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Abstract In this chapter we introduce a new pattern-based approach within the
linear assignment model with the purpose to design heuristics for a combinatorial
optimization problem (COP). We assume that the COP has an additive (separable)
objective function and the structure of a feasible (optimal) solution to the COP is
predefined by a collection of cells (positions) in an input file. We define a pattern as
a collection of positions in an instance problem represented by its input file (matrix).
We illustrate the notion of pattern by means of some well-known problems in COP,
among them are the linear ordering problem (LOP) and cell formation problem
(CFP), just to mention a couple. The CFP is defined on a Boolean input matrix, the
rows of which represent machines and columns — parts. The CFP consists in finding
three optimal objects: a block-diagonal collection of rectangles, a row (machines)
permutation, and a column (parts) permutation such that the grouping efficacy is
maximized. The suggested heuristic combines two procedures: the pattern-based
procedure to build an initial solution and an improvement procedure to obtain a final
solution with high grouping efficacy for the CFP. Our computational experiments
with the most popular set of 35 benchmark instances show that our heuristic
outperforms all well-known heuristics and returns either the best known or improved
solutions to the CFP.
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1 Introduction

The cell formation problem (CFP) in group technology was formulated more than
50 years ago and has gained a lot of attention in the industrial engineering literature
(see, e.g., Mitrofanov [33, 34], Burbidge [6, 7]).

Ballakur and Steudel [3] have shown that the CFP with different objective
functions is an NP-complete (hard) problem. That is why there is a great number
of heuristics for solving CFP. In general case, NP-hardness does not imply that
for some specific objective functions and practically motivated sizes of the CFP
this problem cannot be solved to optimality. The most recent examples of exact
algorithms are presented in Krushinsky and Goldengorin [22] for solving the CFP
by means of MINpCUT model and Goldengorin et al. [16] by means of the p-median
model.

A large class of heuristics for solving the CFP is represented by different cluster-
ing techniques. Array-based clustering methods find row and column permutations
of the machine-part matrix in order to form a block-diagonal structure. These
methods include bond energy algorithm (BEA) of McCormick et al. [32], rank
order clustering (ROC) algorithm by King [20], its improved version ROC2 by
King and Nakornchai [21], direct clustering algorithm (DCA) of Chan and Milner
[9], modified rank order clustering (MODROC) algorithm by Chandrasekaran and
Rajagopalan [11], and close neighbor algorithm (CAN) by Boe and Cheng [5].
Hierarchical clustering methods at first form several big cells and then divide each
cell into smaller ones and so on gradually improving the value of the objective
function. The most well-known methods are single linkage [31], average linkage
[43], and complete linkage [35] algorithms. Nonhierarchical clustering methods
are iterative approaches which start from some initial partition and improve it
iteratively. The two most successful heuristics are GRAFICS heuristic by Srinivasan
and Narendran [46] and ZODIAC heuristic by Chandrasekharan and Rajagopalan
[12]. There are many heuristics based on the graph partitioning approach to the CFP
(see, e.g., Rajagopalan and Batra [41], Askin and Chiu [1]), the minimum spanning
tree (see Ng [38,39]), and mathematical programming approach (see, e.g., Kusiak
[26], Shtub [44], Won and Lee [50], Krushinsky and Goldengorin [22], Goldengorin
et al. [16]). Also meta-heuristics have been applied to the CFP (see, e.g., Goncalves
and Resende [17], Wu et al. [51], Xambre and Vilarinho [52], Lei and Wu [29],
Liang and Zolfaghari [30], Yang and Yang [53]).

The purpose of this chapter is twofold. First we coin the notion of a pattern within
the linear assignment model and second we will apply this notion to design a new
pattern-based heuristic for solving the CFP. Our chapter is organized as follows.

In the next section we introduce the notion of pattern and illustrate it by means
of combinatorial optimization problems (COPs), for example, the CFP. In Sect.3
we present our heuristic combining the pattern-based and improvement procedures.
In Sect. 4 we report our promising computational results and Sect. 5 concludes the
chapter with a summary and future research directions.
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2 Patterns and the CFP

In this section we introduce the notion of pattern and illustrate it by means of the
linear ordering problem (LOP) and the CFP including different objective functions
used in the literature.

2.1 Patterns

We define a pattern as a specific collection of cells in the given input data (matrix)
reflecting the structure of a feasible (optimal) solution to the original combinatorial
optimization problem (COP). The following COPs are considered as examples
defined on an input matrix. We are given a matrix and a pattern (a collection of
positions in the matrix) defined on this matrix. The COP objective function is to
find optimal row and column permutations which minimize (maximize) the sum of
elements appearing in the pattern after applying these permutations to the matrix.
Many COPs such as the assignment problem (AP), LOP or triangulation problem,
traveling salesman problem (TSP), and maximum clique problem (MCP) can be
formulated within the pattern-based AP model. Examples of patterns for different
COPs are provided below.

The first example is the AP formulated on a square input matrix of order n =5
(see Table 1) as follows. An arbitrary single element a(i, j) of the input matrix
is called an assignment of row i to column j with its value a(i, j). The AP is the
problem of finding a one-to-one mapping of rows to columns by means of entries
a(i, j) such that the total sum of all n entries is minimized. The AP pattern is defined
as any collection of exactly n cells (positions) located in pairwise distinct rows and
columns, i.e., each row (column) contains exactly one cell (see Table 2). For the
sake of simplicity we have chosen n cells located at the main diagonal, namely
P(AP) = {(1,1),..., (i,i),...,(n,n)} representing an AP pattern. The AP is the

Table 1 Original matrix c1 ) c3 c4 cs
| 2 8 4 5 3
r 4 9 6 7 1
r3 3 4 2 0 9
T4 1 0 9 8 4
rs 8 3 7 6 5
Table 2 AP pattern 1 2 3 4 5

D A~ W N =
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Table 3 Entries rq located at 1 5 3 4 5
the first row
T 2 5 1
2
3
4
5
Table 4 Entries rq located at 1 5 3 4 5
the second row 1
r 2 8 4 5 3 2
3
4
5
Table 5 A}l C(?ntri})uti(?ns of‘ 1 5 3 4 5
ry to the objective function of
AP r 2 8 4 5 3 1
r 2 8 4 5 3 2
r 2 8 4 5 3 3
r 2 8 4 5 3 4
r 2 8 4 5 3 5

problem of finding a permutation of rows such that the total sum of all entries
appearing within all cells of & (AP) pattern is minimized. In the given input matrix
of order n we denote by r; the entries of row i and by c; the entries of column j.
Our notation means that the numbering of rows is fixed and all entries r; might be
located (moved) at (to) any row j. In order to consider all n! permutations of row
entries located at the positions (places) of rows 1,...,n these entries will be moved
to each possible position. After each movement of entries r; at the place of row
Jj, this entry contribution to the AP objective function will be computed w.r.t. the
given pattern &2 (AP). The value of this contribution is simply the sum of all entries
appearing in the given pattern 2 (AP). We first consider all possible locations of the
first row entries r; at the positions of rows 1,...,n. In our example, if the first row
entries r| are located at the place of row 1 the entry 2 will be located within the cell
(1,1) (see Table 3). We will say that the corresponding entry 2 appears in the cell(s)
of the given pattern and contributes to its value. After moving the first row entries r
at the place of row 2 the entry 8 will be located within the cell (2,2) (see Table 4).

Finally, after moving the first row entries r; at the place of row n = 5, the entry 3
will be located within the cell (5,5). In other words, by means of locating the entries
of r; at the places of rows 1,...,n, the AP pattern will involve each entry of r; in all
AP feasible solutions. This fact is illustrated in Tables 5 and 6.

If we repeat all movements for all rows entries, then we obtain the so-called
auxiliary matrix to the original one w.r.t. the AP pattern & (AP) (see Table 7). As it
is easy to see this auxiliary matrix coincides with the original AP matrix and the sum



Pattern-Based Heuristic for the Cell Formation Problem in Group Technology 15

Table 6 The first row of the 1 2 3
auxiliary matrix for the AP " ) 3 1 3 1
2
3
4
5
Table 7 Complete auxiliary 1 2 3 4 5
matrix for the AP
r 2 8 4 5 3
r 4 9 6 7 1
r3 3 4 2 0 9
T4 1 0 9 8 4
rs 8 3 7 6 5
Table 8 The permuted 1 2 3 4 5
original matrix by means of
an iptimal permti/tation of 4 1 0 0 8 4 !
rows 7 rs 8 3 7 6 5 2
| 2 8 4 5 3 3
r3 3 4 2 0 9 4
r 4 9 6 7 1 5
Table 9 All movements of 1 2 3 4 5
row entries r| w.r.t. the " ) 3 4 5 3 1
pattern &2 (A) " ) g 4 5 3 ’
r 2 8 4 5 3 3
r 2 8 4 5 3 4
r 2 8 4 5 3 5

of all entries located within the AP pattern &?(AP) in the original matrix is equal
to 26. After solving the AP defined on the pattern &?(AP) we obtain an optimal
permutation m; = (3,5,4,1,2) with its optimal value a(7;) = 9 which can be seen
explicitly in the permuted matrix (see Table 8) with the sum of all entries at the main
diagonal equal to 9.

Our second example deals with the same original AP matrix (see Table 1),
but the used pattern is different and defined by the following collection of cells
2(A) ={(1,1),(1,2),(2,2),(2,3),(2,4),(3,4),(4,4)} with the sum of all entries
in the given pattern equal to 40. The problem in our second example is to find such a
permutation of rows that the total sum of all entries within the given pattern Z(A) is
minimized. In order to solve this problem we reduce its solution to the usual AP by
creating an auxiliary matrix. The auxiliary matrix will be computed if we compute
all contributions to the corresponding fragment of our pattern Z?(A) for each row
entry r; being located at all possible row positions j = 1,2,...,5. All movements
of the entries r; w.r.t. the pattern A are indicated in Table 9. The corresponding
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Table 10 The complete 1 2 3 4 5
auxiliary matrix to the
.. P r 10 17 5 5 0 1
original one w.r.t. Z(A) r 13 ” 7 7 0 ’
r3 7 6 0 0 0 3
T4 1 17 8 8 0 4
rs 11 16 6 6 0 5
Table 11 The permuted 1 2 3 4 5
matrix for pattern 92(A) r 1 0 ) 3 1 1
r3 3 4 2 0 9 2
r 2 8 4 5 3 3
rs 8 3 7 6 5 4
r 4 9 6 7 1 5
Table 12 Pattern for the " 1
LOP . 5
r3 3
r4 4
rs 5

auxiliary matrix for the pattern &?(A) and the same original matrix (after computing
all contributions to the different parts of the given pattern when each ; is located at
all places of rows 1,...,5) are indicated in Table 10.

The entry a(i,j) of the auxiliary matrix shows the contribution to the AP-
based model w.r.t. the given pattern Z?(A). For example, a(1,2) = 17 shows the
contribution to the AP objective function w.r.t. the pattern #?(A). This contribution
is the sum of all entries appearing within the cells (2,2),(2,3),and(2,4) after
location the entries r| at the place of row 2. The complete auxiliary matrix is shown
in Table 10 and an optimal permutation of rows m, = (3,5,2,1,4) with its optimal
value a(m,) = 18. If we permute all rows of the original matrix by means of the
permutation 7, we will obtain the following permuted matrix (see Table 11) with
the sum of all entries at the given pattern ?(A) equal to 18.

The third example is the LOP. The LOP pattern is defined by & (LOP) =
{(2,1);(3,1),(3,2);...5(i,1),(i,2),...,(i,i = 1);...5(n,1),(n,2),...,(n,n — 1)},
i.e., all cells (positions) under the main diagonal of the given square matrix of order
n (see Table 12). Thus, the LOP is the problem of finding the same permutation for
rows and columns such that the objective function (which is the sum of all entries
appearing below the main diagonal in the permuted matrix, for example, first by a
permutation of rows and second by the same permutation of columns) is minimized.

Our next example is the CFP defined on the Boolean input matrix. In the CFP its
optimal pattern &?(CF P) is unknown and should be found together with two optimal
permutations: one is a permutation of rows, say r, and another one is a permutation
of columns, say c. Thus, the CFP is the problem of finding such a pattern and
two permutations, one for rows and another one for columns such that the given
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objective function is minimized (maximized). Note that in the CFP a feasible pattern
consists of an unknown number of block-diagonal-located rectangles with unknown
sizes. Let us consider a 5 x 7 example. For the sake of simplicity we assume that
the machine-part Boolean 5 x 7 matrix and its pattern (the two rectangles with sizes
2 x 2 and 3 x 5 are shown by yellow color) are predefined in Table 12. We call the
CFP with the given pattern the specified CFP (SCFP). Having a specific pattern we
further simplify the SCFP by assuming that the row (machines) order (permutation)
is fixed and denote this problem by RSCFP and its pattern by & (RSCFP) =
{(1,1),(1,2):(2,1),(2,2):(3,3),(3,4),(3,5),(3,6),(3,7): (4,3),(4,4),(4,5), (4,6),
(4,7);(5,3),(5,4),(5,5),(5,6),(5,7)}. Informally, we assume that two machine
shops are given as follows: S} = {1,2} and S, = {3,4,5}. Such constraints might be
useful in real problems when the machine shops are already built, all the machines
are placed inside the shops, and it is too expensive or impossible to move them. Let
us also fix the number of parts processed in each shop: two parts in the first shop
and five parts in the second one.

Now, in the RSCFP we are given the input matrix, pattern &?(RSCFP), and the
fixed order of machines. The RSCFP is the problem of finding a permutation of
columns (parts) such that the total sum of all units within (outside) the given pattern
Z(RSCFP) is maximized (minimized).

In terms of industrial engineering the Intercell movements are measured by
the number of units located outside the cells in the machine-part matrix. Hence,
minimizing the intercell movements is equivalent to maximizing the number of
units located inside the cells in the machine-part matrix w.r.t. the given pattern
Z(RSCFP) (because the total number of units is a constant).

Let us reduce the solution of RSCFP to the minimization version of AP by
our pattern-based approach. In order to decide which of two equivalent objective
functions we are going to minimize or maximize let us note that the total number of
positions within the given pattern is 19 and the number of positions outside the given
pattern is 35 — 19 = 16. It means that in the worst case to compute a contribution
to the AP objective function we should sum up the entries at 19 positions inside the
given pattern and only 16 entries outside the given pattern. Hence, we have chosen
the minimization version of our RSCFP on the complement pattern to the original
pattern & (RSCFP).

Now we are ready to construct an auxiliary square matrix of order 7 since we are
going to find out an optimal permutation of seven parts w.r.t. to the given pattern
Z(RSCFP). The rows of our auxiliary matrix will be numbered by numbers of
columns (parts) of the original matrix and the columns will indicate the contribution
e(i,j) to the AP objective function when the column i is located at the place of
column j. This contribution e(i, j) is equal to the number of units outside of the
given pattern & (RSCFP), i.e., on the complement to &?(RSCFP) (see Table 14).
The complete auxiliary matrix is shown in Table 14 and an optimal permutation of
columns ¢; = (1,3,4,5,6,7,2) with its optimal value RSCFP(c) = 7. If we permute
all columns of the original matrix (see Table 13) by means of the permutation ¢ we



18 M. Batsyn et al.

Table 13 The original

machine-part 5 x 7 matrix Pl P2 P P4 Ps Ps i
from Waghodekar and Sahu m 1 0 0 0 1 1 1
[49] and its pattern mz 0 1 1 1 1 0 0
P (RSCF P) with nine m3 0 0 1 1 1 1 0
intercell movements my 1 1 1 1 0 0 0
ms 0 1 0 1 1 1 0
Table 14 The auxiliary 1 2 3 4 5 6 7
matri.x for the RSSFP w.r.t. to " 1 1 1 I I 1 ]
the given pattern & (RSCF P) . 5 5 { 1 1 | |
P3 2 2 1 1 1 1 1
D4 3 3 1 1 1 1 1
Ds 2 2 2 2 2 2 2
Dé 2 2 1 1 1 1 1
7 0 0 1 1 1 1 1
Table 15 The permuted
machine-part mIe)ltrix 5x7by i P P2 Ps P Ps Ps
means zero parts w.r.t the m 1 1 0 0 0 1 1
pattern & (RSCF P) and my 0 0 1 1 1 1 0
seven intercell movements ms3 0 0 0 1 1 1 1
my 1 0 1 1 1 0 0
ms 0 0 1 0 1 1 1

obtain the following permuted matrix (see Table 15) with the sum of all entries at
the given pattern &2 ((RSCFP) equal to 7.

As we have mentioned before in the original CFP all three objects, namely,
the pattern, the row, and the column permutations, are “decision variables.” In the
RSCFP we have fixed the pattern and row permutation in the original matrix (see
Table 13) and have found an optimal permutation of columns c. Let us fix the found
order of parts by means of the permutation ¢ and consider Table 15 as the input
matrix for the following CFP. For the given pattern &?(RSCFP) and input matrix
(see Table 15) it is necessary to find a permutation of rows (machines) r such that
the intercell movements will be further minimized. It means that we are going to
construct an auxiliary square matrix of order 5 because we are looking for an optimal
permutation of five machines w.r.t. to the given pattern & (RSCFP). The rows of our
auxiliary matrix will be numbered by numbers of machines of the original matrix
and their entries will indicate the contribution d(i, j) to the AP objective function
when the entries of row i are located at the place of row j. This contribution d(i, j)
is equal to the number of units outside of the given pattern &(RSCFP), i.e., on
the complement to &?(RSCFP) (see Table 16). The complete auxiliary matrix is
shown in Table 16 and an optimal permutation of rows is r = (1,4,2,3,5) with
its optimal value RSCFP(r) = 5. If we permute all columns of the original matrix
(see Table 15) by means of the permutation r we obtain the following permuted
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Table 16 The auxiliary 1 2 3 4 5

matrix for the RSCFP w.r.t. m 5 5 5 5 5

the permuted matrix (see

Table 15) and pattern "2 4 4 0 0 0
my 3 3 1 1 1
ms 4 4 0 0 0

Table 17 The permuted

machine-part mIe)ltrix 5x7by Pi P b2 b3 Pa Ps Do

means of parts and machines m 1 1 0 0 0 1 1

with five intercell movements mq 1 0 1 1 1 0 0
my 0 0 1 1 1 1 0
m3 0 0 0 1 1 1 1
ms 0 0 1 0 1 1 1

matrix (see Table 17) with the sum of all entries at the given pattern &?(RSCFP)
equal to 5.

In a summary of this section we note that even with the given pattern our AP
pattern-based approach to find two independent optimal permutations for rows
(machines) and columns (parts) is just a heuristic since our sequential solutions
of these two problems are obtained under an assumption that one of the given
permutations, say a permutation of rows, is an optimal permutation w.r.t. the
unknown another optimal permutation, say a permutation of columns, and vice
versa. In the following sections we are going to check whether our heuristic might
be competitive with the state-of-the-art heuristics for solving the CFP.

2.2 The CFP Formulation

The CFP consists in an optimal grouping of the given machines and parts into
cells. The input for this problem is usually given by m machines, p parts, and
a rectangular machine-part incidence matrix A = [g;;], where a;; = 1 if part
j 1is processed on machine i. The objective is to find an optimal number and
configuration of rectangular cells (diagonal blocks in the machine-part matrix) and
optimal permutations of rows (machines) and columns (parts) such that after these
permutations the number of zeros inside the chosen cells (voids) and the number of
ones outside these cells (exceptions) are minimized. Since it is not usually possible
to minimize these two values simultaneously there have appeared a number of
compound criteria trying to join them into one objective function. Some of them
are presented below.

For example, we are given the machine-part matrix shown in Table 13 [49]. Here
are two different solutions for this CFP shown in Tables 18 and 19.

The Table 18 solution is better because it has less voids (3 against 4) and
exceptions (4 against 5) than the Table 19 solution. But one of its cells is a
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Table 18 Solution with

: P17 Ps Pi Ps J2] P2 P4
singletons m 1 1 1 1 0 0 0
my 0 0 1 0 1 1 1
m3 0 1 0 1 1 0 1
my 0 0 0 1 1 1 1
ms 0 1 0 1 0 1 1
Table 19 Solution without p1 P P2 D3 n Ds De
singletons m 1 1 0 0 0 1 1
my 1 0 1 1 1 0 0
my 0 0 1 1 1 1 0
m3 0 0 0 1 1 1 1
ms 0 0 1 0 1 1 1

singleton — a cell which has less than two machines or products. In some CFP
formulations singletons are not allowed, so in this case this solution is not feasible.
In this chapter we consider both cases (where singletons are allowed and where they
are not allowed) and when there is a solution with singletons found by the suggested
heuristic better than without singletons we present both solutions.

2.3 The CFP Objective Functions

There are a number of different objective functions used for the CFP. The following
four functions are the most widely used:

1. Grouping efficiency suggested by Chandrasekharan and Rajagopolan (1989):

n=qgm+1-qg)n,

where
ny— nzlmt niln
m= n —n?”’—i—ng’ - W’

mp —ny —né)” B nd

= mp—ny —nlf +n" nout’

N — a ratio showing the intracell loading of machines (or the ratio of the number
of ones in cells to the total number of elements in cells).

T, —aratio inverse to the inter-cell movement of parts (or the ratio of the number
of zeros out of cells to the total number of elements out of cells).

q — a coefficient (0 < g < 1) reflecting the weights of the machine loading and
the intercell movement in the objective function. It is usually taken equal to 0.5,
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which means that it is equally important to maximize the machine loading and
minimize the intercell movement.
ni —anumber of ones in the machine-part matrix.
no — a number of zeros in the machine-part matrix.
n'" — a number of elements inside the cells.
n®" —a number of elements outside the cells.
n" —a number of ones inside the cells.
‘1"” a number of ones outside the cells.
ng' —a number of zeros inside the cells.
nd" — a number of zeros outside the cells.

2. Grouping efficacy suggested by Kumar and Chandrasekharan [23] to address the
drawbacks of the grouping efficiency measure:

out

_m —n1 n’i"

- in"’
n1—|—n ny +ny

This measure has proved to better reflect the quality of a CFP solution.
3. Group capability index (GCI) suggested by Hsu [18]:

ntl)ut ny— nTut
GCl=1- _
ny ny

4. Number of exceptions (ones outside cells) and voids (zeros inside cells):
E+V =n{" +ni".

In this chapter we use the grouping efficacy measure in all the computational
experiments because of its capability to distinguish good and bad solutions and other
useful properties (see papers of Kumar and Chandrasekharan [23] and Goncalves
and Resende [17] for more information). To show the difference between the
four described objective functions we calculate these values for the two solutions
presented above in Tables 18 and 19.

16 12 15
n= 05E+05—6~7960% n= OSE+05_6N7385%
20 4 20 5
20—-4 20-5
GCI = 0 80.00% GCI = 0 7 75.00%

E+V=443=7 E4+V=544=9

Claim. If the pattern (the number and configuration of the cells) is fixed then
objective functions 1, 7, GCI, E +V become equivalent, in other words these
functions reach their optimal values on the same solution.
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Proof. For the fixed pattern the following values are constant: ny, ng, n", no . So
if we maximize the number of ones inside the pattern n{* then ng' = n" —n{" is
minimized, nf" = no —nf' is maximized, and n{" = n; —n{" is minimized. This
. . ni" ngut . .. .
means that the grouping efficiency 11 = g, }; + (1 —¢) ;5= is maximized, the grouping
in

out
efficacy 7 = nlﬁn"" is maximized, the grouping capability index GCI = 1 — "n‘—l
0

is maximized, and the number of exceptions plus voids E +V = n{" + ni" is
minimized. O

That is why when we apply the pattern-based approach to find optimal permuta-
tions for the fixed pattern we maximize the sum of elements inside the pattern which
is equal to n{".

3 Heuristic

In this section we describe and demonstrate the suggested pattern-based approach
on the same 5x7 example of Waghodekar and Sahu [49] which we already used
in the previous section (Table 20). Basic steps of the suggested algorithm are the
following:

1. Pattern-based heuristic
At the first stage our goal is to find the optimal number of cells k* for the current
problem instance for which we will then generate different input patterns and
obtain solutions starting from these patterns on the next stage. The algorithm is
the following:

(a) Choose a number of cells k.

We try numbers of cells in the range from 2 to min(m, p)/2 where m is the
number of rows (machines) in the machine-part matrix and p is the number
of columns (parts).

(b) Build an initial pattern. For the chosen number of cells k£ we build an initial
pattern in the following way. The rows and columns are divided into equal
blocks of [m/k] rows and [p/k] columns (here by [x] we denote an integer
part of x). The diagonal blocks are the cells for the CFP. If m or p is not
divisible by k then all the remaining rows and columns are added to the last
cell. An initial pattern with two cells for our example is shown in Table 21.

Table 20 Machine-part 5x7

matrix from Waghodekar and 2 £2 £ £ e Lo £

Sahu [49] my 1 0 0 0 1 1 1
my 0 1 1 1 1 0 0
ms 0 0 1 1 1 1 0
my 1 1 1 1 0 0 0
ms 0 1 0 1 1 1 0
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Table 21 Initial pattern with

two cells
m 1 0 0 0 1 1 1
my 0 1 1 1 1 0 0
m3 0 0 1 1 1 1 0
my 1 1 1 1 0 0 0
ms 0 1 0 1 1 1 0
Table 22 Auxiliary matrix 1 5 3 4 5
for rows
1 1 1 3 3 3
2 2 2 2 2 2
3 1 1 3 3 3
4 3 3 1 1 1
5 1 1 3 3 3
Table 23 Modified auxiliary 1 5 3 4 5
matrix for rows
1 2 2 0 0 0
2 1 1 1 1 1
3 2 2 0 0 0
4 0 0 2 2 2
5 2 2 0 0 0
Table 24 Optimal AP 1 2 3 4 5
solution (optimal positions of 1 > > 0 0 0
TrOWSs)
2 1 1 1 1 1
3 2 2 0 0 0
4 0 0 2 2 2
5 2 2 0 0 0
Note that this pattern is different from the pattern considered in the previous
section and so the result will be different. Moreover, the returned by our
heuristic solutions depend on the order of permuted either rows or columns
of the input matrix. In the previous section we first have found a permutation
of columns ¢y and after permuting the original input matrix by means of
¢y found a permutation of rows r; = ri(cy) which depends on the found
permutation of columns c;.
(c¢) Form an auxiliary matrix for rows (Table 22).
(d) Modify the auxiliary matrix (a;; = n]le%xakl — ajj) to obtain a minimization
problem (Table 23).
(e) Solve the AP for this matrix and obtain an AP optimal rows permutation
(Table 24).
(f) Permute rows of the original machine-part matrix according to the optimal

AP permutation from step e (Table 25).
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Table 25 Machine-part P1 123 3 N Ds )23 i
;teﬁnnl);t:tfitg; the optimal row "y 0 1 1 1 1 0 0
my 1 1 1 1 0 0 0
m3 0 0 1 1 1 1 0
my 1 0 0 0 1 1 1
ms 0 1 0 1 1 1 0
Table 26 Auxiliary matrix 1 2 3 4 5 6 7
for columns
1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1
3 2 2 2 1 1 1 1
4 2 2 2 2 2 2 2
5 1 1 1 3 3 3 3
6 0 0 0 3 3 3 3
7 0 0 0 1 1 1 1
Table 27 Modified auxiliary 1 2 3 4 5 6 7
matrix for columns
1 2 2 2 2 2 2 2
2 1 1 1 2 2 2 2
3 1 1 1 2 2 2 2
4 1 1 1 1 1 1 1
5 2 2 2 0 0 0 0
6 3 3 3 0 0 0 0
7 3 3 3 2 2 2 2
Table 28 Optimal AP 1 2 3 4 5 6 7
solution (optimal positions of 1 ) 5 5 > > 2 2
columns)
2 1 1 1 2 2 2 2
3 1 1 1 2 2 2 2
4 1 1 1 1 1 1 1
5 2 2 2 0 0 0 0
6 3 3 3 0 0 0 0
7 3 3 3 2 2 2 2

(g) Form an auxiliary matrix for columns based on the permuted machine-part
matrix from the previous step (Table 26).
(h) Modify the auxiliary matrix (a;; = nllca}xakl —a;j) to get a minimization

problem (Table 27).
(i) Solve the AP for this matrix and obtain an AP optimal column permutation
(Table 28).
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Table 29 Moving part 4
from cell 2 to cell 1

m 0 1 1 1 1 0 0
my 1 1 1 1 0 0 0
my 0 0 1 1 1 0
m 1 0 0 1 1 1
ms 0 1 0 1 1 0

(j) Permute columns according to the AP optimal permutation from the previous
step. In this case we have got an identical (trivial) permutation, so the
columns should stay on their places and the machine-part matrix remains
the same as shown in Table 25.

2. Pattern-modification improvement heuristic

(k) Apply the pattern-modification improvement heuristic to improve the solu-
tion found so far. The main idea of the improvement heuristic is that the
grouping efficacy can usually be increased by simple modifications (moving
either a row or a column from one cell to another) of the current pattern
(cell configuration). To compute the grouping efficacy for the obtained
solution (Table 25) we need the total number of ones n;, the number of
zeros inside the cells ng‘, and the number of ones outside the cells n‘l’“t:
ny =20, ng‘ =4, and n{" = 6. The grouping efficacy is then calculated by
the following formula:

e ng—n"  20-6
N nl—l—ng‘ T 20+4

~ 58.33%.

Looking at this solution (Table 25) we can conclude that it is possible to
move part 4 from the second cell to the first one. And this way the number
of zeros inside cells decreases by 1 and the number of ones outside cells
remains the same. So it is profitable to attach column 4 to the first cell as it
is shown in Table 29.

For the modified pattern we have nf)” =3, n{" =6, and the grouping efficacy:

20-6
=270 60.87%.
"= 20+3 ¢

As a result the efficacy is increased by 2.5 percent. Computational results show
that using such pattern modifications could considerably improve the solution.
The idea is to compute an increment in efficacy for each column and row when
it is moved to all other cells and then perform the modification corresponding to
the maximal increment (Tables 30 and 31).
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Table 30 Efficacy after Efficacy
moving a row to another cell Row Cell 1 (%) Cell 2 (%)
1 58.33 56.00
2 58.33 44.44
3 48.00 58.33
4 48.00 58.33
5 48.00 58.33
Tabl.e 31 Efficacy after Efficacy
i‘l’l‘mg a column to another Column Cell 1 (%) Cell 2 (%)
1 58.33 56.00
2 58.33 50.00
3 58.33 50.00
4 60.87 58.33
5 48.00 58.33
6 42.31 58.33
7 54.17 58.33

We make a modification which gives the maximal increase in efficacy within
all the results — for rows and for columns. Looking at Tables 30 and 31 we can
conclude that only moving part 4 to cell 1 could increase the grouping efficacy
of the solution. Such modifications are repeated until there is still a column or a
row for which we get an increment in efficacy.

Note that here we have obtained the solution with efficacy 60.87 % which
is different from the solution shown in the previous chapter with efficacy
62.50%. This is because here we use another pattern and also we find an
optimal permutation first for rows and then for columns.The order of these steps
influences the solution found by pattern-based heuristic. That is why we then
repeat the same procedure (steps c—k), but first we find an optimal permutation
for columns and then for rows. Since the number of columns (parts) is usually
greater than the number of rows (machines) then the number of possible column
permutations is much greater than the number of possible row permutations. This
means that we have a greater flexibility for column permutation and usually
when starting from columns we obtain a better solution. Anyway, we try both
row-column and column-row orders of permutations and then choose the best
solution.

(I) Repeat steps a—k for different numbers of cells from 2 to min(m, p)/2.
3. Determine the number of cells £* for which the best solution is obtained.

(m) After we have found the grouping efficacy for first solutions with different
numbers of cells we compare them and choose the optimal cell number — k*,
for which the greatest grouping efficacy is obtained.
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4. Generate additional patterns with k* — ¢, k* — c+1, ..., k* + ¢ cells.

(n)

(0)

We enumerate patterns with cell number taken from a small c-neighborhood
of k*. Solutions without singletons usually do not require a big number of
cells because height and width of every cell of a solution cannot be less than
two. So there are no such a variety of possible patterns as it is for solutions
with singletons. That is why we take ¢ = 2 for solutions without singletons
and ¢ = 5 for solutions with singletons. The next step is repeated for every
number of cells from k* — ¢ to k* + ¢ (2¢+1 times).

For the fixed number of cells we generate different patterns enumerating
different values for width and height of every cell with a step of two units
(a step of one unit is used only for matrices smaller than 15x20). It means
that for solutions without singletons we generate only cells with width and
height equal to 3, 5, ..., except the last cell which can have an even width
or height. For solutions with singletons we use 2, 4, ... values. The step of
two units is explained by the fact that our improvement heuristic (which is
then applied to every pattern) makes elementary modifications of patterns
and moves one row or one column from one cell to another if it increases the
grouping efficacy.

Since our pattern-based heuristic permutes rows and columns of the
machine-part matrix then the order of the cells in the pattern does not matter.
So we can generate cells so that the first cell has the smallest dimensions and
the last one has the greatest.

For example, if we have a 30x50 machine-part matrix and we want
to generate patterns with five cells for non-singleton solutions, then we
proceed as follows. First, we generate all possible combinations of cell
heights with the difference between each pair of sequential neighboring
cells equal to 2 (we call this difference by size increment). There are 13
possible combinations for this example. Second, we generate all possible
combinations of cell widths with size increment 2. There are 119 possible
combinations for this example. Third, we combine every height combination
with every width combination to form a pattern. So we get 13119 = 1,547
different patterns for this example.

* Combinations of heights:

1. 3+3+3+3+18=30
2. 34+3+3+5+16=30
3. 3+3+3+7+14=30
4. 34+34+3+9+12=30
5.34+3+5+5+14=30
6. 3+3+5+7+12=30
7.3+3+5+9+10=30
8. 3+3+7+7+10=30
9. 3+5+5+5+12=30
10. 3+5+5+7+10=30
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11. 3+5+74+7+8=30
12. 5+5+5+5+10=30
13. 5+5+54+7+8=30

¢ Combinations of widths:

1. 3+3+3+3+38=50
2. 34+3+3+5+36=50

119. 9494+9+4+114+12=50
e Patterns:

1. 3x3,3x3,3x3,3x3,18x38

119. 3x9,3%x9,3x9,3x11,18x 12
120. 3x3,3x3,3x3,5%x3,16x38

1547. 5x9,5%9,5%9,7x 11,8 x 12

We then apply our heuristics using all these patterns as initial on the next steps
of the algorithm.
5. Run the pattern-based and improvement heuristics for all the patterns and choose
the best found solution.

(p) Steps a—k are repeated for all patterns generated on steps n—o. The best found
solution is then taken as the heuristic solution to the CFP.

4 Computational Results

For our computational experiments with the pattern-based heuristic (PBH) we
selected the most popular 35 GT instances from the literature (see, e.g., Goncalves
and Resende [17]). We compare our solutions to the 35 GT instances in terms
of the grouping efficacy with best solutions reported up to date of this paper
submission. The currently best heuristic for the CFP is the evolutionary algorithm
(EA) from Goncalves and Resende [17]. Since allowing singletons (cells with only
one machine or only one part) in a CFP solution is arguable we present both
solutions (with singletons and without) in all cases where our heuristic has been
able to find a better solution with singletons. Also in our solutions we forbid parts
which are not included to any cell, though in many cases it is more efficient (in terms
of the grouping efficacy) to leave some parts not assigned to any cell.

In Table 32 we compare our PBH with EA heuristic. We do not include the
results of other six approaches (ZODIAC by Chandrasekharan and Rajagopalan
[12], GRAFICS by Srinivasan and Narendran [46], MST—clustering algorithm by
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Table 33 Corrections of the grouping efficacy values published in
Goncalves and Resende [17]

Problem Reported  Corrected

Source size value value
7 Seifoddini and Wolfe [43] 8 x 12 68.30 68.29
14  McCormick et al. [32] 16 x 24 52.58 51.96
20  Carrie [8] 20 x 35 76.22 76.14

Srinivasan [45], GATSP—genetic algorithm by Cheng et al. [14], GA—genetic al-
gorithm by Onwubolu and Mutingi [40], GP—genetic programming by Dimopoulos
and Mort [15]) also considered in the work of Goncalves and Resende [17] because
EA has the best results among all these approaches on all GT 35 instances. Note
that some of grouping efficacy values published in Goncalves and Resende [17] do
not correspond to their found solutions shown in the appendix of that paper. So we
present the corrected values for the EA algorithm in Table 32. In Table 33 we show
the corrections which we have made.

As it can be seen from Table 32 all our solutions are better or equal to the
EA solutions (better results are shown with bold font). More specifically we have
improved the grouping efficacy for 13 instances and found solutions with the same
value of grouping efficacy for the remaining 22 instances. For these 22 instances
we have the same efficacy, but the solutions are different (see appendix). The
maximum improvement is 7 % for 37x53 instance of McCormick et al. [32]; the
average improvement among the 13 improved instances is 1.8 %. The solutions
with singletons are better than without them by 2.6 % in average. A short summary
of comparison is shown in Table 34. For 26 of the 35 instances the algorithm has
found a solution with singletons which is better than without. Only for three of
these instances the solution has the same number of cells as the solution of the EA
algorithm without singletons. All the 22 solutions without singletons which have
the same grouping efficacy with the solutions of the EA algorithm also have the
same number of cells, though the configuration of the cells and the distributions of
ones and zeros are different. The 13 solutions without singletons which are better
than EA algorithm solutions usually have more cells (eight solutions against five
solutions with the same number of cells).

5 Summary and Future Research Directions

In this chapter we present a new pattern based approach within the classic linear
assignment model. The main idea of this approach might be illustrated by means of
different classes of COPs which include the maximum weight independent set and
its unweighted version, linear ordering, and cell formation problems, just to mention
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a few. We have successfully applied this approach to design a new heuristic which
outperforms all well-known heuristics for the CFP with the grouping efficacy as its
objective function. The main distinctions of our PBH are as follows:

1. The PBH is based on a rigorous (even if it is informal) formulation of the CFP
as the problem of finding three objects, namely, (a) an optimal pattern, (b) an
optimal part permutation, and (c) an optimal machine permutation.

2. Our rigorous formulation might be solved efficiently for any fixed pattern and
permutation (either parts or machines) by means of the Jonker—Volgenant’s
Hungarian algorithm [20] efficient implementation.

3. Based on our formulation of the CFP we have designed an efficient PBH which
outperforms all currently known heuristics for the CFP with the grouping efficacy
criterion of optimality.

4. We believe that the success of our PBH is due to a wide range of patterns
sequentially enumerated under control of the optimality criterion.

5. Since to solve a CFP instance, say 40x100, with a specific pattern by our PBH
requires just several milliseconds, we are able to involve much more adjusted
patterns than we have done in this study and hence to generate a wider range of
high quality CFP solutions.

Our main research direction will be concentrated on the exact mathematical
programming formulation of the CFP with the purpose to find out the thresholds for
the number of machines and parts which might be treated to optimality within the
mathematical programming including fractional programming approach. Another
direction of our research will be in finding polynomially solvable special cases of
the CFP based either on structural properties of the Boolean input machine-part
matrix or the CFP criteria of optimality. Finally we are looking for applications of
the pattern based approach to other classes of COPs.
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Appendix: Pattern-Based Solutions Reported to Table 32
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