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KiroueBoii nmpo6ieMoii MoaeIMpoBaHusl KOJUIEKTUBHOTO BbIOOpa sIBJISIETCS TO, UTO nodeautesnb KoH-
nopce, T.e. albTepHaTHBa 6oJiee MPEANOYTUTEIbHAS ISl KOJUIEKTHBA, YeM J1l00asi Ipyrasi albTepHaTUBA MPU
MapHOM CpaBHEHHUU, B 00OLIEM ciy4yae OTcyTcTBYeT. [1oaToMy ¢ KoHIIa 70-X I'T. IPOLIJIOrO BeKa MpearnpuH-
MaJICh TOTIBITKY JIOKAJTM30BaTh Pe3yJIbTaT BHIOOPAa B HEKOTOPOM BCET/Ia HEIyCTOM MOAMHOXKECTBE MHOXe-
CTBa aJIbTEPHATUB, Ha KOTOPOM OITPEJIe/ICHO OTHOIIEHNE MaXOPUTAPHOTO TOMUHUPOBAHUS, UTPAIOIIEE POJTb
CHUCTEMbI KOJIJIEKTUBHBIX MPEITOYTEHUIA.

TIpeameTom naHHOI PabOTBI SIBISETCS CPABHUTENIbHBIN aHAIN3 OCHOBHBIX KOHLEIMLUI, CTapbiX U HO-
BBIX, TMPEIAraBUIMXCSl B KAUECTBE PELICHUIT 3aauu KOJIEKTUBHOTO BbIOOpa. CpaBHUBAIOTCS BEHAILATh
MHOECTB, TIOCTPOCHHBIX C MIOMOIIBIO OTHOLIEHUSI MAXXOPUTAPHOTO JOMUHUPOBAHUS: SIAPO, TSITh BEPCUit
HETIOKPBITOTO MHOXKECTBa, JBE BEPCHMM MHUHUMAJBHOTO ClIa00yCTOMYMBOTO MHOXKECTBA, He3aXBaueHHOE
MHOKECTBO, He3arnepToe MHOXECTBO, MUHUMATIbHOE HEITOMUHUPYEMOE MHOXECTBO M MUHUMAJILHOE TOMU-
HUPYIOLLIEe MHOXECTBO.

OCHOBHbIE Pe3yJIbTaThl UCCIIEOBAHMSI, U3JIaraloluecs: B paboTe, TAKOBbI.

1. JlokanuzoBaHo omnpeneneHre MUHUMAIBHOTO CIa00YCTOMYMBOIO MHOXECTBA, TO €CTh ChOpPMYIIU-
pPOBaH KPUTEPUIA, OMpPEeISIIOIINI TPUHAIEXHOCTb albTEPHATUBbI 00bEIMHEHNI0 MUHUMAJIBbHBIX C1a00-
YCTOMYMBBIX MHOXeCTB. C TOMOIIBIO 3TOTO0 KPUTEPHsI BBISIBIEHA CBSI3b OOBEAMHEHUSI MUHUMAIbHBIX Clla-
GOYCTOMYMBBIX MHOXKECTB C OTHOIICHUEM MOKPBITHSI U C HETTOKPBITHIM MHOXECTBOM.

II. Ins Bcex paccMaTprBaeMbIX MHOXKECTB YCTAHOBJICHO HAJIMUME MJIM OTCYTCTBUE OTHOLLEHUS BKIIIO-
YeHUs KaK B 00LIeM ciiydae, TaK U IJIsl TAKOTO BaXKHOTO YAaCTHOTO Cilyyasi, KaK TYPHUPBI, TO €CThb ISl TAaKUX
clly4aeB, KOTa OTHOILIEHUE MaXXOPUTAPHOTO JOMMHMPOBAHMS Ha BCEW COBOKYMTHOCTHU alIbTEPHATUB Mpe/-
CTaBHUMO TIOJIHBIM, CBSI3HBIM, aCUMMETPUYHBIM Ipachom.

I11. 115t TYpHMPOB Ha OCHOBE MOHSATHS YCTOMYMBOCTH AJIETEPHATUBBI M MHOXECTBA aJIbTePHATHUB MOCTPOE-
HbI 0000IIEHNUST HETTOKPBITOTO MHOXKECTBA U CJIa00YCTOMYMBOIO MHOXECTBA — KJIACCHI kK-yYCTOMUMBBIX abTep-
HATUB U k-YCTOYMBBIX MHOXKECTB. YCTAHOB/ICHO HAJIMYKME OTHOLLIEHMST BKJIIOYEHUSI JUISI 9TUX KJIaCCOB.

IV. TTocTpoeHbl 060011eHISI MUHUMAJILHOTO JOMUHUPYIOLIET0 MHOXECTBA U C UX MTOMOILBIO BBISICHEHO,
KaK YCTPOEHa crcTeMa TOMUHUPYIOLIMX MHOXECTB B 001eM ciayyae. [TokasaHo, 4To Uisi TYpHUPOB Mepap-
XUU KJIaCCOB k-YCTOMUMBBIX aTbTEPHATUB U K-YCTONUYMBBIX MHOXKECTB B COBOKYITHOCTH C MepapXueil ToOMu-
HUPYIOIIUX MHOXKECTB MOPOXIAIOT COOTBETCTBEHHO MUKPO- U MaKPOCTPYKTYPY MHOXECTBA aJIbTePHATHUB,
B OCHOBE KOTOPBIX JIEKHUT Pa3Inune B YCTOMUNBOCTH.

MeTo10J10rnuecKoii napagurMoi ccie 0BaHus SIBISIETCSl TEOPUSI pallMOHAIbHOTO BbIoopa. OCHOBHbIE
METO/Ibl U CPECTBA OTHOCSITCS K MaTeMAaTUUECKOMY arlrapaTy Teopuu rpadoB U TEOPUU MHOXKECTB.
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1. Introduction

In most cases a Condorcet winner, i.e. an alternative more preferable for
the majority of actors than any other alternative, does not exist and a core
(a set of all alternatives undominated in majority relation) is empty. Therefore
various sets of alternatives were proposed as solution concepts for majority
voting games and/or as social choice rules. Below several such concepts are
considered and compared: dominant set (Ward, 1961; Smith, 1973), minimal
dominant set (Fishburn, 1977; Miller, 1977), undominated set (Ward, 1961),
minimal undominated set (Schwartz, 1970, 1972), weakly stable and mini-
mal weakly stable sets (Aleskerov, Kurbanov, 1999), uncovered set (Fishburn,
1977; Miller, 1980), uncaptured and untrapped sets (Duggan, 2007). In ad-
dition we introduce a new solution concept — k-stable sets of alternatives —
and analyze its relations with other solution concepts listed above.

The structure of the article is as follows. In Section 2 the definitions of
sets are given and their relationships are explored. In addition, a criterion
to determine whether an alternative belongs to a minimal weakly stable set
is established. It is shown that for tournaments an uncovered set is always a
subset of a union of minimal weakly stable sets. It is also demonstrated that a
hierarchy of dominant sets defines a “macrostructure” of majority relation.

In Section 3 the concept of stability is employed to generalize the notions
of weakly stable and uncovered sets. The concepts of k-stable alternatives and
sets are introduced and their properties and mutual relations are explored.

In Section 4 the results are summarized and interpreted. Table 2 and
Table 3 summarize the relations between all sets discussed in the paper for
general case and for tournaments respectively. It is also shown that the hi-
erarchies of the classes of k-stable alternatives and k-stable sets combined
with the system of dominant sets constitute a tournament structure based on
different degrees of stability. Appendix 1 provides Examples and proofs of
some propositions from the previous Sections. An algorithm for calculating
the minimal dominant sets and the classes of k-stable alternatives is given in
Appendix 2. Almost all proofs of Lemmas and Theorems and an auxiliary
Lemma 7 are put in Appendix 3.



2. Minimal Weakly Stable Set, Uncovered Set
and other concepts based on majority relation’

Majority relation and related concepts

A finite set A of alternatives is given, |A|>2. Throughout the paper lower-
case letters (except CW) denote alternatives; capital letters denote sets of al-
ternatives. Agents from a finite set N={1, ..., n}, [N|>1 have preferences over
alternatives from the set A. These preferences R, (i€N) are assumed to be com-
plete binary relations on A. A relation R,, RCAxA can be represented as a un-
ion of two relations P, and I, R=P,UL, PNI[=J, one of which (P) is asym-
metric (Vx, yEA (x, y)EP = (y, X)&P), thus representing strong preference,
the other one (I,) is symmetric (Vx, yEA xLy = ylx), therefore it stands for a
subrelation of indifference.

Majority relation is a binary relation g, HCAxA constructed such that
(x, y)€u if x is strongly preferred to y by majority, whichever defined, of all
agents. For simple majority xpy <> card{i€EN xP y}>card{iEN yR x}. If xuy then
it is said that x dominates y, and y is dominated by x. By assumption pi is asym-
metric: (X, y)EU = (¥, X)&EL.

If neither (x, y)Eu, nor (y, X)Ep holds, then (x, y) is called a tie. A set of ties
T is a symmetric binary relation on A: tTCAxA, (x, )&t = (Y, X)Et. By defini-
tion pNt=Y and pUt= AxA.

A relation p is called a fournament if it is complete. Thus p is a tournament
when corresponding t is empty, t=J. A tournament can be represented graphi-
cally by a complete asymmetric directed graph, where vertices correspond to
alternatives, and directed lines (exactly one between each pair of vertices) rep-
resent majority relation, x—y <> xpy. By established convention a directed line
is going from a dominating alternative to dominated one. In general case there
are also ties. Ties are not connected by lines.

An ordered pair x—>y is also called a step. A path x—y —y,—...—>y, ,—
y,.,—>y from x to y is an ordered sequence of steps starting at x and ending at
y, such that the second alternative in each step coincides with the first alterna-
tive of the next step. In other words a path is an ordered sequence of alterna-
tives X, ¥, ¥y, --» ¥,,» ¥,;» %> such that each alternative dominates the follow-
ing one: Xuy,, ¥ 1y, .-, ¥, ,1Y, ;> ¥, ,1y. The number of steps in a path is called
path’s length. An alternative y is called reachable in k steps from x if there is a
path of length k from x to y.

! The terminology, definitions and notation given in Section 2 are derived mainly from Ales-
kerov and Kurbanov (1999).

Lower contour set of an alternative x is a set L(x) of all alternatives dominated
by x, L(x)={y€A: xuy}. Correspondingly, upper contour set of an alternative x is
a set D(x) of all alternatives dominating x, D(x)={yEA: yux}. A horizon of x is
a set H(x) of all alternatives y, for which (x, y) is a tie, H(x)={y€A: xty}. Obvi-
ously, L(x)UD(x)UH(x)U{x}=A.

Dominant, undominated and untrapped sets

A Condorcet winner CW, CWEA, is an alternative dominating all other al-
ternatives, VXEA, x~#CW = CWux. An alternative x is a weak Condorcet winner
iff it is not dominated by any other alternative, while there is at least one alter-
native that ties x, VYEA y#x = (xpuy or xty) and JzEA z#X: xtz.

A set of all undominated alternatives is called a (majority) core Cr, xECr <
VyEA y#X = (X[ly Or XTYy).

A set D, DCA, is called a dominant set (Ward, 1961; Smith, 1973) if each
alternative in D dominates each alternative outside D, Vx, x€D < {Vy&A\D
= xuy}. A dominant set MD (EMD(])) will be called a minimal dominant set
(Schwartz, 1977) if none of its proper subsets is a dominant set. A set MD ® is
called a minimal dominant set of the second degree if it is a minimal dominant
set for a set A\MD. MD,, is a minimal dominant set of the i’th degree if it is a
minimal dominant set for a set A\(U MDU)), 1<j<i-1.

A set U, UCA, is called an undominated set (Ward, 1961) if no alterna-
tive outside U dominates some alternative in U, Vx, x€U < {Vy€A\D = (y,
x)&u}. An undominated set MU is called a minimal undominated set (Schwartz,
1970) if none of its proper subsets is an undominated set. If such a set is not
unique, then the social choice is defined as a union of these sets (Schwartz,
1972), which will likewise be denoted as MU. The union of minimal undomi-
nated sets (strong top cycle) is always a subset of minimal dominant set (weak
top cycle), MUCMD. Evidently a core Cr is always a subset of MU, CrCMU,
since each {x}, {x}: x€Cr, is a minimal undominated set.

Itis said that x fraps y if x dominates y and is not reachable from y via p, xpy
and there is no path from y to x (Duggan, 2007). An untrapped set (Duggan,
2007) UT is comprised of all alternatives that are not trapped. UT is always non-
empty and is nested between the strong and weak top cycles, MUCUTCMD
(Duggan, 2007), consequently CrCUT.

Lemma 1. If D, and D, are dominant sets then either D, CD, or D,CD,.

Lemma 2. A minimal dominant set always exists and is unique.

The counterpart of Lemma 2 for tournaments was proved by Miller
(1977).



It follows from the definitions that any dominant set is at the same time an
undominated set. Thus Lemma 2 implies non-emptiness of MU, which im-
plies non-emptiness of UT. For tournaments the notions of dominant and un-
dominated sets coincide, i.c. MD=MU. Consequently, for tournaments the
untrapped set coincides with the minimal dominant set (Duggan, 2007).

Lemma 3. If D is a dominant set then it is a direct sum of i minimal dominant
sets of the first i degrees, D=MD+MD(2)+...+MDU_1)+MDG)+...+MD“).

According to Lemma 3 a set of all dominant sets in A for any p might be
represented as a sequence of s sets, MDCD(Z)C...CD(._ cDh C...CD(S)=A,

D,=MD+MD,, +..+MD_, +MD, +..+MD,, D \D, =MD,

By construction minimal dominant sets of different degree do not intersect,
and the union of all these sets coincides with the set A. Consequently, any al-
ternative belongs to one and only one set MD(i). Thus the hierarchy of domi-
nant sets can be considered as a macrostructure of A, where all elements, i.e.
alternatives, are distributed by “vertically” ordered layers {MD(D}.

Historical remark. Ward (1961) called dominant and undominated sets “ma-
jority sets” chosen under the “strong” and “weak” procedures respectively.
Neither Ward (1961), no Smith (1973) formulated a condition of minimality
for the sets they had introduced. The other names of the minimal dominant set
are “minimal undominated set”, “Condorcet set” (Miller, 1977); “GETCHA”
(Schwartz, 1986); “weak top cycle”. Though Fishburn (1977) does not define
this concept explicitly, he speaks of “Smith’s Condorcet principle”, which is
equivalent to choosing only alternatives from a minimal dominant set. The other
names of the minimal undominated set are “GOCHA” (Schwartz, 1977, 1986);
“undominated set” chosen under ”Schwartz’s rule” (Deb, 1977); “Schwartz
choice set”, “minimal externally undominated” set (Fishburn, 1977); “strong
top cycle”. If all individual preferences R, are antisymmetric, Vi R=P,, and
if majority is defined as consensus of agents, then the minimal dominant sets
of different degrees { MD(D} coincide with equivalence classes, defined by Ka-

dane (1966).

Uncovered and uncaptured sets

Before a definition of an uncovered set is given, let us define the covering
relation on A. It turns out that there are five different definitions of covering:

1) y covers x if yux and L(x)CL(y)UH(y) (Duggan, 2007), then x is uncov-
ered < Vy: yux = Jz: xuz & zpy;

2) y covers x if yux and L(x)CL(y) (Miller, 1980), then x is uncovered <
Vy: yux = 3z: (xuz&zpy) or (xuz&zty));

3) y covers x if yux and D(y)CED(x) (Fishburn, 1977; Miller, 1980), then x
is uncovered < Vy: yux = 3z: (xuz & zuy) or (xtz & zuy);

4) y covers x if yux and L(x)CL(y) & D(y)CD(x) (Miller, 1980; McKelvey,
1986), then x is uncovered < Vy: yux = 3z: (xpuz & zpy) or (xuz &zty) or (xtz
& zpy);

S)ycoversxifyux and H(x)UL(x)CL(y) (Duggan, 2007), then x is uncovered
< Vy: yux = 3z: (xpz & zpy) or (xuz & zty) or (xtz & zpy) or (xtz & zty).

The definitions are listed according to their relative “strength”: the strength
of covering decreases, and the number of uncovered alternatives correspond-
ingly increases with increase of the definition’s number. It follows from the
definitions of the upper and lower contour sets and from transitivity of the re-
lation of inclusion that the relation of covering under the second, third, fourth
and fifth definitions is transitive. Cycles of covering are possible under the first
definition. For a tournament all five definitions of covering are equivalent. Re-
lation of covering has no symmetric component under all five definitions listed
above, i.e. if x covers y then it is not possible for y to cover x.

The uncovered set (Fishburn, 1977; Miller, 1980) UC is comprised of all al-
ternatives that are not covered. An uncovered set, whichever defined, is unique.
Let UC!, UC", UC™ UCY and UCY denote uncovered sets under the first,
second, third, fourth and fifth definitions of covering respectively. Evident-
ly, UCV=yCctuuyc!, uC'cuc!"'cucy uccuctcucC!y and UCNMCUCY.
UC!" and UC™ are not logically nested. Let us consider the following exam-
ple: A={a, b, ¢, X, ¥, z}, u={(a, b), (b, ¢), (¢, a), (x, a), (X, b), (X, ¥), (V, 2),
(z, b), (z, x)} (see Figure 1). Here UC"={b, c, x, y, z}, UC""={a, ¢, x, v, z},
UC\UC"={b}; UC™UC"={a}.

If a relation is transitive, it always possesses maximal elements. Therefore
sets UC!, UC", UC"™ and UCY are always non-empty, while UC' may be emp-
ty. For instance, let A={a, b, c, d}, u={(a, b), (b, ¢), (c, d), (d, a)}. According
to the first definition of covering a covers b, b covers ¢, ¢ covers d and d cov-
ers a, i.e. there is a cycle of covering, including all alternatives in A. Therefore
UC'=g.

Since any undominated alternative is by definition uncovered, a core is a
subset of any UC, CrCUC. It is possible that the inclusion is strict, CrCUC.
For instance, let A={a, b, c, d}, u={(a, b), (b, ¢), (c, d), (d, b)} then Cr={a},
UC'={a, c, d}.

The relation UCCMD holds for all five versions of covering, whereas MU and
all UC are not logically nested in general case: in tournaments UCCMU=MD,
while digraph on Figure 1 shows that MUCUC! is also possible: MU={x, v,
z}; UC'={c, x, y, z}, UCV=UCVY=A. This example also proves that the sets
UucCH, UC™, UC"™ and UCY are not logically nested with UT: in tournaments
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UC'=uyC"=yC"=UC¥CUT=MD, while UTCUC", UTCUC“‘Y uTcucY
and UTCUCY are also possible, since here UT=MU={x, y, z}. By the first defi-
nition of covering UC! is always a subset of UT, UC'CUT.

Fig. 1

An alternative X captures an alternative y, if x 1) covers y according to the
fourth definition of covering and 2) covers all alternatives from the lower con-
tour set of y according to the third definition of covering, D(x)CD(z), VzEL(y)
(Duggan, 2007). Then x is uncaptured < Vy: yux =

either 3z: (xpz & zpy) or (xuz &zty) or (xtz & zpy);

or v, w: (xuv & vuw & wiy) or (xpv & viw & wpy).

An uncaptured set (Duggan, 2007) UCp is comprised of all alternatives
that are not captured. By definition UCYCUCp, consequently, CrCUCp,
UC'CUCp, UC'"CUCp, UCMCUCp and UCp is always nonempty. The un-
captured set is a subset of the minimal dominant set, UCpCMD (Duggan,
2007). UCp is not logically nested with UCY, UT and MU: in tournaments
UCCUCpCMU=UT=MD, while UCpCUCY, MUCUCp and UTCUCp are
also possible. The possibility of inclusions MUCUCp and UTCUCYp is again
proved by the graph from Figure 1, since there UCp=A. To show the possibil-
ity of UCpCUCY let us consider another example: A={a, b, ¢, X, V, z}, u={(a,
b), (a, ¢), (b, ¢), (x,¥), (X, 2), (v, 2), (z, ¢)} (see Figure 2). Here UCp={c, X,
z} and UCV=A.

Fig. 2

Historical remark. In fact, both Fishburn and Miller did not include a de-
mand for yux into their definitions. Respectively Miller (1980, p. 94) propos-
es only L(x)CL(y) & D(y)CD(x) as a definition of covering for general case,
t#. For tournaments this discrepancy does not make any difference, but in
general case it does. The condition ypux in the definitions of covering is what
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makes relation of covering asymmetric. Ifit is dropped then one gets five more
versions of covering and uncovered sets. These “new” relations may possess a
symmetric component. For instance, if xty and L(x)=L(y) then under original
Miller’s definition of covering (without demand for xpy or yux) x cover y and
y covers x. The condition yux in the definitions of covering is also needed for
them to be consistent with the concept of stability (especially when stability is
interpreted dynamically) and with a definition of the uncaptured set.

The term “uncovered set” was introduced by Miller. Fishburn talks of an
”image of Fishburn’s social choice function”.

Weakly stable sets

A set WS is called a weakly stable set (Aleskerov, Kurbanov, 1999) if it has
the following property: if x belongs to a weakly stable set, then for any alterna-
tive y outside the weakly stable set, which dominates x, there is an alternative
z in the weakly stable set, which dominates y, VXxEA, xEWS <« (IyEWS: yux
= JzEWS: zuy). In terms of D(x) and L(x) WS is weakly stable < (Vy&WS
WSNL(y)=Z = WSND(y)#=J). A weakly stable set MWS is called a minimal
weakly stable set if none of its proper subsets is a weakly stable set. If such set
is not unique, then the social choice is defined as a union of these sets (Ales-
kerov, Kurbanov, 1999), which will likewise be denoted MWS.

According to the definition if x is undominated then {x} is a minimal weakly
stable set, therefore a core is a subset of MWS, CrCMWS. The inclusion may
be strict, CrCMWS. For instance, let A={a, b, c, d}, u={(a, b), (b, ¢), (c, d),
(d, b)} then Cr={a}, MWS={a, c, d}. It also follows from the definitions that
any dominant set is at the same time a weakly stable set. Thus Lemma 2 im-
plies non-emptiness of MWS.

Lemma 4. MWSCMD.

Corollary. Since MU, MWS, allUC (except UC'"), UCp, UT are alwaysnonemp-
ty, then ifthere isa Condorcet winner CW, all sets coincide with a core, which con-
tains only one alternative — CW, MD=MU=MWS=UC=UCp=UT=Cr={CW}.
It follows from the definition of UC' that the same also holds for UCL

The definition of a minimal weakly stable set proposed by Aleskerov and
Kurbanov is global. For practical calculations one needs a criterion to deter-
mine whether an alternative belongs to a minimal weakly stable set or not. For
tournaments such criterion is given by Theorem 1. But before that, two impor-
tant properties of weakly stable sets should be established.

Lemma 5. If p is a tournament, then B is a weakly stable set iff Vy&B =
BND(y)#@. That is B is a weakly stable set iff there is one-step path from some
alternative in B to any alternative outside B.

9



Corollary (monotonicity). Let BCC. If B is a weakly stable set then C is a
weakly stable set. If C is not a weakly stable set then B is not a weakly stable
set.

Theorem 1. If p is a tournament, then an alternative x belongs to a union of
minimal weakly stable sets MWS iff 1) either x is uncovered or 2) some alter-
native from x’s lower contour set L(x) is uncovered.

Corollary. For tournaments, the uncovered set is a subset of the union of
minimal weakly stable sets, UCCMWSCMDCA.

It is worth noting that there are tournaments for which inclusion is strict,
UCCMWSCMDCA. For example let A={a, b, c, d, e, f} and p={(a, ¢), (a, d),
(a, ¢), (a, 1), (b, a), (b, d), (b, e), (b, 1), (c, b), (¢, e), (c, ), (d, ¢), (d, ), (e,
d), (e, H)} (see Figure 3), then UC={a, b, ¢}, MWS={a, b, c, d} and MD={a,
b, c,d, e}.

Fig. 3

Corollary of Lemma 5 and the proof of Theorem 1 depend on the assump-
tion that p is a tournament through the proposition of Lemma 5 only. That is
in general case if Lemma 5 holds then so do Corollary and Theorem 1. Thus
it is possible to take Lemma 5 as a second definition of a weakly stable set: a set
WS is weakly stable if VYyEWS = WSND(y)=d. Let MWS' and MWS! denote
a union of minimal weakly stable set under the old and new definitions of weak
stability correspondingly. In a tournament these definitions of weak stability
are equivalent.

Theorem 1 shall be restated as

Theorem 1a. For any majority relation 1 an alternative x belongs to a minimal
stable set MWS iff x is uncovered according to the third definition of covering
or some alternative from the lower contour of x is uncovered according to the
third definition of covering, xXEMWS!" < x€UC" or Jy: yEL(x) & y=sUC'™,

Corollary. A union of minimal weakly stable sets MWS'! is a superset for
an uncovered set UC™ (and thus for a core) and a subset of an uncaptured set
UCp, CrEuCHCEMWSICUCp.

10

There are p such that MWS'"CUCp, for example one depicted on Figure 2.
There MWS"={a, x} amd UCp={a, x, z}.

If pis not assumed to be a tournament, then corresponding modification in the
proofof Lemma 5 (a change of D(x) UL(x)U{x}=A for D(x)UL(x)UH(x)U{x}=A)
yields the following consideration. Aleskerov-Kurbanov’s definition of a weak-
ly stable set (XEWS < (FyEWS: yux = IzEWS: zpy)) implies that B is weakly
stable iff Vy&B BND(y)#< or BCH(y). That is a set, which is weakly stable
by the second definition, is weakly stable according to the original version of
weak stability. At the same time there are sets not weakly stable by the former
definition but weakly stable according to the latter one, namely, when Vy&B
= (BND(y)#< or BEH(y)) and 3z&B: BEH(z). Moreover, in general case
weak stability retains its monotonicity only under the second definition, where-
as under the original version it is possible for some B, C, D: DCCCBCA that
C may not be a weakly stable set while B and D are weakly stable. As a result,
a weakly set B, which is minimal according to the second definition may not
be minimal according to the first one, since it may contain a proper subset C,
CCB, such that it is weakly stable by the first definition and is not weakly sta-
ble by the second one.

Lemma 6 establishes logical relations for the rest of all pairs of sets intro-
duced so far.

Lemma 6. MWS' is not logically nested with UC', UC", UC™ UCWY,
UucCY, MWS", MU; MWS'CUCp and dpu: MWS'CUCp; MWS!'CUT and Jp:
MWS!CUT; MWS' is not logically nested with UC", UC", UCY, MU and UT;
UCICMWS; MWSIICMD.

Table 2 and Table 3 in Conclusion summarize the relations between all
twelve sets Cr, UC!, UC", UC™, UCW, UCY, MWS!, MWS", UCp, MU, UT
and MD for general case and for tournaments respectively.

3. k-stable? alternatives, k-stable sets and their relationship

From now on, unless it is specifically noted, only tournaments will be con-
sidered.
k-stable points

We can deepen our understanding of the uncovered and weakly stable sets
and generalize these notions if we consider the relative stability of alternatives

2 The notion and the general idea were proposed by F Aleskerov.
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and sets of alternatives. An alternative x will be called generally stable if every
other alternative in A is reachable from x, otherwise x is unstable.

Remark. Thus defined stability is also open for a dynamic interpretation. It
is natural to view a certain position (a state of a system) as more stable one if it
is less subject to change. In a voting game a “state of a system” is either an al-
ternative, which is a status quo, or a certain set of alternatives, to which a status
quo belongs. Thus a state is less subject to change if it takes less effort (steps,
rounds of voting) to return to the same state (to adopt the same alternative or an
alternative from the same set of alternatives by the process of consequent voting)
after a “perturbation”, i.e. after a status quo was outvoted and changed.

Every alternative in A is reachable from x iff x belongs to a minimal domi-
nant set (Miller, 1977), thus all alternatives of a minimal dominant set and only
they are generally stable.

Since A is finite, if y is reachable from x, then there is a path from x toy
with a minimal length. Let I(x, y) denote a minimal length function. The func-
tion 1(x, y) has the following property: 1(x, y)>1 = 1(y, x)=1.

For x and y, such that x€D, yeA\D, where D is a dominant set, 1(y, x) is
not defined, as x is not reachable from y. For such cases let 1(y, x)=oo. If x be-
longs to a minimal dominant set, 1(x, y) is defined and has a finite value for all
yEA\{x}. Let 1(x, x)=0 for 1(x, y) to be defined on the whole set A. In terms of
I(x, y) x is generally stable when VyEA 1(x, y)<oo.

Let I (x) denote a function of x defined as lmax(x)Zmaxye W, ). If
I (x)=k<eo then it is possible to reach any alternative in A from x in no more
than k steps, but there is at list one alternative reachable from x in less than k
steps. The function | (x) may serve as a measure of stability and thus helps in
comparison of alternatives by their stability and in separation of them by classes
of stability. Therefore, let the value of 1 _ (x) be called a degree of stability of x.
If the degree of stability of an alternative x is k, k<oo, x will be called k-stable.
Let SP, denote a class of k-stable points, i.e. a set of all k-stable alternatives
inA, xESP(k) <1 __(x)=k. An algorithm for calculating the classes of k-stable
alternatives and the minimal dominant sets is given in Appendix 2.

An alternative x has the degree of stability k=1 iff x is a Condorcet win-
ner, x=CW. Therefore SP(1)={CW}. It is also evident that if SP(I):ﬁ@, then all
SP(k>1 )=® , since CW is not reachable from any other alternative.

An alternative x has the degree of stability k=2 iff x is an uncovered alterna-
tive, i.e. SPQ) is an uncovered set UC, SP(Z)ZUC (Miller, 1980).

By construction the classes of stable alternatives do not intersect,
SP(l)ﬂ SP =(J, i#j. Since all alternatives that are generally stable belong to a min-
imal domlnant set MD, and all alternatives from MD are generally stable, MD
is a direct sum of all classes of k-stable alternatives, MD=SP(1)+SP(2)+SP(3)+...
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+SP, +... Since A is finite, there is a generally stable alternative (at least one),
the degree of stability of which is maximal m=max _, 1 (x). It follows im-
mediately that 1) Vk>m SP =; 2) SP_ #(; 3) MD= SP TSP, +SP,+
+SP

T(l:l()aorem 2. (Nonemptiness of point-classes) If there is no Condorcet winner,
each class of k-stable alternatives with the degree k equal or less than maximal
is nonempty, except SP(I), VSP(k)?&@, 2<k<m=max _, 1 (x).

Finally, let P(k) denote a set of those generally stable alternatives, from which it
is possible to reach any given alternative in A in no more than k steps. By definition

P(k)=SP(1 t SP(2)+. ..+SP . According to the definition of the capturing relation,

x isuncaptured ifit is possible to reach any other alternative in A in no more than

3 steps, thus PG) is the uncaptured set UCp, P(3)=SP(1)+SP(2)+SP(3)=UCp
Therefore the following system of subsets can be defined in a minimal dom-

inant set.

Py Z{CW)—MD; if R, =2, then

o )—UC¢®, an uncovered set;
P( )—UCp, an uncaptured set;
P(I)CP(Z)CPG)C CP(m I)CP —MD, m=max _, I
strict according to Theorem 2.

(x), all inclusions are

k-stable sets

Similarly to alternatives, a set of alternatives X will be called generally stable
set if it is possible to reach any alternative outside X from some alternative in X,
otherwise X is unstable. An alternative y outside X is reachable in k steps from X
if there is a k-step path to y from some x in X. Since all alternatives are reach-
able from alternatives in a minimal dominant set, but alternatives in MD are
not reachable from outside, any set X, which has nonempty intersection with
MD, VX: XNMD#{, is generally stable, otherwise it is unstable.

In terms of 1(x, y), X is generally stable if VyEA\X IxEX: I(x, y)<oo. A func-
tionl(X, y)=min _ I(x, y) for any yeA\X will be called a minimal length function,
which represents a distance from a given set X to a given alternative y outside X.
I(X, y)=oc when y is not reachable from X. Let I(X, y)=0 if y&X.

Correspondingly, 1 (X)=max _,I(X,y). Ifl _(X)=k<cothen VyEA IxEX:
I(x, y)<k & JyeA\X: VxEX 1(x, y;>k.

The value of | _ (X) will be called the degree of stability of a set of alter-
natives X. If the degree of stability of X is k, the set X will be called k-stable.
A k-stable set will be called a minimal k-stable set if none of its proper subsets
is a k-stable set.
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Let SS  denote a class of those alternatives, which belong to some mini-
mal k-stable set, but do not belong to any minimal stable set with the degree
of stability less than k. By construction these classes do not intersect, Vi#j
SS,NSS=2.

Finally, let S o denote a union of those minimal generally stable sets, from
which it is possible to reach any alternative outside a set in no more than k
steps.

Evidently, S =SS, +SS, +..+SS |

It follows from Lemma 5 that a k-stable set of degree k=1 is equivalent to
a weakly stable set. Therefore S W coincides with the union of minimal weakly
stable sets MWS, S(1)=MWS.

There is a relationship between all these sets, which were introduced above
on a basis of an idea of stability, the relationship similar to one, which is estab-
lished for the uncovered set and the union of the weakly stable sets by Theorem 1.
Theorem 3 determines this relationship.

Theorem 3. 1) P, CS | CP . (i.e. UCCMWSCUCp); 3u: P, CS CP .

2) Vk: k>1 P CS, CP )

Corollary 1. Vk: k>3 x&SS | = (x&SP , orx€SP ;) & x¢&SP .

Corollary 2. Vk: k=2 or k>4 xESS(z) = (xESPm or xESP(4)) & x$SP(k).

Corollary 3. Vi: i>k+2 or i<k €SS , Vk: k>2 = (x&SP , or x&SP
XESP ,,) & XESP .

Corollary 4. Vi: i>k ori<k-2 xESP(z) = XESS(I); XESP, Vk: k>2 = (x€SS
orxeSS, , orxeSS ) & XSS, .

Finally, let us consider the following examples: A={a, b, v, w, X, V, z};

1,={(a,b), (a,w), (a,x), (a,y), (a,2), (b, V), (b, x), (b, y), (b, 2), (v, a), (v, W),
v, x), (v, 2), (W, b), (W, X), (W, ¥), (X, V), (X, 2), (¥, V), (¥, 2), (z, W)} (Figure 4);

®° &+ OT

(k-2)

Fig. 4

w,={(a, b), (a, w), (a, x), (a,y), (a, ), (b, v), (b, x), (b, y), (b, 2), (v, a),
v, W), (v, x), (v, 2), (W, b), (W, X), (W, ¥), (X, ), (X, 2), (%, V), (z, W), (2, y)} (Fi-
gure 5);
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R,
Ny

H,={(a, b), (a, w), (a, x), (a,y), (a, 2), (b, v), (b, x), (b, y), (b, 2), (v, a), (V,
X), (v, 2), (W, b), (W, V), (W, X), (W, ¥), (X, ), (X, 2), (}, V), (z, W), (z, )} (Fig-
ure 6).

For each digraph Table 1 shows distribution of alternatives by point-classes

{SP(k)} and set-classes {SS(k)}.
Table 1. Distribution of points by point-classes {SP(k)} and set-classes {SS(k)}
Figure 4 Figure 5 Figure 6
SP(Z) SPG) SP(Z) SP(J) SP“) SP(Z) SP(S)
SS(D a,b,v Y, W SS(D a,b,v Y, W SS(D a,b,v,w Y, Z
SS,, z SS,, z SS,,
SS, X SS, X SS, X

These examples show that all three theoretically possible options hold:

XE(SS(H), SP ), XE(SS(k_l), SP ), XE(SS(k), SP ). Therefore the statement

(k) (k) (k)
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of Theorem 3 can not be made stronger. Evidently, the inclusion P(Z)QS(I) is
just a “boundary effect”, and it can not be generalized.

Together with Example 3 they also prove that the cases when SS (k)=®, or
even SS(H)ZQ & SS (k)=® are possible. Therefore there is no counterpart of
Theorem 2 for set-classes {SS (k)}. The cases where SS (k72)=®, SS..,=9,SS (k)=®
for any k: k<m, m=max _, | (x) are impossible, since SS(k_2)=®, SS a,
SS (k)=® implies SP(k)=®, a contradiction with Theorem 2.

It is important to note that P(k)QS( CP(k+2 does not imply that either
P CS CP . orP . CS CP_  holds. The distribution table of a digraph

D

=
®=20=" (k+1) D=0 (k+2) > ‘ ‘
from Figure 5 demonstrates that there are cases with such pairs of alternatives

(X, y), where one alternative belongs to a point-class of greater degree and to a
set-class of lesser degree than the other one, X&(SS 2y SP(k)), y&(SS 1y SP(H)).
Therefore, even though it is possible to compare all alternatives by stability us-
ing point-classes {SP(k)} or set-classes {SS W) independently, there is no natu-
ral aggregated order: one may call x more stable than y when xE(SS(k), SP(D),
yE(SS @y’ SP(n)), k<m, I<n & (k<m or I<n), but it is impossible to compare al-

ternatives x&(SS SP(k)) and y&(SS SP

(k-2)° (k-1)° (kfl))'

4. Conclusion

In the rational choice paradigm the main problem is a general absence of a
core. The core exists so rarely, that one needs 1) either to make quite restrictive
assumptions with regard to a space of individual preferences to guarantee its ex-
istence, 2) or to find a solution concept, which can be used as a substitute. For
instance, in the spatial theory of voting a notion of ideology is used as a means
to make an issue space one-dimensional (Ferejohn, 1995) in order to ensure
the existence of a median voter, who’s ideal point is a Condorcet winner. In
the multi-dimensional setting the median voter exists only under non-robust
Plott’s pairwise symmetry conditions (Plott, 1967) for majority rule equilib-
rium. In this paper the latter approach was chosen.

Several such solutions concepts were considered and compared: Cr, UC',
uch uct, ucv, ucY, MWS!, MWS", UCp, MU, UT and MD. Tables 2 and
3 summarize their relations for general case and for tournaments respectively.
The symbol “C” in a cell points out that a set of a corresponding row R is al-
ways a subset of a set of a corresponding column C, RCC. The symbol “n.n.”
points out that sets R and C are not logically nested. The symbol “=" points
out that sets R and C are equivalent.
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Table 2. General case

UucC' | uct | uCc™ | UCV | UCY | MWS' | MWS" | UCp | MU | UT | MD

Cr c c c c c c c c c c c
uc! c c c c n.n c C |nn | C c
uc! n.n. c c n.n n.n C |nn |nn | C
ucH c c n.n - C |nn [nn| C
ucvy c n.n n.n C |nn |nn| C
ucY n.n. n.n. nn. | nn [nn | €
MWS! n.n C | nn c c
MWS! C |nn |nn| C
UCp nn. [nn | C
MU c -

UT C

Table 3. Tournaments

uc' |uct |uem oY |[ucy | MwWS' | Mws" |UCp |[MU |UT |[MD

Cr c c c - - - - c c - -
uc! = = = = c - c c - -
ucH = = = - c c c c -
ucm = = c c c c - c
ucy = - - - c - -
ucy c - c c - -
MWS! c c - c
MWSH c c - c
UCp c | c| c
MU = =
UuT

Miller (1977) proved for tournaments that outcomes for some important
majority voting games are localized in the minimal dominant set of alterna-
tives. Here it was demonstrated that any set of alternatives A with a majority
relation p defined over it possesses an internal structure created by a hierarchy
of minimal dominant sets {MD(i)}, which at the same time is a system of all
dominant sets {D(i)} in A with given p.
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D, CD,C...CD, ,CD,C..CD=A,

D =MD+MD,, +..+MD, , +MD,+..+MD,, D ,\D,, =MD,

The highest level of this hierarchy is the minimal dominant set proper
MD.

Miller (1980) introduced the concept of an uncovered set. Aleskerov and
Kurbanov (1999) defined the minimal weakly stable set. Here it was demon-
strated that the minimal weakly stable set is related to the notion of covering
and to the uncovered set. It was shown that these two concepts are intimately
connected with an idea of stability.

As an attempt to generalize the notions of the uncovered set and the mini-
mal weakly stable set the concepts of k-stable alternatives and k-stable sets of
alternatives were introduced. It was demonstrated that the systems of classes of
k-stable alternatives {SP (k)} (point-classes) and classes of minimal k-stable sets
{SS(k)} (set-classes) form substructures in the minimal dominant set similar to
the structure that dominant sets create in the universal set A, i. e.

np cp.c..cp_ cP_=MD,P =SP_ +SP_+..+SP

(O3 ©) (m-1)=" (m) ® ) e) &’
2) S, S, CS; C... CS |\ CS =MD, S =SS +SS,+..+8S .

The(lll)ncéil)ereg)set and the unlon of mlnl(rkr)lal wé]a)lkly stable sets are the high-
est levels in the hierarchies of point-classes and set-classes, P(z) and S (> Tespec-
tively. It also turned out that the second element in the first hierarchy is the
uncaptured set: P(3)=UCp. Corollary of Theorem 1 was generalized and it was
demonstrated that these systems of classes are related to each other through the
relation of inclusion P, €S | CP jand P CS CP . foranyk:k>1.Itwasalso
found that all point- classes {SP } for any k: 2<k<k__, are always nonempty
for tournaments, which is not true about the set—classes {SS e

Although alternatives and sets not included in the minimal dominant set
were defined as unstable, their “instability” is being of different degree. Since
MD ; is the minimal dominant set in A\D , , , one can measure the difference
in stability of all points in A, not only those in M D, by defining similar systems
of point-classes and set-classes for all MD(i), not only for the minimal domi-
nant set. As a result the system of dominant sets and systems of point-classes
and set-classes represent respectively macro-scale structure and micro-scale
substructure of a universal set. Since the classes do not intersect, and their hi-
erarchies cover the whole set A, for any tournament each alternative will be
characterized by three numbers k, 1, m, as belonging 1) to a minimal dominant
set of k’th degree MD(k), 2) to a class of 1-stable points SP(I) and 3) to a class of
minimal m-stable sets SS_ in MD . That is for tournaments, the hierarchy
of dominant sets and respective hierarchies of classes of k-stable points and
classes of minimal k-stable sets create a system of reference based on the prin-
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ciple of stability. Therefore one may assess the relative stability of alternatives
by comparing their coordinates in this system.

Correspondingly each tournament (each complete digraph) is character-
ized by a distribution table, i.e. a table of distribution of alternatives (points)
by classes, similar to Tables 1 and 4.3

Appendix 1

Example 1. (See Figure 1 in Section 2) Au:

MWS'=MUCUC'=UTC{UC";, UC'CUCY=UCY=MWS"=UCp=MD;
uUCnuUC!==g & UCM\UC!=J,

A={a,b,c, X,V z}

H={(a, b), (b, ¢), (¢, a), (x, a), (X, b), (X, ), (¥, 2), (z, b), (z, X)}

MWS'=MU={x,y,z}; UC'=UT={c, x,y,z}; UC"={b, ¢, x, y, z}; UC"={a, c, x,
y, z}; UCMUC"={b}; UCM\UC"={a}; UCV=UCY*=MWS"=UCp=MD=A

Example 2. (See Figure 2 in Section 2) Au:

UC=UuC"=MWS'=MWS"=MU=UTCUC"=UCV=UCpCUC'=MD

A={a,b,c,x,V, z}

n={(a, b), (a, c), (b, ¢), (x,¥), (X, 2), (¥ 2), (z, ¢)}

UC=UC=MWS'=MWS"'=MU=UT={a, x}; UC'=UCV=UCp={a, X,
z}; UCY=MD=A

Example 3. (See Figure 3 in Section 2)

du: UCCMWSCMDCA

A={a,b,c,d, e, f}

n={(a, ¢), (a, d), (a, e), (a, ), (b, a), (b, d), (b, e), (b, 1), (¢, b), (c, ¢), (c,
f), (d, ¢), (d, 1), (e, d), (e, D)}

UC={a, b, c}, MWS={a, b, ¢, d}, MD={a, b, ¢, d, e}.

Table 4. Distribution of points by point-classes {SP(k)} and set-classes {SS (k)}

SP,, SP,, SP,
SS(D a,b,c d
SS,,,
SS,
SS“) e

3 Since all relevant definitions were based on the idea of proximity, the numbers of points in
classes {MD }, {SP, } and {SS } are graph invariants.

(83 (k)
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Example 4. (see Figure 4)

du: P,CS CP,

A={a,b,Vv,w, X, Y, 7}

n={(a, b), (a, w), (a, x), (a,y), (a, z), (b, v), (b, x), (b, y), (b, 2), (v a), (V,
w), (v X), (v, 2), (W, b), (W, X), (W, ¥), (X, ¥), (X, 2), (¥, V), (¥, 2), (z, W)}

the uncovered set P(z) is {a, b, v},

the union of minimal weakly stable sets SU) is{a,b, v, y, w},

P<3> coincides with the whole set A: alternatives x and z are 3-stable, but
don’t belong to the union of minimal weakly stable sets.

Example 5. (see Figure 5)

A={a,b,v,w, X, Y, z}

n={(a, b), (a, w), (a, x), (a,y), (a, z), (b, v), (b, x), (b, y), (b, 2), (v, a), (v,
W), (% X), (V, 2), (W, b), (W, X), (W, ¥), (X, ), (X, 2), (¥, V), (z, W), (2, ¥)}

Example 6. (see Figure 6)

A={a,b,v,w, x,Y, z}

u={(a, b), (a, w), (a,x), (a,y), (a, z), (b, v), (b, x), (b, y), (b, 2), (v, a), (¥,
X), (%, 2), (W, b), (W, V), (W, X), (W, ¥), (X, ¥), (X, 2), (\, V), (2, W), (2, )}

Example 7. (See Figure 7) Jp:

e d

A
Y

a b P
Fig. 7

MUCMWS!; MWSA\MWS!"=Z & MWS'\MWS!=J,

A={a,b, c,d, ¢}

n={(a, b), (b, ¢), (c, d), (c, e), (d, e), (e, b)}

MU={a}; UC'={a, c}; UC"={a, ¢, b, e}; UC"'={a, c, d}; MWS'={a, c, e};
MWS"={a, b, ¢, d}; MWS\MWS!"={e}; MWS'\MWS'={b, d}; UT={a, c, d,
e}; UCY=UCY=UCp=MD=A
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Appendix 2

Here some useful propositions are given, which yield an algorithm for cal-
culating the classes of k-stable alternatives and the minimal dominant sets for
tournaments.

Let L2(x) denote x’s lower contour set of the second degree, which consists of
all those y that belong to the lower contour sets of alternatives from the lower
contour set of x but at the same time do not belong to x’s lower contour set it-
self, yEL2(x) « AzEL(x): yEL(z) & y&L(x). Correspondingly x’s lower contour
set of the k’th degree 1.X(x) consists of all those y that belong to the lower con-
tour sets of alternatives from L*'(x) but at the same time do not belong to any
Li(x) of the degree less than k (k=1 included), yELX(X) < JzELX'(x): yEL(2)
& y&Li(x) for all i: i<k. In some instances lower contour set of x will be referred
to as lower contour set of the degree 1, and we put L°(x)={x}.

It follows from the definition that if L¥(x)=& then Vi: i<k Li(x)=@. If
JyELX(x) then there is a path x—y —y,—...—y, ,—y, ,—Y from x to y such
that Viy€ Li(x). It follows from the construction of L*(x) that if i is a tourna-
ment and yEL*(x) then y dominates x and all alternatives from Li(x) for all i:
i<k-1. Indeed, if yELX(x) then Vi: i<k y&Li(x), consequently VzEL(x) y&L(z)
= VzeL"'(x) for any i: i<k yED(z), i.e. yuz.

Historical remark. Miller (1980, p. 70) introduced sets R, (x) similar to L*(x).
In terms of R, (x) L(x)=R (x)\R,_,(x).

Lemma 8. If x—y —y,—...—y, ,—>y, ,—yisaminimal path from x to y such
that 1(x, y)=k, then y ELI(x) for all i: i<k & yELX(x).

Corollary. Ify is reachable from x, then 3k: yELX(x). Therefore, if x is gen-
erally stable then the union of all lower contour sets of x (L%(x) included) co-
incides with the whole set A, ULi(x)=A.

According to Lemma 8 xESP(k) implies IyELX(x). Therefore, if x is k-sta-
ble (k>1) there is an alternative y that dominates x and all alternatives from
all Li(x), i: i<k-2; XESP =y ypux & VzeLi(x) for all i: i<k-2 yuz. Alterna-
tively, if there is y that dominates x and all alternatives from all Li(x), i: i<k-2,
then the degree of stability of x is no less than k. Indeed, if there is an alterna-
tive y that dominates x and all alternatives from Li(x) for any i: i<k-2, then y
is either not reachable from x or belongs to Li(x) for any j: j>k. In both cases
y is not reachable from x in less than k steps, thus the degree of stability of x is
no less than k.

If x is k-stable (k>1) then all its lower contour sets of the degree k and less
are nonempty, but all lower contour sets of the degree greater than k are emp-
ty, €SP, = Vi: i<k Li(x)#=J & Vj: j>k Li(x)=J. Indeed, by definition if x
is k-stable then LYx)#=d, therefore Vi: i<k Li(x)=J. Also by definition there
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is no alternative in A not reachable from x in more than k steps, which means
Vi: i>k Li(x)=4.

This yields the following algorithm for calculating {SP(k)} and MD. To es-
tablish, which point-class any given alternative x belongs to, one should calcu-
late, one by one, all lowers contours Li(x) of x. If ULi(x)=A for all i: i=0, then x
is generally stable, consequently it belongs to MD. If x is generally stable then
its nonempty lower contour of the greatest degree (L*(x): LY(x)#J & Vj: j>k
Li(x)=@) will determine x’s degree of stability. Repeating the calculation for
all alternatives in any given A one obtains MD and {SP(k)}.

An algorithm for calculation of set-classes {SS  } is related to calculation of
weakly stable sets under Theorem 1 and will be presented in the next paper.

Appendix 3

Lemma 1. Proof: Let on the contrary D \D,=&J & D \D, =&. Then 3x, y:
xeD \D,, yeD,\D, x=y. Since D, is a dominant set, then by definition xpy.
Similarly, since D, is a dominant set as well, yux, a contradiction.

Lemma 2. Proof: Since A is finite, the number of subsets of A is finite. Ac-
cording to Lemma 1 one can order those subsets that are dominant sets by in-
clusion, and because their number is finite, one of them must be minimal.

If MD is a minimal dominant set then by definition there is no dominant
set D such that D is a subset of MD (DCMD). Let D be a dominant set and
D=MD. According to Lemma 1 either MD is a subset of D (MDCD) or D is
a subset of MD (DCMD). The latter is not true according to the definition,
which implies MD must be a subset of D. Hence there is no minimal dominant
set other than MD, i.e. minimal dominant set is unique.

Lemma 3. Proof: By construction Vj#i MD,NMD, and UMD =A, there-
fore Vx: x€D = 3i: xEMD(i). If DﬂMD(i)?&@, then DDMD(D. Suppose on
the contrary DﬂMD(i)?&@ & MD(D\D?&@. Since D is a dominant set, Vx, y:
x€DNMD ;, yEMD(i)\D => xuy. By definition of MD vx, y: xEDNMD
yE(A\UMDG))\MD(i), 1<j<i-1 = xpy. Therefore DOMD(D is a dominant set
in A\UMDG), 1<j<i-1. MD(i)\D;ﬁ@ = DNMD CMD ; (Lemma 1), therefore
MD(U is not a minimal dominant set in A\UMDU), 1<j<i-1, a contradiction.
Consequently, D must be a direct sum of a certain number of sets MD“).

By construction Vx, y: XEMD“), yEMD(k) forany k and i: k>i=> xpy. There-
fore, it MD (i) is a minimal dominant set with the greatest degree among those
included in D, all MDG), 1<j<i-1 must belong to D as well. Had it been other-
wise, D would have not been a dominant set.

Lemma 4. Proof: If MWS is a minimal weakly stable set then there is no
weakly stable set WS such that is a subset of MWS, WSCMWS. If MWS is not a
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subset of MD then MWS\M D= and MWSNMD=MWS. By definition of MD,
VX, y: XEMWSNMD & yEMWSNMD & xpy = x€MD\MWS. By definition
of a weakly stable set, 3z: zEMWS & zux. xeMD = zeEMD = zEMWSNMD.
Thus (3%, y: xXEMSWNMD & yeEMSWNMD & xpy) = 3 zEMSWNMD: zux.
By definition MSWNMD is a weakly stable set. (MSWNMD)CMWS = MWS
is not a minimal weakly stable set, a contradiction. Hence a minimal weakly
stable set is a subset of the minimal dominant set.

Lemma 5. Proof: Sufficiency. B is weakly stable < Vx&B: BNL(x)#J =
BND(x)#=J. Therefore, if Vx&B = BND(x)#J then B is weakly stable. Ne-
cessity. Since p is a tournament, YXEA = D(x)UL(x)U{x}=A. If x¢&B then
BZ(D(x)UL(x)). Consequently, BN(D(x)UL(x))=(BND(x))U(BNL(x))=B#J.
Consequently, VB: BNL(x)=C = BND(x)=J. Therefore, if B is weakly stable,
i.e. ifalso BNL(x)#J = BND(x)#J then Vx = BND(x)#J.

Theorem 1. Proof: Suppose x&B, B is a minimal weakly stable set. Then
B\{x} is not weakly stable. According to Lemma 5 IyZB\{x}: (B\{x})ND(y)=.
At the same time VyZB = BND(y)#=J. Therefore either x=y or x€D(y).

If x=y then (B\{x})ND(y)=9 < B\{x}CA\(D(x)U{x}) & BCA\D(x). If
B is weakly stable then by Corollary of Lemma 5 A\D(x) must be weakly sta-
ble as well.

IfxED(y) (< YEL(x)) then B\{x}CA\(D(y)U{y}) < BS(A\(D(y)U{y}))U{x},
yEL(x). If B is weakly stable then (A\(D(y)U{y}))U{x} must be weakly stable.

As a result, if B is a minimal weakly stable set and x&B then it is necessary
that either one of the two conditions holds:

(*) A\D(x) is weakly stable;

(**) IyeL(x): (A\(D(y)U{y}))U{x} is weakly stable.

Let’s prove that either one of the conditions is sufficient for the existence
of a minimal weakly stable set B: x&EB.

Suppose (*) holds. If A\D(x) is minimal then B=A\D(x). If it is not, then
3AC: CCA\D(x), C is a minimal weakly stable set. Evidently, xZA\(D(x)U{x}) &
(A\(D(x)U{x}))ND(x)=3, therefore A\(D(x)U{x}) is not weakly stable. Since
C is weakly stable, C is not a subset of A\(D(x)U{x}). But CCA\D(x), there-
fore x&C and B=C.

Suppose (**) holds. If (A\(D(y)U{y}))U{x} is minimal then B=(A\
(D(y)U{y}))U{x}. If it is not, then AC: CC(A\(D(y)U{y}))U{x}, C is a mini-
mal weakly stable set. Evidently, yZA\(D(y)U{y}) and A\(D(y)U{y})ND(y)=3,
therefore A\(D(y)U{y}) is not weakly stable. Since C is weakly stable, C is not
a subset of A\(D(y)U{y}). But CC(A\(D(y)U{y}))U{x}, therefore x&C and
B=C.

Thus, x belongs to any minimal weakly stable set iff A\D(x) is a weakly sta-
ble set or Ay&L(x) such that (A\(D(y)U{y}))U{x} is a weakly stable set.
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Suppose A\D(x) is not weakly stable then 3Iz: z&A\D(x) and
(A\D(x))ND(z)=9, then A\D(x)CA\(D(z)U{z}), then D(z)U{z}CD(x) <
(zux & D(z)CD(x)). Therefore, if A\D(x) is not weakly stable then x is cov-
ered according to the third definition of covering.

Suppose xis covered by z, 3z: zpx & D(z)ED(x). Then A\D(x)CA\(D(z)U{z}),
therefore 3z: zEA\D(x) & (A\D(x))ND(z)=3. According to Lemma 5 A\D(x)
is not weakly stable.

Therefore A\D(x) is weakly stable iff x is uncovered according to the third
definition of covering.

Suppose IyeL(x): (A\(D(y)U{y}))U{x} is not weakly stable then 3z: z&(A\
(D(y)Uiyh)Uix} and ((A\(D(y)U{y})U{xhND(z)=3. z&E(A\(D(y)U{y}))U{x}
= (z#x & zED(y)U{y}). Since {x}ND(y)={x}, (A\(D(y)U{y})) U{x})ND(z)=2
= z#y. Consequently, zED(y) & (A\(D(y)U{y}))U{x}CA\D(z), there-
fore D(z)U{z}CD(y) < zpy & D(z)ED(x). Consequently, if JyEL(x): (A\
(D(y)U{y}))U{x} is not weakly stable then y is covered according to the third
definition of covering.

Suppose IyeL(x): (A\(D(y)U{y}))U{x} is weakly stable. If y is uncovered
then it is an uncovered alternative in L(x). If y is covered by some z, then
D(z)U{z}CD(y). By Lemma 5 ((A\(D(y)U{y}))U{x})ND(z)#J, consequently
x€D(z), that is zEL(x). If z is uncovered then it is an uncovered alternative in
L(x). Suppose z is covered. Then D(z)U{z}CD(y) = (A\(D(y)U{y}) U{x}C(A\
(D(z)U{z})U{x}. According to Corollary of Lemma 5 (A\(D(z)U{z})U{x} is
weakly stable. After substituting z for y and repeating the logical steps listed
above, one obtains that any alternative that covers z must belong to L(x) as well.
L(x) is finite, therefore, since relation of covering is asymmetric and transitive,
there must be at least one uncovered alternative in L(x).

Therefore VyeL(x) a set (A\(D(y)U{y}))U{x} is not weakly stable iff all
alternatives in L(x) are covered, and yeL(x): (A\(D(y)U{y}))U{x} is weakly
stable iff there is an uncovered alternative in L(x).

As a result, x belongs to a minimal stable set iff x is uncovered (according
to the third definition of covering) or some alternative from the lower contour
of x is uncovered (according to the third definition of covering).

Corollary to Theorem 1a. Proof: UCCMWS! directly follows from the
proposition of the Theorem. MWS!"CUCp follows from the proposition of the
Theorem, definition of UCp and UCMCUCY,

Lemma 6. Proof:

In tournaments UC'=UC"=UC"'=UCV=UCYCMWS' (Corollary to
Theorem 1) while MWS!CUC!, MWS!ICUC!", MWS'CUC™ MWS!'CUCY
MWS!CUCY (Example 1) are also possible. ‘ ’

It is possible that MWS\MWS"= & MWS'\MWS'#JJ (Example 7).
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In tournaments MWS'CM U=MD (Lemma 4) while MUCMWS! (Exam-
ple 7) is also possible. ’

Let’s prove MWS!CUCp. Suppose alternative x belongs to a minimal weakly
stable (according to the first definition) set B, x&€B. Then B\{x} is not weakly
stable. Consequently, IyZB\{x}: (B\{x})S(L(y)UH(y)) & (B\{x})NL(y)=Z.

1) Suppose y=x. Then Vz: zux = z&B. Since B is a weakly stable set, Vz: zux
= AwEB: wuz. (WEB & wuz) = w=x = weB\{x} = w&L(x)UH(x). Conse-
quently if y=x , then Vz: zux = Iw: (xpuw & wuz) or (xtw & wuz), i.e. x€UC,
Therefore, if x is uncovered according to the third definition of covering, x¢UC",
and B is a weakly stable (according to the first definition) set then y=x.

2) Suppose y=x. Suppose x is not covered according to the second defini-
tion of covering, x¢UC". Since B is a weakly stable set and (B\{x})NL(y)=&
there must be an alternative w, wEB: wuy < weD(x). (B\{x})CS(L(y)UH(y))
= w=X < yEL(x). (xpuy & x¢UC") = 3Jz: zux & zpy. (zpux & zpy & (B\
{x})S(L(y)UH(y))) = z€&B. Since B is a weakly stable set, zux and z&B imply
there must be v, v&€B\{x}: vuz. ((IvEB\{x}: vuz) & (B\{x})S(L(y)UH(y))) <
(L(y)UH(y))ND(z)=@ <> y is not covered by z according to the third defini-
tion of covering, ycUC!,

Therefore, if there is an alternative z, which 1) covers an alternative x accord-
ing to the fourth definition of covering (i.e. according to the second and third
definitions simultaneously) and 2) also covers all alternatives from the lower
contour set of x according to the third definition of covering then x does not
belong to any minimal weakly stable set. Thus MWS'CUCp. 3u: MWS!'CUCp
is proved by Example 7.

Let’s prove MWS'CUT. Suppose alternative x belongs to a minimal weak-
ly stable (according to the first definition) set B, x&B. Suppose not all alter-
natives in B are reachable from x. Let C denote a set of all those alternatives
in B, which are not reachable from x. By supposition CCB & C=J. If yeC
& z€B\C then either yuz or ytz, otherwise there would be a path from x to y
through z. Therefore if VyeC Iw: wuy then wg&B\C. Suppose 3w, y, wEA\B,
yEC: wuy. Since B is a weakly stable (according to the first definition) set then
dz, z€B: zuw. z&B\C, otherwise there would be a path from x to y through z
and w, consequently z&C. Therefore, since none of the alternatives from B\C
dominates any alternative in C, (3w, y, w€A\C, yeC: wuy) = (3z, z€C: zuw).
Therefore C is a weakly stable set according to the first definition. Since CCB,
B is not a minimal weakly stable set, a contradiction. Therefore C=C and any
alternative in a minimal weakly stable set MWS! is reachable from any over al-
ternative from this set. Suppose x belongs to a minimal weakly stable (accord-
ing to the first definition) set B, x€B, and y dominates x, yux. If yEB then y is
reachable from x. If y&B then, since B is a weakly stable set, 3z&B: zuy. Since

25



zZE€B, z is reachable from x, consequently, y is reachable from x trough z. Thus
ifan alternative x belongs to a minimal weakly stable set MWS!, any alternative,
which dominates x, is reachable from x, i.e. x is untrapped. Iu: MWS!CUT is
proved by Example 7.

In tournaments UC"'=UC"V=UC'CMWS'"CMU=UT while MUCMWS";
UTCMWS! (Example 1) and MWS!CUC!, MWSICUCYY MWS!CUCY (Ex-
ample 2) are also possible. 7

UC'CuC™ & UCHMCMWS! (Corollary to Theorem la) = UCICMWS!,

MWS!'CUCp & UCpCMD = MWSICMD.

Lemma 7. If x is k-stable and y is (k+n)-stable, n: n>2, then x dominates y,
XESP(k) & yESP(k+n , N n>2, = xuy.

Proof: If x is k-stable, each alternative in A is reachable from x in no more
than k steps. Suppose yux, then each alternative in A is reachable from y in
no more than k+1 steps through x, therefore the degree of stability of y is no
greater than k+1, a contradiction.

Theorem 2. Proof: If m=2 then the proposition is evident.

If m>2 then by induction.

1) If m=max _,, max(x) then SP )¢®.

2) Suppose SP( . is nonempty, let’s prove SP

P, #90 = SP,#0,i>3.

Let 5= SP ., + .. +SP, . then MD\S= SP(1)+SP(2)+...+SP(D. Ifan alterna-
tive belongs to MD\S, 1ts degree of stability is no greater than i, if it belongs to
S — no less than i+1.

SP is nonempty as it is the uncovered set, SP (2)7&@ By supposition

(, o i@ Therefore both S and MD\S are nonempty proper subsets of MD,
SCMD MD\SCMD.

Since MD is a minimal dominant set, 3x, y, x&S, yeMDA\S: xuy. Had it
been otherwise all alternatives from MD\S would have dominated all alterna-
tives from S, which would have meant MD\S is a dominant set, and, respec-
tively, MD is not a minimal one.

The degree of stability of y is no greater than i, the degree of stability of x is
no less thani+1. According to Lemma 7, xuy = x&€SP,.. & yESP(i), therefore
SP(i)vf@ . The induction stops when it comes to i=3.

Theorem 3. Proof: 1) P —UCCMWS—S UCp—P isa proposition of
the Corollary to Theorem 1 Example 4 proves that Jp: P CS(I)

2) Suppose x is k-stable, xESP There is always a mrnrmal k- stable set B,
which consists of only one alternative — X, B={x}. Therefore, if x belongs to
P(k)=SP(2)+...+SP & then it must belong to S )=SS(1)+SS(2)+...+SS“() as well,

which implies P(k)QS(k) and xESP = xESS( i i<k.

@’ i>3 is nonempty too,

(i+1)
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Suppose x belongs to a minimal k-stable set B, k>1. Since B is k-stable, it
is always possible to reach any alternative outside B from some alternative in
B in no more than k steps.

If all alternatives in B\{x} are dominated by x, it is possible to reach any al-
ternative in B from x in 1 step. Therefore it is possible to reach from x any other
alternative in no more k+1 steps, i.e. X€P,, , which implies x€P .

Suppose yEB: yux. Since B is minimal, then B\{x} is not k-stable, which
implies that there is z outside B\{x}, not reachable from any alternative from
B\{x} (y included) in less than k+1 steps. VWEB\{x} = zuw = z#Xx, since by
supposition IyEB: yux. z is reachable from x in no less than k steps, otherwise
there would be a path from y to z through x of length less than k+1. But since
B is a k-stable set, there must be an alternative in B, from which z is reachable
in no more than k steps. Since it can't be any alternative from B\{x}, it must be
x. Therefore z is reachable from x in exactly k steps. Let x—=z —z,—...—z _ —z
be a path of length k from x to z. The second alternative in the sequence z, must
dominate y: z py, otherwise there would be a path y—z —z,—...—z_ —z from
y to z of length k, i.e. of length less than k+1. xuz, & z py & yux =y is reach-
able from x in 2 steps. Thus any alternative in B\{x} is either dominated by x or
reachable from x in 2 steps. Consequently, since B is k-stable, any alternative
in A is reachable from x in no more than k+2 steps, i.e. x€P

Thus x€S ;| = xE€P ., , which implies S CP .

Corollary 2. Proof: x&SS o= xES , = xEP —SP +SP +SP(4) = Vk:
k=2 or k>4 x6€SP X¢SP because xESP = xESS (accordlng to Theo-
rem 3).

Corollary 3. Proof: XESS( = XGES(k H= XGEP(k b =SP ot ASP, = Vi: i<k
X¢ESP . xESS | = xES )=>XEP(k+2)_SP(2)+... SP(m) L Vi ivk+2 XESP

Lemma 8. Proof: By induction.

xpy, = y,EL(X) » _

Suppose Vj: j<i-1 yELJ(x) Suppose 3z€Li(x): zpy, for all j: 0<j<i-1. Since
z€LJ(x), there must be apath fromxto z: x—z —z,—...—z —z:z EL"(x) for
all m: m<j-1. The length of this path isj, 0<j<i- 1 Srnce zyy, there isa path from
X0y X—Z,—=Z,~>...=>Z =7y, =Y, .=y, V. The length of this path is
j+(k-@- 1)) k+(] (i- 1))<k i.e. this path is shorter than the path x—y —y,—
=Y, ,~>Y,,—>, a contradiction. Therefore VzEL(x), Vj: 0<j<i-1 = yuz. Ae—
cording to the definition of Li(x) y¢Li(x) for all j: 1<j<i. At the same time
Jy,  EL"'(X):y, 1y, According to the same definition y EL'(x).

(k+2)°

(O]
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