
On Temporal Properties of Nested Petri Nets
Leonid Dvoryansky

Department of Software Engineering
National Research University Higher School of Economics

Moscow, Russia
leo@mathtech.ru

Daniil Frumin
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

difrumin@edu.hse.ru

Abstract—Nested Petri nets is an extension of Petri net formal-
ism with net tokens for modelling multi-agent distributed systems
with complex structure. Temporal logics, such as CTL, are used
to state requirements of software systems behaviour. However,
in the case of nested Petri nets models, CTL is not expressive
enough for specification of system behaviour. In this paper we
propose an extension of CTL with a new modality for specifying
agents behavior. We define syntax and formal semantics for our
logic, and give small examples of its usage.

Index Terms—Petri nets, nested Petri nets, temporal logic, CTL

I. INTRODUCTION

Petri nets is a popular formalism for modelling concurrent
systems. Different extensions of Petri nets are extensively
studied in the literature. The most popular are coloured Petri
nets [5]. Nested Petri nets [6] is a formalism for modelling
hierarchical multi-agent systems. There is a variety of tem-
poral logics for specifying behavioural properties of discrete
systems, such as HML, CTL, LTL, µ-calculi [4], [1], [3].
However, they are not convenient for expressing some natural
properties of nested Petri nets.

The paper is organized as follows. To start with, we give
some necessary foundations of labelled transition systems and
Petri nets. Then we describe nested the Petri nets formalism.
After that we give some examples of nested Petri nets proper-
ties we would like to express, and define nCTL – an extension
of CTL for nested Petri nets. Finally we describe a formal
semantics for nCTL. The paper ends with a conclusion.

II. BACKGROUND

Definition 1. A Labelled Transition System (LTS) is a tuple
(S, q0, R,Act) where
• S – a set of states (worlds);
• Act – a set of actions;
• q0 ∈ S is an initial state;
• R ⊆ S ×Act× S is a transition relation.

For convenience we write s a−→ s′ instead of (s, a, s′) ∈ R.

Definition 2. A Petri net (P/T-net) is a 4-tuple (P, T, F,W)
where
• P and T are disjoint finite sets of places and transitions,

respectively;

The research is partially supported by the Russian Fund for Basic Research
(project 11-01-00737).

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;
• W : F → N \ 0 – an arc multiplicity function, that is, a

function which assigns every arc a positive integer called
an arc multiplicity.

We denote by W̃ the extension of W by zero

W̃ (x, y) =

{
n, xFy ∧W (x, y) = n

0, ¬xFy

A marking of a Petri net (P, T, F,W) is a multiset over P ,
i.e. a mapping M : P → N. By M(N) we denote a set of all
markings of a P/T-net N .

We say that the transition t in a P/T-net N = (P, T, F,W)
is active in the marking M iff for every p ∈ {p | (p, t) ∈ F}:
M(p) ≥ W̃ (p, t). An active transition may fire, resulting in
a marking M ′, such as for all p ∈ P : M ′(p) = M(p) −
W̃ (p, t) + W̃ (t, p).

III. NESTED PETRI NETS

In this section we define nested Petri nets (NP-nets) [6]. For
simplicity we consider here only two-level NP-nets, where net
tokens are usual Petri nets.

Definition 3. A nested Petri net is a tuple
(Atom,Expr,Lab, SN, (EN1, . . . , ENk)) where
• Atom = Var ∪ Con – a set of atoms;
• Lab is a set of transition labels;
• (EN1, . . . , ENk), where k ≥ 1 – a finite collection of

P/T-nets, called element nets;
• SN = (PSN , TSN , FSN , υ,W,Λ) is a high-level Petri

net where
– PSN and TSN are disjoint finite sets of system

places and system transitions respectively;
– FSN ⊆ (PSN × TSN) ∪ (TSN × PSN) is a set of

system arcs;
– υ : PSN → {EN1, . . . , ENk}∪{•} is a place typing

function;
– W : FSN → Expr is an arc labelling function;
– Λ : TSN → Lab ∪ {τ} is a transition labelling

function, τ is the special “silent” label;

The arc expression language Expr is defined as follows. Let
Con be a set of constants interpreted over A = Anet ∪ {•}
and Anet = {(EN,m) | ∃i = 1, . . . , k : EN = ENi,m ∈
M(ENi)}, i.e. Anet is a set of marked element nets. Let

Var be a set of variables. Then an expression in Expr is
a multiset over Con ∪ Var. The arc labeling function W is
restricted in such way that constants or multiple instances of
the same variable are not allowed in input arc expressions
of the transition, constants and variables in the output arc
expressions should correspond to the types of output places,
and each variable in an output arc expression of the transition
should occur in one of the input arc expressions of the
transition.

A marking M in a NP-net NPN is a function mapping each
p ∈ PSN to some (possibly empty) multiset M(p) over A. By
abuse of notation, a set of all markings in a NP-net NPN is
denoted by M(NPN).

A behavior of an NP-net consists of three kinds of steps. A
system-autonomous step (resp. element-autonomous step) is a
firing of a transition, labeled with τ , in the system net (resp.
in one of the element nets).

An element-autonomous step is a transition firing according
to the standard firing rules for P/T-nets.

To describe a system-autonomous step we need the concept
of binding.

Definition 4. Let Vars(e) denote a set of variables in an
expression e ∈ Expr. For each t ∈ TSN we define W (t) =
{W (x, y) | (x, y) ∈ FSN ∧ (x = t∨ y = t)} – all expressions
labelling arcs incident to t.

A binding b of a transition t is a function b : Vars(W (t))→
A, mapping every variable in the t-incident arc expression to
some value.

We say that a transition t is active w.r.t. a binding b iff
∀p ∈ {p | (p, t) ∈ FSN}: b(W (p, t)) ⊆ M(p). An active

transition may fire (denote M
t[b]−−→ M ′) yielding a new

marking M ′(p) = M(p) − b(W (p, t)) + b(W (t, p)) for each
p ∈ PSN . An autonomous step in a net token changes only
this token inner marking. An autonomous step in a system net
can move, copy, generate, or remove tokens involved in the
step, but doesn’t change their inner markings.

A (vertical) synchronization step is a simultaneous firing
of a transition, labeled with some λ ∈ Lab, in a system net
together with firings of transitions, also labeled with λ, in
all net tokens involved in (i.e. consumed by) this system net
transition firing. For further details see [6]. Note, however, that
here we consider a typed variant of NP-nets, when a type of
an element net is instantiated to each place.

IV. TEMPORAL LOGICS

In this section we describe CTL – computational tree logic,
which is widely used for specifying temporal properties of
reactive systems.

A CTL formula is defined by the following grammar:
Φ ::= true | (¬Φ) | (Φ1 ∨ Φ2) | EU(Φ1,Φ2) | AU(Φ1,Φ2) |
EX(Φ) | p
where p is an atomic proposition.

A CTL formula is interpreted over Kripke structures. Kripke
structure is a labelled transition system (c.f. definition 1) where
Act is a singleton {τ}.

We can recursively define interpretation of a given CTL
formula φ over a Kripke structure K and a current state s.
We suppose some fixed interpretation of atomic propositions
I : S ×AP → {true, false}.
• (K, s) |= true;
• (K, s) |= p iff I(p, s) = true;
• (K, s) |= (φ1 ∨ φ2) iff (K, s) |= φ1 or (K, s) |= φ2;
• (K, s) |= (¬φ) iff (K, s) 6|= φ;
• (K, s) |= EX(φ) iff ∃(s, s′) ∈ R. (K, s′) |= φ;
• (K, s) |= EU(φ1, φ2) iff there exists a path s1s2 · · · in
K (that is s1

τ−→ s2, s2
τ−→ s3, · · ·) such that: s1 = s and

∃n. (∀j ∈ 0, n− 1.(K, sj) |= φ1) ∧ (K, sn) |= φ2;
• (K, s) |= AU(φ1, φ2) iff for every path s1s2 · · ·

in K the following holds: s1 = s and ∃n. (∀j ∈
0, n− 1.(K, sj) |= φ1) ∧ (K, sn) |= φ2.

We can also define additional useful operator weak un-
til: AW(φ, ψ) = ¬EU(φ ∧ ¬ψ,¬φ ∧ ¬ψ), EW(φ, ψ) =
¬AU(φ ∧ ¬ψ,¬φ ∧ ¬ψ). Intuitively, if model satisfies
AW(φ, ψ) (resp. EW(φ, ψ)) then for all paths (resp. there
exists a path) in which either φ is true until we encounuter ψ
or φ is always true. The difference between AW(ψ, φ) and
AU(ψ, φ) is that in the former it’s not necessary that φ is
reached.

V. TEMPORAL PROPERTIES OF NP-NETS

Let’s consider the following example (Fig.1). Here the left
net is a system net with the net token α residing in p1, and α
depicted in the right part of Fig.1.

p1 p2
λ

T1

x x

T2

x x

λ

t1

t2

Fig. 1. NP-net NPN1

LTS representing the behaviour of this NP-net is shown in
Fig.2.

Imagine, we want to check that in every net token transitions
t1 and t2 fire by turns. We could try the formula AG((t1 =⇒
AXAW(¬t1, t2)) ∧ (t2 =⇒ AXAW(¬t2, t1))). Although
this approach might look attractive at the first sight, it does
not work in many cases.

To show why our approach does not work here let’s take a
closer look at the LTS (Fig.4) corresponding to NPN2 (Fig.4).

Since t1 appears “before” t2 in LTS Σ2, we can conclude
that NPN2 satisfies our formula. However, actually in the
second net token t2 fired before t1. The problem is that
transition firings in different net tokens are indistinguishable
in our model: t2 in figure 4 refers to the firing of t2 in the net
token which originally resided in q3, but Σ2 does not contain
any information about that.

To handle such properties we introduce a new modality in
the next section.

M0start

T1,t1

M1

t2

M2

T2 M3

Fig. 2. LTS corresponding to NPN1

q1

q2

q3

q4

λ

T1x

x

ψ T2

xy

1 λ

t1

ψ

t2

Fig. 3. NP-net NPN2

VI. NCTL

In the following section we present a solution to the problem
described in the previous passage by introducing additional
modality.

A. Syntax

To specify properties concerning states (markings), system
transitions and transitions in element nets we introduce a logic
with three categories of formulae. Just like in CTL we make
use of path quantifiers in both state and transition formulae.

We define the syntax of nCTL with a fixed nested Petri net
NPN in mind.

State formulae: A ::= true | ω | ¬A | (A1 ∨ A2) | 〈B〉 |
[C] | EU(A1,A2) | AU(A1,A2)

Transition formulae: B ::= true | χ | ¬B | (B1 ∨B2) | 〈A〉 |
EU(B1,B2) | AU(B1,B2)

Element transition formulae: C ::= true | γ | ¬C | (C1∨C2) |
[A] | EU(C1, C2) | AU(C1, C2) | AXC

Here true is a boolean constant, ω is a function, called
a marking predicate, with the type M → {true, false}, i.e.
a predicate on the set of all markings. A function χ maps
transitions T of SN to booleans. γ is a predicate on set of all
transitions of all element nets (we do not need a predicate on

M0start

T1,t1

M1

T2,t2

M2

Fig. 4. LTS Σ2 of NPN2

markings of element nets, since every marking of an element
net can be characterized by a subset ofM). EU and AU are
familiar from the conventional CTL.

A nCTL formula is a well-formed state formula.

B. Examples

The idea of using both state and event modalities were first
developed in ASK-CTL library for coloured Petri nets [2]. We
extend this idea to NP-nets.

Intuitively, when we encounter an element transition sub-
formula, we switch our interpreting context to an LTS of an
element net. Nesting of the modalities allow us to switch
back and forth between contexts. [φ] means that there exists a
path in the LTS of the NP-net along which φ holds for every
element net.

Now we can express the “switching” property for the NPN2

(Fig.3): [AU(¬t2, t1) ∧ AG(t1 =⇒ AXAU(¬t1, t2)) ∧
AG(t1 =⇒ AXAU(¬t1, t2))]. The AU(¬t2, t1) part is
necessary to check whether t1 is the first transition to be fired.

In order to properly verify whether the LTS, corresponding
to NPN2, is a model for our formula, we should change
the way we construct the LTS. Firsly, we introduce a set
N = {n0, n1, . . . } every member of which represents a single
element net token (note that N is different from Anet, since
the latter contains only types of element nets together with
their markings, while the former also distinguishes between
individual tokens). Now we mark arcs in a LTS with tuples of
the form (τ, ni), where τ a name of transition in an element
token ni ∈ N . From here on in we use notation τ [ni] to denote
(τ, ni).

The new LTS corresponding to the NPN2 is shown in Fig.5.
The element net tokens residing in q1 (resp. q3) is denoted
as n0 (resp. n1). If we check the only path generated by
transitions – (T1, t1[n0])(T2, t2[n1], t2[n0]) – we see that it
does not satisfy our formula.

It is worth mentioning that our approach is not equivalent
to model checking of element transition formulae on LTSs
corresponding to element nets. This is caused by the fact

M0start

M1

M2

T1,t1[n0]

T2, t2[n1], t2[n0]

Fig. 5. New LTS of NPN2

that the LTS corresponding to an element net should be
considered only w.r.t. transitions in the system net due to
vertical synchronization. In addition, nCTL provides an ability
to switch back to system context, based on the properties
of an element net. Consider this example: [(AXt1 =⇒
[M1]) ∨ (AXt2 =⇒ [〈EXT2〉])]. NP-net N ′ models that
formula if either t1 fires in the next step in the element net
and N ′ reaches marking M1 or t2 fires in the next step in the
element net and T2 is enabled in the system net after that.

We need to construct LTS with respect to information about
specific element nets. Let us consider some concrete problems
conected with that.

p1

p2 p3

p4

T1

x

x x

λ

T2
x x

Fig. 6. NP-net NPN3

Fig.6 represents an example of a nested Petri net, where the
firing of transition T1 yields two copies (n0 in p2, n1 in p3)
of the same element net, therefore in both copies we need to
keep the history of the old net token. For example, if the net
token κ (Fig.7) resides in the place p1 in NPN3, we get the
LTS shown in Fig.8.

t1 λ t2

Fig. 7. Net token κ in NPN3

M0start

M2 M1

M3

M4

M5

M6

M7

T1t1[n0],t1[n1]

T1

t1[n0]

t1[n1] t2[n1],T2

t1[n1] t2[n1],T2

t1[n0] t1[n0]

Fig. 8. LTS corresponding to NPN3

VII. NCTL SEMANTICS

nCTL formulae are interpreted over a pair (LNPN,m), where
LNPN is a LTS corresponding to NPN and m is a reachable
marking of the latter. We say that NPN satisfies formula φ iff
(LNPN ,m0) |= φ, where m0 is the initial marking of NPN.
State-transition modalities allow us to switch between different
types of formulae.

Interpretation for state formulae:

• (LNPN,m) |=A true
• (LNPN,m) |=A ω ⇐⇒ ω(m)
• (LNPN,m) |=A ¬φ ⇐⇒ (LNPN,m) 6|=A φ
• (LNPN,m) |=A φ1 ∨ φ2 ⇐⇒ (LNPN,m) |=A φ1 or

(LNPN,m) |=A φ2
• (LNPN,m) |=A 〈φ〉 ⇐⇒ ∃a .m a−→ m′ ∧

(LNPN, (m, a,m
′)) |=B φ

• (LNPN,m) |=A [φ] ⇐⇒ ∃a .m a−→ m′ ∧
(LNPN, (m, a,m

′)) |=C φ
• (LNPN,m) |=A AU(φ1, φ2) ⇐⇒ ∀σ =
a1a2 · · · ∈ Pm .∃n ≤ |σ| .m a1−→ m1

a2−→
m2 . . .mn−1

an−−→ mn . (∀i ∈ 0, n− 1 . (LNPN,mi) |=A
φ1) ∧ (LNPN,mn) |=A φ2

• (LNPN,m0) |=A EU(φ1, φ2) ⇐⇒ ∃σ =
a1a2 · · · ∈ Pm .∃n ≤ |σ| .m0

a1−→ m1
a2−→

m2 . . .mn−1
an−−→ mn . (∀i ∈ 0, n− 1 . (LNPN,mi) |=A

φ1) ∧ (LNPN,mn) |=A φ2
Interpretation for transition formulae:

• (LNPN, (m, a,m
′)) |=B true

• (LNPN, (m, a,m
′)) |=B χ ⇐⇒

∧
{χ(τ) | τ ∈ ST (a)},

where ST (a) is a set of system transitions, involved in
the step a.

• (LNPN, (m, a,m
′)) |=B ¬φ ⇐⇒ (LNPN, (m, a,m

′)) 6|=B
φ

• (LNPN, (m, a,m
′)) |=B φ1 ∨ φ2 ⇐⇒

(LNPN, (m, a,m
′)) |=B φ1 or (LNPN, (m, a,m

′)) |=B φ2
• (LNPN, (m, a,m

′)) |=B 〈φ〉 ⇐⇒ (LNPN,m
′) |=A φ

• (LNPN, (m0, a1,m
′)) |=B AU(φ1, φ2) ⇐⇒

∀σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈

0, n− 1 . (LNPN, (mi, ai,mi+1) |=B φ1) ∧
(LNPN, (mn, an+1,mn+1) |=B φ2)

• (LNPN, (m0, a1,m
′)) |=B EU(φ1, φ2) ⇐⇒

∃σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈
0, n− 1 (LNPN, (mi, ai,mi+1) |=B φ1) ∧
(LNPN, (mn, an+1,mn+1) |=B φ2)

Interpretation for nested transition formulae:
• (LNPN, (m, a,m

′)) |=C true
• (LNPN, (m, a,m

′)) |=C γ ⇐⇒
∧
{γ(τ [n]) | τ [n] ∈

NT (a)}, where NT (a) is a set of element net transitions
involved in a step a.

• (LNPN, (m, a,m
′)) |=C ¬φ ⇐⇒ (LNPN, (m, a,m

′)) 6|=C
φ

• (LNPN, (m, a,m
′)) |=C φ1 ∨ φ2 ⇐⇒

(LNPN, (m, a,m
′)) |=C φ1 or (LNPN, (m, a,m

′)) |=C φ2
• (LNPN, (m, a,m

′)) |=C [φ] ⇐⇒ (LNPN,m) |=A φ
• (LNPN, (m0, a1,m

′)) |=C AU(φ1, φ2) ⇐⇒
∀σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0

a1−→
m1

a2−→ m2 . . .mn−1
an−−→ mn . (∀i ∈

0, n− 1 . (LNPN, (mi, ai,mi+1) |=C φ1) ∧
(LNPN, (mn, an+1,mn+1) |=C φ2)

• (LNPN, (m0, a1,m
′)) |=C EU(φ1, φ2) ⇐⇒

∃σ = a1a2 · · · ∈ Pm .∃n < |σ| .m0
a1−→

m1
a2−→ m2 . . .mn−1

an−−→ mn . (∀i ∈
0, n− 1 . (LNPN, (mi, ai,mi+1) |=C φ1) ∧
(LNPN, (mn, an+1,mn+1) |=C φ2)

• (LNPN, (m0, a1,m
′)) |=C AXφ ⇐⇒ ∀σ = a1a2 · · · ∈

Pm . (m0
a1−→ m1

a2−→ m2 . . .)∧ (LNPN, (m1, a2,m2) |=C
φ)

From a practical perspective, nCTL logic enables us to state
properties of agents in multiagent systems.

VIII. CONCLUSION AND FUTURE RESEARCH

The temporal logic nCTL, described in this paper, is an
extension of CTL for specifying semantic properties of nested
Petri nets. Logic nCTL may be helpful for describing be-
havioural properties of multi-agent systems with complex
structure. nCTL allows to express both system net and element
nets properties directly. This gives a straightforward way of
formalizing NP-net specific temporal properties.

Our next goal is to develop an algorithm for constructing
LTS describing semantics of a given NP-net. We also plan
to investigate the expressive power of nCTL and study the
possibility of developing effective verification algorithm for
nested Petri nets.

REFERENCES

[1] Julian Bradfield, Colin Stirling, Modal mu-calculi, In: Patrick Blackburn,
Johan Van Benthem and Frank Wolter, Editor(s), Studies in Logic and
Practical Reasoning, Elsevier, 2007, Volume 3, Pages 721-756.

[2] A. Cheng, S. Christensen, and K. H. Mortensen, Model Checking
Coloured Petri Nets Exploiting Strongly Connected Components. – Cite-
seer, 1997.

[3] Edmund M. Clarke, Orna Grumberg, Doron Peled. Model Checking, MIT
Press, 2001.

[4] Ian Hodkinson, Mark Reynolds, Temporal logic, In: Patrick Blackburn,
Johan Van Benthem and Frank Wolter, Editor(s), Studies in Logic and
Practical Reasoning, Elsevier, 2007, Volume 3, Pages 655-720.

[5] K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[6] I. A. Lomazova, Nested Petri nets: Modeling and analysis of distributed
systems with object structure. – Moscow:Scientific World, 2004. – 208p.

