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Abstract Let G be a semi-simple simply connected group over C. Following Gerasi-
mov et al. (Comm Math Phys 294:97–119, 2010) we use the q-Toda integrable system
obtained by quantum group version of the Kostant–Whittaker reduction (cf. Etingof
in Am Math Soc Trans Ser 2:9–25, 1999, Sevostyanov in Commun Math Phys 204:1–
16, 1999) to define the notion of q-Whittaker functions Ψ

λ̌
(q, z). This is a family

of invariant polynomials on the maximal torus T ⊂ G (here z ∈ T ) depending on
a dominant weight λ̌ of G whose coefficients are rational functions in a variable
q ∈ C

∗. For a conjecturally the same (but a priori different) definition of the q-Toda
system these functions were studied by Ion (Duke Math J 116:299–318, 2003) and
by Cherednik (Int Math Res Notices 20:3793–3842, 2009) [we shall denote the q-
Whittaker functions from Cherednik (Int Math Res Notices 20:3793–3842, 2009) by
Ψ ′
λ̌
(q, z)]. For G = SL(N ) these functions were extensively studied in Gerasimov

et al. (Comm Math Phys 294:97–119, 2010; Comm Math Phys 294:121–143, 2010;
Lett Math Phys 97:1–24, 2010). We show that when G is simply laced, the function

Ψ̂
λ̌
(q, z) = Ψ

λ̌
(q, z) · ∏i∈I

∏〈αi ,λ̌〉
r=1 (1− qr ) (here I denotes the set of vertices of

the Dynkin diagram of G) is equal to the character of a certain finite-dimensional
G[[t]] � C

∗-module D(λ̌) (the Demazure module). When G is not simply laced a
twisted version of the above statement holds. This result is known for Ψ

λ̌
replaced by
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46 A. Braverman, M. Finkelberg

Ψ ′
λ̌

(cf. Sanderson in J Algebraic Combin 11:269–275, 2000 and Ion in Duke Math J
116:299–318, 2003); however our proofs are algebro-geometric [and rely on our pre-
vious work (Braverman, Finkelberg in Semi-infinite Schubert varieties and quantum
K -theory of flag manifolds, arXiv/1111.2266, 2011)] and thus they are completely dif-
ferent from Sanderson (J Algebraic Combin 11:269–275, 2000) and Ion (Duke Math
J 116:299–318, 2003) [in particular, we give an apparently new algebro-geometric
interpretation of the modules D(λ̌)].

Mathematics Subject Classification (2000) 19E08

1 Introduction

1.1 The q-Whittaker functions

Let G be a semi-simple, simply connected group over C with Lie algebra g; we
choose a pair of opposite Borel subgroups B, B− of G with unipotent radicals U,U−;
the intersection B ∩ B− is a maximal torus T of G. It will be convenient for us to
denote the weight lattice of T by Λ̌ and the coweight lattice by Λ. In this paper we
study certain invariant polynomials Ψ

λ̌
(q, z) on T (the invariance is with respect to

the Weyl group W of G). Here z ∈ T , q ∈ C
∗ and λ̌ : T → C

∗ is a dominant weight
of G. The function Ψ

λ̌
(q, z) is a polynomial function of z with coefficients which are

rational functions of q (in fact, later were are going to work with a certain modification
Ψ̂
λ̌
(q, z) of Ψ

λ̌
(q, z) which will be polynomial in q).

The definition of Ψ
λ̌
(q, z) is as follows. Let Ǧ denote the Langlands dual group of

G with its maximal torus Ť . In [7,21] the authors define (by adapting the so called
Kostant–Whittaker reduction to the case of quantum groups) a homomorphism M :
C[T ]W → End C(q) C(q)[Ť ] called the quantum difference Toda integrable system

associated with Ǧ. For each f ∈ C[T ]W the operator M f := M( f ) is indeed a
difference operator: it is a C(q)-linear combination of shift operators T

β̌
where β̌ ∈ Λ̌

and

T
β̌
(F(x)) = F(q β̌x).

Remark In principle the constructions of [7,21] depend on a choice of orientation of
the Dynkin diagram of Ǧ; however one can deduce from the main result of [9] that
the resulting homomorphism is independent of this choice.

In particular, the above operators can be restricted to operators acting in the space
of functions on the lattice Λ̌ by means of the embedding Λ̌ ↪→ Ť sending every λ̌

to q λ̌. For any f ∈ C[T ]W we shall denote the corresponding operator by Mlat
f . The

following conjecture should probably be not very difficult; however, at the moment
we don’t know how to prove it:

Conjecture 1.1 1. There exists a unique collection of C(q)-valued polynomials
Ψ
λ̌
(q, z) on T satisfying the following properties:
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Weyl modules and q-Whittaker functions 47

(a) Ψ
λ̌
(q, z) = 0 if λ̌ is not dominant.

(b) Ψ0(q, z) = 1.
(c) Let us consider all the functions Ψ

λ̌
(q, z) as one function Ψ (q, z) : Λ̌ → C(q)

depending on z ∈ T . Then for every f ∈ C[T ]W we have

Mlat
f (Ψ (q, z)) = f (z)Ψ (q, z).

2. The polynomials Ψ
λ̌
(q, z) are W -invariant.

Of course, the second statement follows from the “uniqueness” part of the first.

Some remarks about the literature are necessary here. First of all, Conjecture 1.1
is easy for G = SL(N ). In this case, the functions Ψ

λ̌
(q, z) are extensively studied in

[13–15]. Second, for general G there exists another definition of the q-Toda system
using double affine Hecke algebras, studied for example in [5]. Since it is not clear
to us how to prove that the definition of q-Toda from [5] and the definition of [7,21]
are the same, we shall denote the operators from [5] by M′f . It is easy to see that

M f = M′
f

for G = SL(N ).1 Similarly we shall denote by (Mlat
f )
′ their “lattice”

version. Then it is shown in [5] that the existence part of Conjecture 1.1 holds for any
G if the operators Mlat

f are replaced by (Mlat
f )
′. We shall denote the corresponding

polynomials by Ψ ′
λ̌
(q, z).

The main result of this paper will imply the following:

Theorem 1.2 1. There exists a collection of W -invariant polynomials Ψ
λ̌
(q, z) on

T with coefficients in C(q) satisfying (a), (b) and (c) above.

2. Let Ψ̂
λ̌
(q, z) = Ψ

λ̌
(q, z) ·∏i∈I

∏〈αi ,λ̌〉
r=1 (1− qr ). Then Ψ̂

λ̌
(q, z) is a polynomial

function on A
1 × T .

We are going to construct the above polynomials explicitly by algebro-geometric
means. Thus we prove the existence part of Conjecture 1.1.

We shall usually refer to the polynomials Ψ
λ̌

and Ψ̂
λ̌

as q-Whittaker functions
(following [13–15]). It is not difficult to see that

lim
q→0

Ψ
λ̌
= lim

q→0
Ψ̂
λ̌
= χ(

L(λ̌)
)

where χ(L(λ)) stands for the character of the irreducible representation L(λ̌) of G
with highest weight λ̌.

The main purpose of this paper is to give several (algebro-geometric and
representation-theoretic) interpretations of the functions Ψ

λ̌
and Ψ̂

λ̌
; as a byproduct

we shall show that Ψ̂
λ̌
(q, z) is positive, i.e. it is a linear combination of the functions

χ(L(μ̌)) with coefficients in Z≥0[q] (this also implies that Ψ
λ̌

is a linear combination
of the χ(L(μ̌))’s with coefficients in Z≥0[[q]]). All of our results are known for the
polynomials Ψ ′

λ̌
(and thus, in particular, we can show that Ψ

λ̌
= Ψ ′

λ̌
) due to [5,18,20]

but our proofs are totally different from [5,18,20].

1 In fact, as we are going to explain later, the results of this paper together with the results of [18] imply
that M f =M′f for any G, but we would like to have a more direct proof of this fact.

123

Author's personal copy



48 A. Braverman, M. Finkelberg

1.2 Weyl modules

Recall the notion of Weyl g[t]-module W(λ̌) for dominant λ̌ ∈ Λ∨+, see e.g. [3]. It

is the maximal G-integrable g[t]-quotient module of Indg[t]
u[t]⊕t C

λ̌
where u ⊂ g is the

nilpotent radical of a Borel subalgebra, containing t. There is also a natural notion
of dual Weyl module W(λ̌)∨ (one has to replace the induction by coinduction and
“quotient module” by “submodule”). Both W(λ̌) and W(λ̌)∨ are endowed with a
natural action of C

∗ by “loop rotation”. When restricted to G ×C
∗ the module W(λ̌)

becomes a direct sum of finite-dimensional representations and the character χ(W(λ̌))

makes sense; moreover it is a linear combination of χ(L(μ̌))’s with coefficients in
Z≥0[[q]]. Also we have χ(W(λ̌)) = χ(W(λ̌)∨).

Let A
λ̌ denote the space of all formal linear combinations

∑
γi xi where xi ∈ A

1

and γi are dominant weights of G such that
∑
γi = λ̌. The character of C[Aλ̌] with

respect to the natural action of C
∗ is equal to

∏
i∈I

∏〈αi ,λ̌〉
r=1 (1− qr ). According to [3]

there exists an action of C[Aλ̌] on W(λ̌) such that

1. This action commutes with G[t]� C
∗;

2. W(λ̌) is finitely generated and free over C[Aλ̌].
Let D(λ̌) be the fiber of W(λ̌) at λ̌ ·0 ∈ A

λ̌. This module is called a Demazure module
(for reasons explained in [4,12]). This is a finite-dimensional G[t] � C

∗-module (in
fact, it is easy to see that the action of G[t] on D(λ̌) extends to an action of G[[t]]).
We are going to prove the following

Theorem 1.3 Assume that G is simply laced. Then

1.

χ
(
W(λ̌)

) = Ψ
λ̌
(q, z) (1.1)

2.

χ
(
D(λ̌)

) = Ψ̂
λ̌
(q, z). (1.2)

In particular, Ψ̂
λ̌
(q, z) is positive in the sense discussed above.

When G is not simply laced, the above result is still true, if one replaces G[[t]] by
some twisted (in the sense of Kac-Moody groups) version of it; we shall not give the
details here (cf. Sect. 1.4 for a discussion of the non-simply laced case).

Theorem 1.3(2) is proved in [18] for Ψ̂ ′
λ̌

instead of Ψ̂
λ̌
.2 Thus Theorem 1.3 together

with [18] imply the following:

Corollary 1.4 Assume that G is simply laced. Then we have Ψ̂ ′
λ̌
= Ψ̂

λ̌
. Hence for any

f ∈ C[T ]W we have M f =M′f .

2 It is important to emphasize that the definition of Demazure modules used in this paper (as fibers of Weyl
modules) is not obviously equivalent to the standard definition used in [18]; however, the equivalence of
the two definitions is proved in [4] in type A, and in [12] in general.
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Weyl modules and q-Whittaker functions 49

As was mentioned earlier we would like to have a more direct proof of this result
(independent of the results of [18] and this paper). We would also like to emphasize
that our proof of Theorem 1.3 is geometric (in fact it follows easily from the main
result of [2]) and thus it is quite different from the proof in [18]. Also, Corollary 1.4
is wrong if G is not simply laced, cf. Sect. 1.4.

1.3 Geometric interpretation and spaces of (quasi-)maps

To prove Theorem 1.3 it is clearly enough to prove (1.1). This will be done by inter-
preting both the LHS and the RHS in terms of algebraic geometry.

Let us first do it for the LHS. The quotient G[[t]]/T · U−[[t]] can naturally be
regarded as a scheme over C. Any weight λ̌ defines a G[[t]] � C

∗-equivariant line
bundle on this scheme in the standard way. We shall prove

Theorem 1.5 There is a natural isomorphismΓ (G[[t]]/T ·U−[[t]],O(λ̌)) 
W(λ̌)∨.
Similarly, Γ (G[[t]]/B−[[t]],O(λ̌)) 
 D(λ̌)∨.

Remark Theorem 1.5 is not difficult; it can be thought of as an analog of Borel-Weil-
Bott theorem for G[[t]]. Let us also stress, that while the dual Weyl module W(λ̌)∨
has a natural action of G[[t]], the Weyl module W(λ̌) itself only has an action of G[t].

On the other hand, there is a well known connection between the quotient
G[[t]]/T · U−[[t]] and the space of based maps P

1 → G/B. Moreover, in [2] we
have given a construction of the universal eigen-function of the operators M f via the
geometry of the above spaces of maps. Using this construction, we can obtain (1.1)
from Theorem 1.5 by a (simple) sequence of formal manipulations. Technically, in
order to perform this we shall need to consider a compactification of the space of maps
by the corresponding space of quasi-maps.

1.4 The case of non-simply laced G

Formally, the above results do not hold when G is not simply laced. However, it
is easy to adjust all the results to the non-simply laced case following Section 7
of [2]; in particular, in the non-simply laced case the functions Ψ

λ̌
and Ψ̂

λ̌
should be

interpreted as the characters of global (resp. local) Weyl modules for the distinguished
maximal parahoric subalgebra in a certain twisted affine algebra corresponding to g
(cf. Section 7 of [2] for more detail). The relevant theory of Weyl modules and their
relation to Demazure modules in the twisted case is developed in [11]. On the other
hand, the character of nontwisted local Weyl modules are identified with Ψ̂ ′

λ̌
in [19].

1.5 Plan of the paper

This paper is organized as follows. In Sect. 2 we discuss certain line bundles on the
space of (quasi-)maps and relate those to sections of a line bundle on G[[t]]/T ·U−[[t]].
Section 3 is devoted to the proof of certain cohomology vanishing on the space of quasi-
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50 A. Braverman, M. Finkelberg

maps. In Sect. 4 we give an interpretation of Ψ
λ̌

via quasi-maps. Finally in Sect. 5 we
give a proof of Theorem 1.3.

2 Quasimaps’ scheme

We follow the notations of [2], unless specified otherwise.

2.1 Ind-scheme Q

Given β ≥ α ∈ Λ+ (the cone of positive integral combinations of the simple coroots)
we consider the closed embedding ϕα,β : QMα

g ↪→ QM
β
g adding the defect (β−α) ·0

at the point 0 ∈ C. We denote by Q the direct limit of this system.
Recall that Vω̌i , i ∈ I , are the fundamental g-modules, and QMα

g is equipped with a
closed embedding ψα : QMα

g ↪→
∏

i∈I PΓ (C, Vω̌i ⊗ O(〈α, ω̌i 〉)). Given a g-weight

λ̌ = ∑
i∈I di ω̌i ∈ Λ∨ we define a line bundle O(λ̌)α on QMα

g as ψ∗α
⊗

i∈I O(di ).
Note that if λ̌ is dominant, i.e. di ≥ 0 ∀i , then O(λ̌)α is the inverse image of O(1) on
PΓ (C, V

λ̌
⊗O(〈α, λ̌〉)) under the natural morphism QMα

g→ PΓ (C, V
λ̌
⊗O(〈α, λ̌〉)).

Clearly, ϕ∗α,βO(λ̌)β 
 O(λ̌)α . The resulting line bundle on the ind-scheme Q is

denoted O(λ̌).

2.2 Infinite type scheme Q

We denote C[[t−1]] by R, and C((t−1)) by F . Recall that Rn = R/(t−n). We denote
the projection R � Rn by pn . The C-points of the infinite type scheme G/U−(R)
are the collections of vectors v

λ̌
∈ V

λ̌
⊗ R, λ̌ ∈ Λ∨+ (dominant g-weights), satisfying

the Plücker equations. We denote by Q̂ ⊂ G/U−(R) the open subscheme formed
by all the maps Spec R → G/U− whose restriction to the generic point of Spec R
lands into G/U− ⊂ G/U−(R). It is equipped with a free action of the Cartan torus
T : h(v

λ̌
) = λ̌(h)vλ̌. The quotient scheme Q = Q̂/T is a closed subscheme in

∏
i∈I P(Vω̌i ⊗ R). Any weight λ̌ ∈ Λ∨ gives rise to a line bundle O(λ̌) on Q.

2.3 The embedding Q ↪→ Q

We fix a coordinate t on C such that t (0) = 0, t (∞) = ∞. For α ∈ Λ+ we

define a T -torsor Q̂Mα
g

p→ QMα
g as follows. The C-points of Q̂Mα

g are the collections
(v

λ̌
∈ L

λ̌
⊂ V

λ̌
⊗ OC), λ̌ ∈ Λ∨+, such that

(a) (L
λ̌
⊂ V

λ̌
⊗ OC)λ̌∈Λ∨+ ∈ QMα

g; (b) v
λ̌
∈ Γ (C − 0,L

λ̌
) are the nonvanishing

sections satisfying the Plücker equations.

The projection p forgets the sections v
λ̌

. The action of T on Q̂Mα
g is defined as

follows: h(v
λ̌
∈ L

λ̌
) = (λ̌(h)vλ̌ ∈ L

λ̌
).
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Weyl modules and q-Whittaker functions 51

Taking a formal expansion of v
λ̌

at ∞ ∈ C we obtain a closed embedding sα :
Q̂Mα

g ↪→ Q̂. Clearly, sα is T -equivariant, and gives rise to the same named closed
embedding sα : QMα

g ↪→ Q. Evidently, for β ≥ α we have sα = sβ ◦ ϕα,β . Hence
we obtain the closed embedding s : Q ↪→ Q. The restriction of the line bundle O(λ̌)

on Q to Q coincides with the line bundle O(λ̌) on Q.

2.4 Open subschemes Q∞ ⊂ Q and Q∞ ⊂ Q

We define an open subscheme
◦

QMα
g ⊂ QMα

g formed by all the quasimaps without

defect at ∞ ∈ C. Clearly, ϕα,β(
◦

QMα
g) ⊂

◦
QM

β
g. The direct limit of this system is

denoted by Q∞; it is an open sub ind-scheme of Q.
Note that s(Q∞) ⊂ G(R)/T · U−(R) ⊂ Q. We are going to denote the open

subscheme G(R)/T · U−(R) ⊂ Q by Q∞. For n ≥ 1, we have a natural projection
pn : Q∞ → G/U−(Rn)/T =: Qn .

Lemma 1 The restriction Γ (Q,O(λ̌))→ Γ (Q∞,O(λ̌)) is an isomorphism for any
λ̌ ∈ Λ∨.

Proof It suffices to prove that the restriction Γ (QMα
g,O(λ̌))→ Γ (

◦
QMα

g,O(λ̌)) is an

isomorphism for anyα ∈ Λ+. Since the complement of
◦

QMα
g in QMα

g has codimension
2, it suffices to know that QMα

g is normal. However, locally in the étale topology, QMα
g

is isomorphic to the product of the Zastava space Zαg and the flag variety Bg. Finally,
the normality of Zαg is proved in [2, Corollary 2.10]. ��

The following conjecture is not needed in this paper, but it might be useful for
future purposes.

Conjecture 2.1 The restriction Γ (Q,O(λ̌))→ Γ (Q∞,O(λ̌)) is an isomorphism for
any λ̌ ∈ Λ∨.

Let us make a few remarks about Conjecture 2.1. As in the proof of Lemma 1,
it suffices to know that the scheme Q is normal. According to [6,17], the formal
completion of Q at a closed point x ∈ Q is isomorphic to the product of the formal
completion of a certain QMα

g at a closed point φ ∈ QMα
g, and countably many copies

of the formal disc. So the normality of the formal neighborhood of every closed point
follows from the normality of QMα

g. Unfortunately, since Q is not noetherian it does
not imply the normality of Q itself.

The group Gm acts on Q and Q by loop rotations, and the line bundles O(λ̌) are
Gm-equivariant. Hence Gm acts on the global sections of these line bundles. We will
denote by Γ̃ (Q,O(λ̌)) ⊂ Γ (Q,O(λ̌)) the subspace of Gm-finite sections.

Theorem 2.2 The restriction Γ (Q∞,O(λ̌))→ Γ̃ (Q∞,O(λ̌)) = Γ̃ (Q,O(λ̌)) is an
isomorphism for any λ̌ ∈ Λ∨.

Proof The closed embeddingϕα,β : QMα
g ↪→ QM

β
g lifts in an evident way to the same

named closed embedding of T -torsors Q̂Mα
g ↪→ Q̂M

β
g. We denote the limit of this
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52 A. Braverman, M. Finkelberg

system by Q̂, a T -torsor over Q. The construction of Sect. 2.3 defines a T -equivariant
closed embedding s : Q̂ ↪→ Q̂∞ := G/U−(R). We have to prove that the restriction
C[Q̂∞] → C̃[Q̂∞] = C̃[Q̂] is an isomorphism. Here C̃[Q̂∞] (resp. C̃[Q̂]) stands for
the ring of Gm-finite functions on Q̂∞ (resp. Q̂).

To this end we mimick the argument of [2, Section 2]. We choose a regular dominant
μ ∈ Λ+, and consider the corresponding T -fixed point tμ ∈ GrG . Its stabilizer Stμ in
G[t−1] has the unipotent radical RadStμ, and the quotient Stμ /RadStμ is canonically
isomorphic to T . The quotient G[t−1]/Stμ is the G[t−1]-orbit WG,μ ⊂ GrG of tμ

(see [2, Section 2.4]), and the quotient G[t−1]/RadStμ is a T -torsor ŴG,μ.
NB: The group denoted Stμ in [2, Section 2.6] is the intersection of our present Stμ

with the first congruence subgroup G1 ⊂ G[t−1].
In modular terms, WG,μ parametrizes the G-bundles on C of isomorphism type

Wμ equipped with a trivialization on C − 0 (see [2, Proof of Theorem 2.8]). Such
a bundle FG possesses a canonical Harder-Narasimhan flag H N (FG). Note that this
flag is complete, i.e. it is a reduction to the Borel, since μ is regular. In particular, the
fiber FG,∞ of FG at∞ ∈ C is equipped with a canonical reduction to the Borel. Now
ŴG,μ parametrizes the data as above along with a further reduction of FG,∞ to the
unipotent radical of the Borel. ��

In complete similarity with [2, Lemma 2.7] we have

Lemma 2 1. Fix n ≥ 1, and let μ ∈ Λ+reg satisfy the following condition: 〈μ, α̌〉 ≥
n for every positive root α̌ of g. Then the image of RadStμ in G[t−1]/Gn =
G(Rn) is equal to U−(Rn). In particular, we have a natural map πμ,n : ŴG,μ→
G(Rn)/U−(Rn).

2. Under the assumption of (1), for every k < n, the map π∗μ,n : C[G(Rn)/

U−(Rn)] → C[ŴG,μ] induces an isomorphism on functions of homogeneity degree
k with respect to Gm.

We denote the intersection of WG,μ ⊂ GrG with GrλG by Wλ
G,μ. We denote the

preimage of Wλ
G,μ ⊂WG,μ in ŴG,μ by Ŵλ

G,μ. In complete similarity with [2, Theo-
rem 2.8] we have

Lemma 3 1. Let λ ≥ μ ∈ Λ+reg, and let α = λ−μ. Then there exists a natural

birational T ×Gm-equivariant morphism sλ
μ : Ŵλ

G,μ → Q̂Mα
g such that for any

n satisfying the condition in Lemma 2(1), the following diagram is commutative:

Ŵλ
G,μ

sλμ−−−−→ Q̂Mα
g

πμ,n

⏐
⏐



⏐
⏐

pn◦sα

G(Rn)/U−(Rn)
id−−−−→ G(Rn)/U−(Rn)

(2.1)

(sα was constructed in Sect. 2.3).
2. The map (sλ

μ)
∗ : C[̂QMα

g] → C[Ŵλ
G,μ] induces an isomorphism on functions of

degree < n for any n satisfying the condition in Lemma 2(1).
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Weyl modules and q-Whittaker functions 53

Now Theorem 2.2 immediately follows from Lemma 2 and Lemma 3.
Note that if one assumes Conjecture 2.1 then it follows that the restriction

Γ (Q,O(λ̌))→ Γ̃ (Q,O(λ̌)) is an isomorphism for any λ̌ ∈ Λ∨. (this follows imme-
diately from Theorem 2.2, Lemma 1, and Conjecture 2.1).

3 Cohomology vanishing

3.1 From now on we assume that G is simply laced.
The group Gm acts on Q and Q by loop rotations, and the line bundles

O(λ̌) are Gm-equivariant. Hence Gm acts on the cohomology Hn(Q,O(λ̌)) :=
lim← Hn(QMα

g,O(λ̌)) of these line bundles. We will denote by H̃n(Q,O(λ̌)) ⊂
Hn(Q,O(λ̌)) the subspace of Gm-finite classes.

Recall that α �→ α∗ stands for the natural (linear) isomorphism between the coroot
lattice of g and its root lattice, taking the simple coroots to the corresponding simple

roots. Now Λ+ contains a cofinal subsystem Λλ̌+ formed by α such that α∗ + λ̌ is
dominant.

Theorem 3.1 1. For n > 0 and α ∈ Λλ̌+ we have Hn(QMα
g,O(λ̌)) = 0.

2. For n > 0 and λ̌ ∈ Λ∨ we have H̃n(Q,O(λ̌)) = 0.
3. For λ̌ �∈ Λ∨+ we have H̃0(Q,O(λ̌)) = 0.

Proof (3) is clear, and (2) follows from (1). We prove (1).
According to [2, Proposition 5.1], Zαg is a Gorenstein variety with rational singu-

larities. Since QMα
g is, locally in étale topology, isomorphic to Zαg×Bg, we conclude

that QMα
g is a Gorenstein variety with rational singularities as well. (It is here that we

use the assumption that G is simply laced.) Let us denote the dualizing sheaf of QMα
g

by ωα . ��
Lemma 4 ωα 
 O(−α∗ − 2ρ̌).

Proof In case G = SL(N ), the lemma is proved in [16, Theorem 3]. For arbitrary
simply laced G we first prove that ωα 
 O(λ̌) for some λ̌. It is enough to check this

on the open subscheme
◦

QMα
g since the complement is of codimension two. We have

the morphism of evaluation at∞ ∈ C : ◦
QMα

g
ev∞−→ Bg. It is a G-equivariant fibration

with fibers isomorphic to Zαg. Since the big cell U · e− ⊂ Bg is a free orbit of U ,
we have ev−1∞ (U · e−) 
 Zαg ×U . The canonical class of Zαg is trivial (see [2, Proof
of Proposition 5.1]), hence the canonical class of ev−1∞ (U · e−) is trivial as well. Thus

ωα has a nowhere vanishing section σ on ev−1∞ (U ·e−). Hence the class ofωα on
◦

QMα
g

is a linear combination of the pullbacks under ev∞ of the Schubert divisors on Bg.
The pullback of an irreducible Schubert divisor being O(ω̌i ) we conclude that there
exists λ̌ such that ωα 
 O(λ̌).

It remains to check λ̌ = −α∗ − 2ρ̌. We will do this on another open subscheme
•

QMα
g ⊂ QMα

g with the complement of codimension two. Namely,
•

QMα
g is the moduli

space of quasimaps with defect at most a simple coroot (or no defect at all). Note that
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•
QMα

g is smooth, and the Kontsevich resolution is an isomorphism over it. Let us fix

a quasimap without defect φ ∈ QM
α−αi
g , and consider a curve Cφ

i ⊂
•

QMα
g formed

by all the quasimaps φ(αi · c), c ∈ C (twisting φ by an arbitrary point of C). It
is easy to see that deg(O(ω̌ j )|Cφi ) = δi j = 〈αi , ω̌ j 〉. Hence it remains to check that

deg(ωα|
Cφi
) = −〈αi , α

∗ +2ρ̌〉. This is done in [10, Proposition 4.4]. Although [10] is

formulated for G=SL(N ), its proof goes through word for word for arbitrary simple G.
The lemma is proved. ��
We are ready to finish the proof of the theorem. For α ∈ Λλ̌+ the line bundle

L = O(λ̌)⊗ (ωα)∗ on QMα
g is very ample. We have to prove that Hn(QMα

g,O(λ̌)) =
Hn(QMα

g,L ⊗ ωα) = 0 for n > 0. According to [2, Proposition 5.1], QMα
g has

rational singularities. Let π : X → QMα
g be a resolution of singularities. Then for the

canonical line bundle ωX of X we have Rπ∗ωX = ωα . Hence Hn(QMα
g,L⊗ ωα) =

Hn(X, π∗L ⊗ ωX ) = 0 (for n > 0) by Kawamata-Viehweg vanishing since π∗L is
nef and big.

This completes the proof of the theorem.

4 q-Whittaker functions

4.1 The character of RΓ (QMα
g,O(λ̌))

Recall [2, Introduction] that Jα(q, z) is the character of T × Gm-module C[Zαg],
a rational function on T × Gm . Let xi stand for the character of the dual torus Ť
corresponding to the simple coroot αi . For α ∈ Λ+ the corresponding character
of Ť is denoted by xα . We consider the formal generating functions Jg(q, z, x) =
∑
α∈Λ+ xαJα , and Jg(q, z, x) =∏

i∈I x log(ω̌i )/ log q
i Jg(q, z, x), cf. [1, Equation (18)].

According to [2, Corollary 1.6], the function Jg(q, z, x) is an eigen-function of the
quantum difference Toda integrable system associated with g. For example, if G =
SL(N ), the function Jg(q, z, x) is an eigenfunction of the operator G = T1 + T2(1−
x1)+· · ·+TN (1− xN−1), cf. [1, Equation (16)], where Tk(F(q, z, x1, . . . , xN−1)) =
F(q, z, x1, . . . , xk−2, q−1xk−1, qxk, xk+1, . . . , xN−1).

Note that if we plug x = q λ̌ into Jg(q−1, z, x) or into Jg(q−1, z, x), then

for λ̌ ∈ Λ∨+ these formal series converge, and we have Jg(q−1, z, q λ̌) :=
∏

i∈I (q
〈αi ,λ̌〉)log(ω̌i )/ log q Jg(q−1, z, q λ̌) = zλ̌ Jg(q−1, z, q λ̌) (a formal Taylor series

in q with coefficients in Laurent polynomials in z).
The following lemma is a reformulation of [16, Proposition 2]:

Lemma 5 The class of RΓ (QMα
g,O(λ̌)) in KT×Gm (pt) equals

∑

γ+β=α
w∈W

zwλ̌q〈γ,λ̌〉Jγ
(

q−1, wz
)

Jβ(q, wz)
∏

α̌∈Ř+

(
1− wzα̌

)−1
.

Proof Let π : M0,0(P
1 × Bg, (1, α)) → QMα

g (resp. � : Mα
g → Zαg) be the

Kontsevich resolution, see e.g. [8, Appendix] (resp. [2, Proof of Proposition 5.1]).
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Since the singularities of QMα
g (resp. Zαg) are rational, we have RΓ (QMα

g,O(λ̌)) =
RΓ (M0,0(P

1 × Bg, (1, α)), π∗O(λ̌)) (resp. C[Zαg] = C[Mα
g ]). Hence we have to

express the character of RΓ (QMα
g,O(λ̌)) via the characters of C[Mβ

g ]. This is done
in [16, Proof of Proposition 2] via the Atiyah–Bott–Lefschetz localization to T ×Gm-
fixed points of M0,0(P

1×Bg, (1, α)). As usually, we have to add that [16] deals with
G = SL(N ), however, the proof goes through word for word for arbitrary semisimple
G. ��

4.2 The character of Γ̃ (Q,O(λ̌))

By the proof of Theorem 2.2 and Lemma 3(2), the character χ(Γ̃ (Q,O(λ̌))) is the
limit of the characters χ(R0Γ (QMα

g,O(λ̌))) as α→∞. By Theorem 3.1(1), as α→
∞, the limit of the characters χ(R>0Γ (QMα

g,O(λ̌))) vanishes. Thus, the character
χ(Γ̃ (Q,O(λ̌))) is the limit of the characters χ(RΓ (QMα

g,O(λ̌))) as α → ∞. We
define J∞(q, z) := limα→∞ Jα(q, z) (it is easy to see that the latter limit exists).

Proposition 4.1

χ
(
Γ̃ (Q,O(λ̌))

)
=

∑

w∈W

Jg

(
q−1, wz, q λ̌

)
J∞(q, wz)

∏

α̌∈Ř+

(
1− wzα̌

)−1
.

Proof As α goes to∞, the formula of Lemma 5 goes to

∑

γ∈Λ+
w∈W

zwλ̌q〈γ,λ̌〉Jγ
(

q−1, wz
)

J∞(q, wz)
∏

α̌∈Ř+

(
1− wzα̌

)−1

=
∑

w∈W

zwλ̌ Jg

(
q−1, wz, q λ̌

)
J∞(q, wz)

∏

α̌∈Ř+

(
1− wzα̌

)−1

=
∑

w∈W

Jg

(
q−1, wz, q λ̌

)
J∞(q, wz)

∏

α̌∈Ř+

(
1− wzα̌

)−1
.

��
Corollary 4.2 Let χ(Γ̃ (Q,O(λ̌))) = Ψ

λ̌
(q, z). Then the functions Ψ

λ̌
(q, z) satisfy

all the conditions of Conjecture 1.1.

Proof Part 2 of Conjecture 1.1 is obvious by construction. Also Conjecture 1.1(1b) is
obvious. According to Theorem 3.1(2), χ(Γ̃ (Q,O(λ̌))) = 0 if λ̌ �∈ Λ∨+, which proves
Conjecture 1.1(1a).

Let us prove Conjecture 1.1(1c). The function Jg(q−1, wz, q λ̌) on the latticeΛ∨ is
an eigenfunction of the quantum difference Toda restricted to the lattice. Accord-
ing to Proposition 4.1, χ(Γ̃ (Q,O(λ̌))) is a linear combination of the functions
Jg(q−1, wz, q λ̌) with coefficients independent of λ̌. Hence Ψ

λ̌
(q, z) is an eigenfunc-

tion of the quantum difference Toda as well. ��
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5 Weyl modules

5.1 Recall that R = C[[t−1]]. We introduce a new variable t = t−1, so that R =
C[[t]]. We set R̃ := C[t] ⊂ R. The proalgebraic group G(R) acts naturally on the
profinite dimensional vector space Γ (Q,O(λ̌)). The continuous dual Γ (Q,O(λ̌))∨
coincides with the graded dual Γ̃ (Q,O(λ̌))∨, and is equipped with a natural action
of G(R̃) : g · v∗(v) := v∗(τg · v). Here g �→ τg is the Chevalley antiinvolution of
G identical on T . The derivative of these actions gives rise to the actions of g(R) and
g(R̃). According to Theorem 2.2, the g(R̃)-module Γ (Q,O(λ̌))∨ coincides with the
graded dual Γ (Q∞,O(λ̌))∨.

We denote the preimage of the big cell U ·e− ⊂ Bg in G/U− → Bg by C ⊂ G/U−.

We denote the open subscheme C(R)/T ⊂ G(R)/T ·U−(R) = Q∞ by
◦
Q. We have

the restriction morphism of g(R)-modulesΓ (Q∞,O(λ̌)) ↪→ Γ (
◦
Q,O(λ̌)). Now C(R)

is a free orbit of B(R) ⊂ G(R), and Γ (
◦
Q,O(λ̌)) = CoIndg(R)

u(R)⊕t C
λ̌

. The graded dual

Γ (
◦
Q,O(λ̌))∨ = Indg(R̃)

u(R̃)⊕t
C

λ̌
.

Lemma 6 Γ (Q∞,O(λ̌)) ⊂ Γ (
◦
Q,O(λ̌)) is the maximal G-integrable g(R)-

submodule. Equivalently, Γ (Q∞,O(λ̌))∨ is the maximal G-integrable g(R̃)-quotient

module of Γ (
◦
Q,O(λ̌))∨.

Proof Note that Q∞ is the G-saturation of
◦
Q. Let v ∈ Γ ( ◦Q,O(λ̌)) lie in a finite-

dimensional g-submodule V ⊂ Γ ( ◦Q,O(λ̌)). The action of g on V integrates to the
action of G. Let us view v as a λ̌-covariant function on C(R). We have to check
that v is the restriction of a λ̌-covariant function v̂ on G/U−(R) to C(R). Given a
point y ∈ G/U−(R) we can find g ∈ G such that g(y) ∈ C(R). Then we define
v̂(y) := u(gy) where we view u := gv ∈ V as a λ̌-covariant function on C(R).
Clearly, this is well defined, i.e. independent of a choice of g. ��

Recall the notion of Weyl g(R̃)-module W(λ̌) for dominant λ̌ ∈ Λ∨+, see e.g. [3]. It

is the maximal G-integrable g(R̃)-quotient module of Indg(R̃)
u(R̃)⊕t

C
λ̌

[3]. Thus Lemma 6
implies the first part of Theorem 1.3.

On the other hand, taking into account Theorem 2.2 we also get

Proposition 5.1 For λ̌ ∈ Λ∨+, we have a natural isomorphism of g(R̃)-modules
Γ (Q,O(λ̌))∨ 
W(λ̌).

Combining this with Corollary 4.2 we get the following

Corollary 5.2 χ(W(λ̌)) = Ψ
λ̌
(q, z).

This is actually the statement of Theorem 1.3(1). To prove Theorem 1.3(2) let us
recall that the Demazure module D(λ̌) is a certain g(R̃)-submodule of an irreducible
integrable level one representation of gaff , see e.g. [12, 2.2]. In addition, according

to [3,12] there exists an action of C[Aλ̌] on W(λ̌) such that
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1. This action commutes with G(R)� C
∗.

2. W(λ̌) is finitely generated and free over C[Aλ̌].
3. The fiber of W(λ̌) at λ̌ · 0 is isomorphic to D(λ̌).

Thus we get the following corollary, which is actually the statement of Theo-
rem 1.3(2) (as was mentioned in the introduction it was proved in [15] for G = SL(N )):

Corollary 5.3 The product χ(Γ̃ (Q,O(λ̌))) · ∏i∈I
∏〈αi ,λ̌〉

r=1 (1− qr ) = Ψ̂
λ̌
(q, z) is

equal to the character of the (finite dimensional) Demazure module D(λ̌). In particular,
it is a finite linear combination of χ(L(μ̌))’s with coefficients in Z≥0[q].

5.1 Geometric interpretation of the C[Aλ̌]-action

We conclude the paper by giving an interpretation of the C[Aλ̌]-action on W(λ̌) in
terms of Theorem 1.3(1). This will enable us to prove the second assertion of Theo-
rem 1.5. It would be nice to prove that this action is free directly by geometric means
(without referring to [12]).

Let T (R)1 denote the first congruence subgroup in T (R) (i.e. the kernel of the
natural map T (R)→ T ). Let t(R)1 denote its (abelian) Lie algebra (i.e. the kernel of
the natural map t(R)→ t). We denote by t(R̃)1 ⊂ t(R)1 the corresponding subspace
(consisting of all mappings A

1 → t which are equal to 0 at 0). Then for every λ̌ ∈ Λ∨+
there exists a natural epimorphism π

λ̌
: U (t(R)1) = Sym t(R)1) → C[Aλ̌] defined

by the following formula:

π
λ̌
(htn)

(
∑

i

γi xi

)

=
∑

i

〈h, γi )x
n
i .

Here h ∈ t and
∑

i γi xi ∈ A
λ̌.

Clearly, the group T (R)1 acts (on the right) on the scheme Q∞ = G(R)/T ·U−(R).
Hence we get a natural action of Sym(t(R)1) on Γ (Q∞,O(λ̌)) for every λ̌ ∈ Λ∨. The
following result is easy to prove; we leave the details to the reader:

Proposition 5.4 1. The above action of Sym(t(R̃)1) on Γ (Q∞,O(λ̌)) factors
through π

λ̌
.

2. The resulting action of C[Aλ̌] on Γ (Q∞,O(λ̌))∨ = W(λ̌) coincides with the
action considered in [3,12].

From Proposition 5.4 we immediately get the following

Corollary 5.5 We have Γ (G(R)/B−(R),O(λ̌)) 
 D(λ̌)∨ (this is the second asser-
tion of Theorem 1.5).

Proof It follows from Proposition 5.4 and from the fact that D(λ̌) is the fiber of W(λ̌)

over λ̌ ·0 ∈ C[Aλ̌] that D(λ̌)∨ is isomorphic to the invariants of t(R̃) on W(λ̌)∨. Since
t(R̃)1 is dense in t(R)1, it follows that
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(
W(λ̌)∨

)t(R̃)1 =
(
W(λ̌)∨

)t(R)1
.

From Proposition 5.1 we get

(W(λ̌)∨)t(R)1 = Γ
(

G(R)/T ·U−(R),O(λ̌)
)t(R)1 = Γ

(
G(R)/B−(R),O(λ̌)

)
.
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