Method 2.We change the moments of departure of trains on the tra
AB. ‘
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We use the following scheme to choose the right method.

| M1 M2
i X
M- | [m1- Mi+] M1+
M2- | IM2+ M2- | [M2+
return MZ Ml Ml

i

If there are no “bad” orders in our pair of schedules ©(NABYAC ) and
O(NBCUAC 1) then we depart trains on the track AB according to
O(NABYAC 4} and on the track BC according to ©(NBCUAC ) Ag
a result we obtain the schedulé ©3(N. y).

Theorem 3. Algorithm 3 constructs the schedule ©3(N,y). If algorithm
3 terminates then there is no schedule which holds (/).

To construct the optimal schedule we use algorithm 2. The only difference
is that we should use the schedule ©3(N, y) instead of O(N,y). ;
M station with tree topology. The formulation of this problem and
the problem for 3 stations is the same. The only difference is that We:
deals with M stations with tree topology. Due to the tree topology there
is only one way between each pair of stations. We also can enumerate§
stations from left to right (or from right to left).

Algorithm 4.We use algorithm 3 to get out of "bad” orders for each

46

Wi, from the left to the right follows the numeration (according to
2 2 ” »
Bt (irection of the train moving). When there are no bad” orders

W i station we obtain the schedule OM(N,y). After that we use al-

Wi 2 to construct the optimal schedule for M stations. .
psrem 4. Algorithm 4 constructs the optimal schedule according to

o berion Loyax in ()(MQ%';) operations.
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We consider the first boundary value problem for elliptic sy_stoms
defined in unbounded domains, which solutions satisfy the condition of
linlteness of the Dirichlet integral also called the energy integral

/|Vu12d.1: < o0.
Q

Basic concepts

|0t § is an arbitrary open set in R™. As is usual, by W3 15¢(§2) we denote
{he space of functions which are locally Sobolev, i.e.

Wi oo Q) = {f: FEWR(QNB}),Vp>0,Va€ R"},

where B; — open ball with center at point x and with radius p. If z =0

then we will write B,. We will denote by VE"?IOC(Q) set of functions from
W, ,,.(R™), which is the closure of C§°(£) in the system of seminorms
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ullwp(x), where K C R™ are various compacts. Let denote by L3(§
a space of generalized functions in €, which first derivatives b(‘long b
L2(92) [4], in other words

L) ={feD(): /|Vf|2dx'< oc}.

Q

Let w € R™ is an open set, K C w is a compact. We will deno
®,(K,w) the set of functions ¢ € C§°(w) such that ) = ¢ in the

neighborhood of K, or in other words 1) — ¢ € I/OV% 1oe (R™\ K).
Let’s define a capacitance of a compact K relative to the set w [4):

cap ,(K,w) = - (I)in(f}C 5 /fV'l/}[ngr.

w

The capacitance of arbitrary closed set £ C w in R™ is defined by the

formula cap (E,w) = sup capw(}C]w). If w = R™, then instead of
KCE

cap ,(E,R") we will write cap ,(E).

Problem statement

Let L is a divergent operator

n

B, 5, ?,
L = Z K <a”‘(.l')m> 3

1,7=1
where a;; are bounded measurable functions in R™ satisfying condition

n

’Ylf’ZS Z“z]( )fl‘f], éERn,’y>0.

fyg=il

The solution of the Dirichlet problem

3

{Lu —0 inQ m |

ulsa = o,

where ¢ € W, ,  (R"), is a function v € W} ,,_(Q) such that:
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i
1
|

e VB%, loc(gz)» l.e
B (R,
3 lunction v has bounded Dirichlet integral

/|V'u‘|2d:r < 00}

/Z T duﬂdi*(}
()1 ox;

Q ni=l

&li finy function ¢ € C§°(Q).

Hasic results

Pheorem 1. Let’s cap,
e problem (1) has a GOZutzﬁon.
Vheorem 2. Let the problem (1) has a solution and it s true that

/ |Vp|?dr < oo
Rn\Q
then there is such constant ¢ ¢ R™, that cap, AR\ ) < oo.
Theorem 3. Let n > 3. Then cap ,_ S(R™N 52 < oo if and only if
3" cap,_ (Baksr \ Byx 1) 1 (R \ Q), Barsa \ Baw 2) < 00
k=N
for some N € N.

Particular cases

| et consider the space R™ with a set of coordinates (1, x3,...,Z,) and
ot o = (14| 21])*. Domain €2, , is upper half-plane relative to x,, where
| / 1, in other words Qy ; = {(x1,z2,...,Zn)|x; > 0,0 # 1}. Domain 5
I the outer part of the space formed by surface of revolution relative to
i of the curve from Fig.1.
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(u — p)u € Ii’%(&l) for any function

A(R™\ Q) < oo for some constant ¢ € R™. Then




%5 = |my|?, B <0

T2

A Ty
Fig. 1: Domain 2

Corollary 1. Let n > 2. Then for the domain Q1 and for bound
function @, the existence of solutions of the problem (1) is equivalent &

|
either an inequality v < — 5 gra = U

Corollary 2. Let n > 3. Then for the domain 2y and for boundé
function @, the existence of solutions of the problem (1) 1s equivalent @

. . : 1+ 8(n—3
either an inequality o < ~—i(2——) ora = 0.
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1 . 3 r S
b The d S ”})_tlon Fhat QHE Call haye of the seismic source is the mani-
flation of an imagined model, ObVIOUSly outlined from Physic Theories

il jupported by mathematical methaqg 1y that context, the modelling

witthquake rupture consists in ﬁlldiug values of the parameters of the

Bited physics-mathematical model, thoyeh which it becomes possible
yeproduce numerically the records of carthquake effects on the Earths
fice. Actually, these effects are the g,gtic records at near field source
astic g : ' : :

7 ) eformations recorded by geodetic
Wihniques. The detail and accuracy leye] with which the characteristic

7 wimeters for large earthquakes are ¢ .
o & 1 € Computed, depends on the combina-

B of two factors - the applied methogg and the used data

Inder the hypothesis of constant slip, (lirectioiq i co(nst‘ant s bifiis
Wl Individual source time function, the wcbileg ok compléte e
Hine history and distribution TEEOTE etion redices o th,e S(;lu.tion sz
Wystom of linear equations. It is Welldeyiomm sk lthis P
I lll-posed [6]. The usual regularizatjo, techniques [8] can h;)rdl be
ppplied in this case because of a very high Sisiension of this pasklon }(fsee
ol [:‘]_)’ The problem can be overcomg 1y introducing some ediliffenal
pgularizing constraints. Some additig, physical hypotheses, like no-
lnckslip constraint, result in condition ¢ non-negativeness of soiutions to
{he system of linear equations. ' h

The positivity that prohibits negyy: T :
: M P 8ative seismic moment values, is a

ponstraint naturally assumed when useq the Non Negative Least Squares
plgorithm (NNLS) [5] to inverts seiswic waveforms to sli distrigut'
(og, [7])- ' o
We present and test a Linear Programming (LP) inversion in dual
furm, for reconstructing the kinematics ¢ (1,6 rﬁpture of large earthquakes
{hirough space-time seismic slip distribution on finite faults planes. The
proposed method can be considered asy continyation of the work séarted
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