the shortest TE, T2 relaxometry signal from
myelin-related water was already strongly degraded. Consequently, estimating fmy values from
T2 spectral analysis only was not possible, and reliably fitting the 3-compartment model
required adding information from T1 relaxation in order to reveal the contribution of myelin-
water compartment. However, information from T2 relaxometry signal did help to separate
intra-/extracellularwater from unrestrictedwater compartments. Thus in such experimental
conditions, considering both T1 and T2 relaxometry signals was necessary. In our study the
SNRs were high and similar for both T1 and T2 relaxation images; thus, to balance T1 and T2
contributions to the model fitting error, the weight of Eq 3, describing T1 relaxation, was
increased proportionally to the number of TI points. However, it may be necessary to adjust
the relative weights of the model equations if SNRs differ between T1 and T2 relaxation signals.
These different issues might explain at least in part why fmy and T1 values were strongly corre-
lated in all adult bundles, similarly to previous studies using mcDESPOT strategy [45], in addi-
tion to the dramatic influence on T1 values of water compartmentalization and of
macromolecules (large lipids and proteins) in the myelin sheath.

Is This Approach Valid for Quantifying fmy in the Developing or

Pathological Brain?

Estimation of fmy in the infant brain from T1c and T2c calibration in the adult brain.
In addition to the verified hypothesis on compartmental property stability across adult brain
tissues and regions, we also assumed stability throughout development, enabling us to compute
fmy maps in infants using calibrated T1c and T2c in adults. Actually the hypothesis that age-
related changes in T1 and T2 relaxation signals measured at the voxel level could be explained
exclusively by changes in the compartment fractions within voxels, was verified in our infant
group.

This assumption of compartment properties stability is often implicitly used in fmy studies
[9,48] as well as in multi-compartment diffusion imaging studies [49]. Nevertheless, it might
be questioned as compartments might change their biophysical properties during develop-
ment, thus possibly affecting their relaxation times. For example, does the increase in myelin
compactness with maturation shorten T1my and T2my values of the myelin-related compart-
ment? Interestingly, the chemical composition of myelin in the infant brain was shown to be
similar to that of the adult brain [50], meaning that T1my and T2my should be identical across
different ages. Similarly, do T1ie and T2ie values of the intra-/extra-cellular compartment
change with the development of intra-cellular cytoskeleton and microtubules?

Anyhow, investigating possible age-related changes in the compartments relaxation times
was beyond the scope of this study for two main reasons: healthy infants cannot withstand
long acquisition protocols without sedation, and maturation is not homogeneous across brain
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regions [43,51,52]. First, to be coherent with the issue raised previously, the estimation of T1c

and T2c at the calibration stage should be performed independently for regions with different
maturational levels. This would require voxel-wise (and not slice-wise) fitting at the individual
level, which is hardly achievable because of acquisition time. Estimating these magnetic proper-
ties is not realistic at the group level either, i.e. using data from different infants: even at the
same age, inter-individual differences in brain development are observed, and it would be a
major challenge to register tissues with strictly similar microstructure and maturation. Second,
even if calibration of maturation-specific T1c and T2c was realistic, it would not have much
sense at the testing stage. To fit the model within a single infant brain, different T1c and T2c

would be needed for different regions with different maturations. Such an approach would
require the maturation level to be known a priori in each voxel, creating a vicious circle. To
summarize, only a voxel-wise estimation of fmy, T1c and T2c would be entirely free from model
hypotheses, and considering exchange between compartments would be helpful. Nevertheless
these aspects might be hardly achievable in healthy infants. Despite possible limitations related
to the assumption of T1c and T2c stability across brain regions and throughout development,
our approach based on calibration and testing stages remains a reliable and realistic strategy in
such populations.

As detailed in S1 Supporting Information, we observed a strong correlation between the
age-matched infant fmy maps that we obtained and those computed by another group [8,29].
These latter studies used an alternative approach based on age-range optimized mcDESPOT
protocols and the voxel-wise 3-component fitting of relaxometry signals. Some differences in
fmy values were observed across these and our studies. They might rely either on the use of
adult T1c and T2c to fit our model equations in infants, or on the fact that mcDESPOT fmy esti-
mates might represent not only the magnetization associated with the water pool trapped
between the myelin sheaths, but also the magnetization transfer from non-aqueous myelin pro-
tons [35]. Thus comparing our results with previous studies across all ages remains difficult
[8]. Furthermore, the authors did not indicate whether T1c and T2c were stable across the life
span. Some correlations between fmy values, T1 and T2 (computed at the voxel level) were
observed in infants. As both relaxation times do not exclusively reflect white matter myelina-
tion and as they change according to different maturational processes [5], their correlations
with fmy values are likely to be age-dependent [8].

Modeling 3 compartments to measure fmy. In our model, the number of model compart-
ments was set to 3 because it has been shown to be adequate under a wide range of different
conditions, including in the developing white matter [9,19,29,53,54]. Although it is possible to
quantify fmy based on 2 compartments, 3-compartment models are thought to be more reliable,
especially in regions with partial volume [19]. Furthermore, consistently with a 3-compartment
model, T2 spectrum in both in vitro and in vivo experiments has shown three major peaks
[22,39,55–57]. If necessary, our model could be easily extended with additional compartments,
at the expense of increased model fitting complexity due to additional free-parameters. How-
ever, theoretical considerations suggest that there is no scope for deriving more than 2 or 3
components in healthy tissues [58].

The most reliable approach to estimate fmy without assumptions on the number of compart-
ments and on their magnetic properties, might be to calculate T2 spectrum[10,11]. However
in this case reliable estimation would require acquisition of relaxometry signals for a large
number of TEs (making acquisition time unacceptably long for infants), including very short
TEs that were not achievable with EPI sequences. Recent acquisition sequences with ultra-
short TE (UTE) might be helpful in the future to sample the T2-weighted signal over a wider
range of TEs while keeping a short acquisition time. Simulations further suggested that in the
presence of noise, using a 3-compartment model with fixed T1c and T2c could significantly
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improve accuracy and reproducibility in determining compartments fractions, as compared to
T2 spectrum[22].

Potential applications under pathological conditions. Although 3-compartment models
have been previously applied to investigate pathologies [19,24,53,54,59,60], such as multiple
sclerosis [60], autism [53] and partial deletions of chromosome 18q [54], one should be careful
when trying to apply the suggested approach to diseases. Indeed it might require including
additional compartments (e.g., microvascular, tumor, inflammatory cells, gliosis, etc.) to
account for pathological tissues [33]. For example, in demyelinating diseases, gliotic tissue (tis-
sue matrix that replaces myelin, being filledwith water, sparse cells and macromolecules)
might be modeled as a separate compartment; if not, it would likely contribute to the intra-/
extracellular compartment, which has the most similar properties to gliotic tissue among the 3
compartments. Consequently, applying the suggested approach to pathological conditions
would require taking into account possible additional compartments specific to the pathology,
and re-calibrating the compartment relaxation times in patients.

In conclusion, our fmy quantification strategy overcame existing difficulties (long acquisi-
tion/post-processing times) that might limit its practical application in infants, children and
clinical patients. Although reliable comparison with previous studies [7,8] was not achievable,
our infant fmy maps were able to capture myelin-related changes across early development, sug-
gesting that the proposed approach was relevant at least for evaluation of normal maturation.

Supporting Information

S1 Fig. TI and TE sampling in the adult datasets. a: For the 3 calibration datasets, 30 to 60 TI
values, and 47 to 60 TE values (plotted on a log scale) were used to acquire T1 and T2 relaxo-
metry signals. Different TI/TE ranges were sampled with different steps, and higher sampling
of low TI and TE values was performed. See also S1 Table. b: The initial full dataset for subject
#3 contained 60 TI and TE data points. Reduced datasets (plotted on a log scale) were obtained
by progressively reducing the number of data points in a regular manner from 60 down to 10
points, i.e. by removing/keeping every nth point from the initial dataset so as to have the desir-
able number of data points (e.g. we kept every 2nd sampling point to have a reduced dataset of
30 points, every 12th point to have a reduced dataset of 5 points. . .). These reduced datasets
were used to investigate whether the number of TI and TE sampling points impacted the esti-
mation of T1c and T2c.
(TIF)

S2 Fig. Convergence of the voxel-wisemodel fitting algorithm. a: The length of the search
intervals for T1c and T2c (between the upper and lower boundaries) is illustrated as a function
of time (in % from the initial total length, blue curve) in a typical voxel within white matter.
The convergence required around 3 repetitions of the fitting procedure: each repetition is indi-
cated with brackets, containing 10000 random solutions and taking around 25s. At the end of
each repetition (arrows), the search intervals were contracted by selecting the best 100 solutions
(over 10000) of T1c and T2c samples. For the first 90% samples of the next repetition (over
10000), T1c and T2c values were randomly chosen from the contracted intervals. Boosts at the
end of the second and third repetitions (at around 50 and 75s) corresponded to the remaining
10% samples when T1c and T2c values were randomly chosen from the initial non-contracted
intervals to avoid falling into a local minimum. Note that after the first contraction, the search
intervals already met the stopping criteria (length less than 1% of the initial search intervals).
For each sample of T1c and T2c, we also presented (red curve) the length of the intervals corre-
sponding to the on-going best 100 solutions considering all previous T1c and T2c samples. This
length quickly decreases to 0, explaining the dramatic interval contraction at the end of the
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first repetition. Besides, it is not strictly monotonic because at each step a better solution might
appear outside the previous interval, particularly at the beginning of the fitting procedure. b:
Residuals of the model fitting (Eq 1–4) are presented for the same voxel as in a. After the first
repetition and interval contraction, most solutions were quite close to the acceptance level (fit-
ting error less than 1%), which was met after two further small contractions. This graph sug-
gests that relaxing the stopping criteria might be possible to decrease the computation time
without losing much precision.
Similar convergence was observed in voxels of grey matter and CSF (fitting not shown).
(TIF)

S3 Fig. Comparison of fmy maps generated with different upper search fmy boundaries.For
the 3 calibration subjects, fmy maps generated at the calibration stage for different fmy upper
boundary of 0.3 (a), 0.4 (b) and 0.5 (c) show differences in fmy amplitudes: higher boundary led
to higher fmy values, although the estimated T1c and T2c were similar (S2 Table). In the right
column, histograms show fmy distributions across all voxels of the 3 subjects. The percentages
of common histogram area across the 3 subjects (82%, 85%, 79% for fmy of 0.3, 0.4 and 0.5
respectively) suggested that the upper boundary of 0.4 had the biggest overlap, and thus, the
highest reproducibility across subjects.
(TIF)

S4 Fig. Impact of the number of calibration data points on the estimation of T1c and T2c.
For subject #3, T1c and T2c values of the 3-compartment model (mean ± standard deviation
over the 10 central slices) were calculated with the calibration strategy using various numbers
N of TI and TE sampling points (S1 Fig). When this number was higher than 25, T1c and T2c

values did not significantly differ from those calculatedwith N = 60 (ad-hoc paired t-test
between the values from individual slices, � indicates significant difference where p<0.05).
(TIF)

S1 Table. TI and TE sampling in the adult calibration datasets. For each calibration subject,
the sampling schemes of TI and TE points (values and numbers) are detailed, as well as the
total acquisition time. For example, for Subject #1, three sets of TI values and three sets of TE
values were used, covering different ranges with different steps in order to provide higher sam-
pling of low TI and TE values. Note that schemes differed across subjects, and that sets might
present overlapping ranges but different sampling values (e.g. TI sets for subject #3). See also
S1 Fig.
(DOCX)

S2 Table. T1c and T2c calibrated for different fmy upper search boundary. Mean and stan-
dard deviations are computed over the 10 slices of the 3 subjects after the calibration stage.
Note that T1c and T2c values are roughly the same, while standard deviations tend to be the
lowest for the 0.4 upper boundary.
(DOCX)

S1 Supporting Information. Comparison of fmy maps obtained in infants with our
approach and withmcDESPOT sequences.The infant fmy maps were voxel-wise correlated
with the age-matched fmy maps computed by another group from data acquired using mcDE-
SPOT sequences [25] (http://www.babyimaginglab.com/Research_files/meanMWFMaps.zip).
For that, infants’ anatomical T2w images were co-registered using affine transformations to
the 3D Pediatric T1w templates corresponding to the age-matched fmy maps. The resulting
transformations were applied to both infants’ T2w images and fmy maps, and registered
images were correlated voxel-wise with the age-matched fmy maps. Strong voxel-wise
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correlations (R2> 0.77) were observed for our fmy maps, and they were significantly higher
(p<0.001, ad-hoc paired t-test) than for infants’ anatomical T2w images (R2> 0.67). This
suggested high similarity in fmy values, which could not be explained simply by similarity in
underlying anatomical structures.
(DOCX)
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