
ar
X

iv
:1

60
8.

02
51

0v
1 

 [
m

at
h.

C
O

] 
 8

 A
ug

 2
01

6

ON ENUMERATION OF TREE-ROOTED PLANAR CUBIC

MAPS

YURY KOCHETKOV

Abstract. We consider planar cubic maps, i.e. connected cubic graphs em-
bedded into plane, with marked spanning tree and marked directed edge (not
in this tree). The number of such objects with 2n vertices is C2n ·Cn+1, where
Ck is Catalan number.

1. Introduction

Plane triangulation is a planar map, where the perimeter of each face is three. The
corresponding dual graph is cubic, i.e. the degree of each vertex is three. A plane
triangulation will be called proper, if each edge is incident to exactly two faces.
Otherwise it will be called improper.

Example 1.1.

proper triangulation improper triangulation
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q
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The corresponding dual graphs are presented below:✬
✫

✩
✪q

q ✛
✚

✘
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✛
✚

✘
✙q q

A connected graph with marked directed edge will be called edge-rooted. Proper
edge-rooted triangulations where enumerated by Tutte in the work [8]: the number
Tn of proper planar triangulations with 2n faces and marked directed edge is

Tn =
2 (4n− 3)!

n! (3n− 1)!
.

A combinatorial proof of Tutte formula see in [6] (see also [1]).

Let Fn be the number of planar edge-rooted cubic graphs with 2n vertices, i.e. the
number of planar edge-rooted triangulations (proper and improper) with 2n faces.
Let us define numbers fn, n > −1, in the following way:

• f−1 = 1/2;
• f0 = 2;
• fn = (3n+ 2)Fn, n > 0.
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In [3] a recurrent relation for numbers fn was proposed:

fn =
4(3n+ 2)

n+ 1

∑

i > −1, j > −1

i+ j = n − 2

f(i)f(j). (1)

Example 1.2. From (1) it follows that F1 = 4. Indeed, there are four ways to
choose a root edge in a planar cubic map with two vertices:✛
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✙❄

Also we have that F2 = 32. Indeed, there are six cubic maps with 4 vertices (and
6 edges): ✬

✫
✩
✪

✛
✚

✘
✙1)

✛
✚

✘
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✚
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✙2)

✬
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✩
✪3) ◗◗✑✑

✐
✐❩❩
✚✚

✐4)

✓✒✏✑✓✒✏✑✓✒✏✑5)

✓✒✏✑
✬
✫

✩
✪

✓✒✏✑6)

Figure 1

Group of automorphisms of the first map is trivial, of the second has order 4, of the
third has order 12, of the forth has order 3, of the fifth and the sixth has order 2.
Thus, there are 12 ways to choose a root edge in the first map, 3 — in the second,
1 — in the third, 4 — in the forth, 6 — in the fifth and the sixth. All this gives us
32 edge-rooted maps.

However, this formula does not seem to have a geometrical/combinatorial explana-
tion.

In [5] a nice formula was proposed for the number tree-rooted planar maps, i.e.
edge-rooted planar maps with distinguished spanning tree: the number of such
maps with n edges is Cn · Cn+1, where Ck is k-th Catalan number. An elegant
proof of this formula see in [2].

Example 1.3. There are four planar maps with two edges:

r r r
1

✓✒✏✑r r
2

r r✓✒✏✑
3

r✓✒✏✑✓✒✏✑
4

• There is one way to choose a spanning tree in the first map and two ways
to choose a directed edge.

• There is one way to choose a spanning tree in the second map and four
ways to choose a directed edge.

• There is one way to choose a spanning tree in the third map and two ways
to choose a directed edge.



ON ENUMERATION OF TREE-ROOTED PLANAR CUBIC MAPS 3

• There is no spanning trees in the forth map and two ways to choose a
directed edge.

Thus we have 10 = C2 · C3 tree rooted planar maps with two edges.

We will study tree-rooted cubic maps with additional property: a root edge does

not belong to the spanning tree.

Theorem. The number of such tree-rooted cubic maps with 2n vertices is C2n ·

Cn+1, where Ck is k-th Catalan number.

2. The main construction: from map to curve

Definition 2.1. By tree-rooted plane cubic map we will understand a cubic graph
imbedded into plane (sphere) with

• marked spanning tree;
• marked directed edge that does not belong to the spanning tree.

Let G be a tree-rooted pane cubic map with 2n vertices. We draw triangles, one
triangle for each vertex, in such way that:

• triangles are disjoint;
• each vertex is inside the corresponding triangle;
• each side of triangle intersect one outgoing edge of corresponding vertex.

Example 2.1.

→

⇒

✁
✁
❆
❆

❆
❆
✁
✁

❍❍
✟✟

✟✟
❍❍

−→

Thick lines above mark spanning tree and an arrow indicates the direction of the
root edge.

Two triangles will be called adjacent, if the corresponding vertices are adjacent and
the edge, that connects them, belongs to the spanning tree. The sides of adjacent
triangles that intersect this edge also will be called adjacent. We construct a polygon
P by glewing adjacent triangles by adjacent sides. This polygon has 2n+ 2 sides
and is divided into 2n triangles. Each edge of the cubic map, that does not belong
to the spanning tree, intersects two sides of P and we will say that these sides
constitute a pair. Polygon P has a marked side: the marked edge of the cubic map
intersects it in direction from inside P to outside.
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Continuation of Example.
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❏
❏
❏
❏❏

❏
❏
❏
❏
❏
❏❏

✟✟✟✟

❍❍❍❍❥

❍❍❍❍ ❍❍❍❍

✟✟✟✟

❍❍❍❍

A

B

C

F

E

D

Here EF and FA, AB and BC, CD and DE are pairs and AB is the marked edge.
If we identify sides that are in pairs (i.e. EF with FA, AB with BC and CD with
DE), then we will obtain a triangulated genus 0 curve.

3. The main construction: from curve to map

Let P be a 2n-gon with marked side M and triangulated by non-intersecting di-
agonals into 2n − 2 triangles. Sides of P are divided into pairs in such way, that
the identification of sides in each pair gives us a genus 0 curve. We will construct
a plane tree-rooted cubic map with root edge (not in the spanning tree) in the
following way.

• We put a vertex vi inside each triangle △i and connect vertices in adjacent
triangles — the spanning tree is constructed.

• Let sides L and L′ be in pair. L and L′ are sides of triangles △i and △j,
respectively (these triangles may coincide). We draw an arc that connect
vi and vj in the following way: going from vi the arc intersects L. Its next
part lies in the exterior of P and connects L and L′. After intersecting L′

the arc goes to vj .
• An arc, that intersects M will be the root edge. At intersection point it is
directed from inside P to outside.
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Example 3.1.
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✑
✑

✑✰

❍❍

❏
❏
❏❏

�
�

��

✡
✡
✡
✡

✡
✡

✡✡

Here sides AB and FG, BC and CD, DE and EF , GH and HA constitute pairs
and AB is the marked side. Thus, we must connect the arc that intersects AB with
the arc that intersects FG, the arc that intersects BC with the arc that intersects
CD, the arc that intersects DE with the arc that intersects EF and the arc that
intersects GH with the arc that intersects HA. An arrow in the arc that intersects
AB indicates the direction of the root edge of the cubic graph. The cubic graph
itself and its ”simplification” are presented in the figure below.

✫✪

✬ ✩✬✩✏✒✑↓

⇒

✛

Lemma 3.1. We can draw above mentioned arcs in such way, that they do not

intersect in the exterior of P .

Proof. Let us connect midpoints of all sides in pairs by segments inside P . As the
identification of sides in pairs generates a genus zero curve, then these segments do
not intersect. The polygon P is embedded into sphere, so we can interchange its
interior and exterior domains. �

4. Main statement

Theorem 4.1. The number of tree-rooted cubic maps with 2n vertices and a marked

edge, that does not belong to the spanning tree, is C2n · Cn+1, where Ck is k-th
Catalan number.

Proof. Our theorem follows from two statements.

(1) A convex n-gon with a marked side can be divided into triangles by non-
intersecting diagonals in Cn−2 ways [7].

(2) There are Cn ways to define a pairwise identification of sides of a convex
2n-gon with a marked side to obtain a genus 0 curve [4].

�
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Example 4.1. According to theorem, we have C4 ·C3 = 70 tree-rooted cubic maps
with 4 vertices. In what follows a map with a marked spanning tree will be called
t-map. The first cubic map in Figure 1 generates six t-maps.

In each case we have six ways to choose a marked edge, that does not belong to the
tree. Thus, the first map generates 30 tree-rooted maps.

The second cubic map in Figure 1 generates four t-maps.

1) r
r

r
r

2) r
r

r
r

3) r
r

r
r

4) r
r

r
r

The first two t-maps have trivial groups of automorphisms. Thus, they generate six
tree-rooted cubic maps each. But the group of automorphisms of the third and the
of forth t-maps has order two. Thus, they generate three tree-rooted cubic maps
each and the second cubic map generates 18 tree-rooted maps.

The third cubic map in Figure 1 generates three t-maps.

r rr
r

1

r rr
r

2

r rr
r

3
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The group of automorphisms of the first of them has order 3 and of the second and
the third — order 2. Thus they generate 2 + 3 + 3 = 8 tree-rooted cubic maps.

The forth cubic map in Figure 1 generates one t-map with order three group of
automorphisms. Thus, it generates 2 tree-rooted cubic maps.

The fifth cubic map in Figure 1 also generates one t-map with trivial group of
automorphisms. Thus, it generates 6 tree-rooted cubic maps.

The sixth cubic map in Figure 1 generates two t-maps

✓✒✏✑ ✓✒✏✑ ✓✒✏✑ ✓✒✏✑
with order two group of automorphisms each. Thus, they generate 3 + 3 = 6
tree-rooted cubic maps.

So, we have
30 + 18 + 8 + 2 + 6 + 6 = 70

tree-rooted cubic maps, as expected.
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