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Abstract
We analyze a particular simple case within the framework of the vortex filament (VF) model.
It gives the same basic results and allows us to understand the general case better. Advantages
and weaknesses of the simplification are considered. The introduction of stochastics into the
Navier–Stokes equation, the evolution of VFs and longitudinal and transverse Euler velocity
structure functions are analyzed in terms of cylindric filaments.

PACS numbers: 47.10.ad, 47.27.De, 47.27.eb, 47.27.Gs

1. Introduction

One of the fundamental problems in turbulence is the
determination of correlators, in particular, velocity structure
functions. These functions are believed to be power laws
inside the inertial range of scales, i.e. the range where scales
are much less than the largest eddy scale, and viscosity
is negligible. The canonical consideration implies that the
scaling exponents are independent of (or at least depend
very weakly on) the details of the flow, in particular, on the
Reynolds number.

Experiments and direct numerical simulations (DNS)
of hydrodynamical turbulent flow seem to have overtaken
theoretical investigations in this direction. Numerous DNS,
as well as high-resolution experiments performed during the
last 20 years [1], allowed us to measure the first ten scaling
exponents with high accuracy. The exponents show strongly
intermittent behavior, i.e. the dependence on n is nonlinear.
The new result observed in the DNS [2–4] and experiments
[5, 6] is the difference between longitudinal and transverse
scaling exponents, even though the flow is isotropic.

The multifractal (MF) model [7, 8] is a successful
framework for describing and interpreting the observed
intermittency. But this model is based on dimensional
considerations, and the function D(h) used to derive the
scaling exponents is itself to be explained by means of the
Navier–Stokes equation (NSE).

The vortex filament (VF) model [9–14] emerged as
an attempt to find a physical explanation for the observed
intermittency. It was based on the NSE and succeeded in
deriving the correct scaling exponents, but still lacked simple
and plain formulations. It appears that many of the results

of the VF theory can be understood by consideration of a
simple cylindrical model of VFs [14, 15]. Moreover, the
simple example allows us to formulate some statements in
a more exact way than in the general case. However, this
simplification implies of course some additional difficulties.
In this paper, we comment on the VF model and derive
some of its results on the basis of the particular case of a
cylindrical VF.

We consider fully developed turbulence in an
incompressible liquid. Since we are interested in the
properties of the inertial range, we neglect the effects of
viscosity. However, we consider only those solutions to the
Euler equation that can be obtained as the limit of a sequence
of ‘viscous’ solutions. (In a sense, we consider the inviscid
limit of the NSE.)

In section 2, we introduce the cylindrical VF. We
define the locally homogeneous large-scale flow that can
be produced by forces acting, e.g., on a sphere of some
large radius. Then we add small-scale fluctuations and show
that the evolution of vorticity is determined in the model
by the large-scale force. We also discuss the relation to
two-dimensional (2D) turbulence. This allows us to check
the existence of the solutions. In section 2.4, we discuss the
dynamical evolution of the described system.

In section 3, we discuss possible ways of introducing
stochasticity into the NSE. We show that the way this is done
in the VF model corresponds to introducing random boundary
conditions into the NSE, instead of external large-scale
random forces. Then we briefly recall the derivation of
statistic moments of the vorticity and the asymptotic vorticity
probability density function (PDF) obtained in previous
papers, and comment on the availability of the model.
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In section 4, following [15, 16], we combine the
cylindrical model with the MF model to calculate longitudinal
and transverse structure functions. Extreme filaments that
make a major contribution to the scaling exponents of very
high order are discussed in detail. It is shown that transverse
scaling exponents are well described by the cylindrical model,
while for longitudinal scaling exponents of high order one has
to take strongly curved filaments into account.

2. Cylindrical model: dynamics

The main idea of the VF model is that regions of high vorticity
(VFs) are responsible for the observed intermittent properties
of a turbulent flow. Fast rotations stabilize the motion inside
the filament and provide the conditions for exponential growth
of vorticity.

Here, we consider a simplified model that we hope to
reveal the main properties of VFs. In this model, all VFs
are straight, and are aligned with the same axis, so we
do not need to bother about their curvature for some time.
This straightening is achieved by choosing special boundary
conditions for the Euler equation, which in turn corresponds
to a special form of large-scale perturbations.

2.1. Large-scale flow

Let an axially symmetric large-scale flow inside some sphere
of a large radius R be described by the relations

vρ = a(t)ρ, vz = b(t)z. (1)

Here ρ, z are the radial and the axial cylindrical coordinates,
respectively. The flow is homogeneous: shifting of the origin
of the coordinates to any co-moving point would not change
the local construction of the flow. It is also evident that the
vorticity of the flow is zero.

To satisfy the Euler equation, the pressure must take the
form

p =
1
2 p1(t)ρ2 + 1

2 p2(t)z2.

From the incompressibility condition and the Euler equation
we obtain

2a + b = 0, ȧ + a2
= −p1, ḃ + b2

= −p2. (2)

There are three equations and four functions, so the value
p2(t) can be treated as a boundary condition. It governs the
changes in the flow along the z-axis, while p1(t) keeps the
balance of forces across the cylinder.

The flow (1) can be produced by large-scale surface
forces acting on a sphere of a large radius R. Then the value
p2(t) may be interpreted as the large-scale surface force.
The solution outside the sphere R would then decay at large
distance.

Actually, in spherical coordinates, (1) can be written as

vr = ar(1 − 3µ2), vθ = 3ar sin θ cos θ,

vφ = 0, µ= cos θ.

The condition of zero divergence allows us to introduce the
stream function ψ(r, θ) such that

vθ =
1

r sin θ

∂ψ

∂r
, vr = −

1

r2 sin θ

∂ψ

∂θ
.

Integrating the solution inside the sphere R, we obtain

ψ = ar3(µ−µ3), r < R.

The condition for the stream function outside the sphere
(r > R) comes from the requirement of zero vorticity. The
axial and radial components of vorticity are automatically
zero since the solution does not depend on the axial variable;
the third component is

ωφ =
1

r

∂

∂r
(rvθ )−

1

r

∂

∂θ
vr .

Substituting the definition of ψ , we obtain

r2ψrr + (1 −µ2)ψµµ = 0.

The decaying solutions of this equation satisfy ∂ψ/∂µ=∑
Clr−l Pl(µ), where Pl(µ) is the Legendre polynomial.

Matching this with the solution in the inner zone, we find that
only l = 2 is appropriate; thus, in the outer zone we obtain

ψ = a(t)
R5

r2

(
µ−µ3

)
, r > R. (3)

Taking the derivatives, one can now obtain the velocities at
r > R.

Thus, the large-scale flow (1), (3) can be thought of as a
flow in an infinite volume with large-scale forces acting on the
sphere of radius R.

The solution inside the sphere is uniquely determined by
the initial and boundary conditions: indeed, since the initial
vorticity inside the sphere is zero, and the boundary forces
have no rotational moment, the flow remains irrotational.
So, velocity can be written as v = ∇8 and, because of
zero divergence, 18= 0. Now, the boundary conditions are
chosen to be quadrupole, so the only freedom degree for the
solution is the function b(t) restricted by (2).

We note that p2(t) is not arbitrary. Actually, for some
p2(t) (for instance, constant and negative), the solution of (2)
may become infinite at some finite time. However, this is
forbidden by the physical meaning of the process. So, the
choice of p2(t) must not allow infinite a (and, hence, infinite
velocities). For ‘real’ forces acting at radius R this condition
would hold automatically. We will return to this comment later
on, when the formation of filaments will be described.

2.2. Small-scale pulsations

As we have introduced cylindrical large-scale flow,
we now introduce small-scale perturbations. Since we
wish to investigate ‘straightened’ filaments, we also put
corresponding restrictions on these perturbations in order to
keep the picture ‘cylindrical’.

So, let the velocity distribution now take the form

v(r, t)= ezb(t)z + er a(t)r + u.

2



Phys. Scr. T155 (2013) 014005 V A Sirota and K P Zybin

Here u is a velocity field orthogonal to the z-axis, and
independent of z variable. It contains all the vorticity ω

of the flow (ω is directed along the z-axis). From the
incompressibility of the flow it follows that ∇ · u = 0. We
must also add an additional component p̃ to the pressure;
evidently, it does not depend on z. The NSE takes the form

du
dt

+ au + ∇ p̃ = 0, (4)

where d/dt is the derivative along the particle trajectory. The
velocity field u(t) is now restricted only by the condition that
∇ p̃ is conservative, i.e. that ∇ × (∇ p̃)= 0. Taking the curl
of (4) and keeping in mind (2), we rewrite the condition in the
form

dω

dt
− bω = 0. (5)

Taking one more time derivative and substituting ḃ from (2)
gives

d2ω

dt2
= p2(t)ω. (6)

We find that, no matter what the initial velocity field is,
the evolution of vorticity along a particle’s trajectory is
determined by the ‘external’ large-scale force p2, which in
our model is independent of u!

In the general case, an equation analogous to (6) can
be written to describe the evolution of the vorticity vector:
d2ωi/dt2

= ρi j (t)ω j . This equation is an exact consequence
of the NSE, without any additional assumptions. The value
p2 corresponds here to the component of ρi j that is ‘parallel’
to vorticity, i.e. ρi jωiω j/ω

2. The main hypothesis of the
VF theory is that, in general filaments, this component also
corresponds to a large-scale force and is independent of local
vorticity.

2.3. Relation to 2D turbulence

We stress that the flow we have described here is not 2D.
The essential point is that there is (large-scale) motion along
the z-axis, which would provide stretching of a filament in the
z-direction and compression in orthogonal directions.

However, there exists a correspondence between the
solutions u to equation (4) and the solutions to the two-
dimensional NSE. To find this correspondence, we rewrite (4)
in Cartesian coordinates, and add viscosity to the right-hand
side:

∂

∂t
ui + a(ρk∇k)ui + (uk∇k)ui + aui + ∇i p̃ = ν1ui .

Let Q(t) be some function that satisfies the equation Q̇ =

a(t)Q. We introduce new variables:

X1 = x/Q(t), X2 = y/Q(t), w = Q(t)u,

τ =

∫
dt/Q2(t), ˜̃p = Q2 p̃.

The equation then takes the form

∂

∂t
wi +wk

∂

∂Xk
wi +

∂

∂X i

˜̃p = ν
∂2

∂X i
wi ,

which coincides with the 2D NSE.

Figure 1. Isolines of vorticity. Separatrices correspond to ω = 0.
The points A and B are the centers of velocity filaments with
opposite directions of vorticity.

Thus, any solution u(ρ, t) to equation (4) corresponds
to some 2D solution. In the 2D case, the solution exists and
is unique for a general 2D domain [17]. Hence, the same is
true for (4). The only condition is Q(t) 6= 0 for any t , which
corresponds to the requirement of finite a(t).

2.4. Evolution of a filament

The vorticity evolution along any of the particle trajectories
is determined by the large-scale value p2(t), and is described
by equation (6). Different trajectories imply different initial
conditions. Now we analyze possible solutions to the equation
and therefore possible ways of evolution of the flow.

In the simplest case p2(t)= const, the answer is evident
if p2 > 0, vorticity grows (or decreases) exponentially: if
p2 < 0, the solution oscillates. In the case of arbitrary p2(t),
one can obtain an approximate impression of the solution as a
combination of exponential and oscillating sections.

We now note recall that, because of (5), the finiteness of
b = −2a requires that ω̇ = 0 if ω = 0. So, if vorticity is zero at
some initial point, it must be zero along the whole trajectory.
Also, the sign of vorticity cannot change along a particle’s
trajectory. Thus, if the initial ω is positive, the ‘oscillating’
parts must be short enough to not make it negative. So, for
the evolution of vorticity along the particle trajectories, there
are three possibilities: it varies near some value (p2 changes
its sign) or it decreases slowly to zero (p2 is positive most of
the time; special phases pick out the decreasing branch) or it
increases exponentially (p2 is positive most of the time). In
what follows, we will be interested in the last case; we will
show that it makes a major contribution to the statistics.

The prohibition of oscillations is a shortcoming of the
cylindrical model. It is retribution for reducing vorticity to
one dimension. In the general 3D case, b is a tensor, and
each component of vorticity may change its sign. However, in
what follows, we will need mostly the functions p2(t) that are
positive, large and nearly constant, so this difference between
the cylindrical model and the general case is not crucial.

Figure 1 presents a general view of the lines of constant
vorticity in a plane orthogonal to ez (‘vorticity map’). The
points A and B correspond to local maximums of the
vorticity module, one with positive vorticity and another
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with negative vorticity. The whole plane is generally divided
into ‘cells’ separated by isolines of zero vorticity. Because
of the large-scale flow, the particles move along the z-axis,
so the evolution along the particle’s trajectory corresponds,
roughly speaking, to the dependence on z, and one can
discuss the time evolution of the whole (x, y)-plane. (We
note that the large-scale flow is locally homogeneous, so
it acts equivalently in all cells.) Since the sign of vorticity
cannot change along a trajectory, we see that each cell evolves
separately, and different cells do not mix. In this sense, the
topology of the flow does not change.

As we have seen from the analysis of (6), if p2(t) is
positive most of the time, vorticity in some cells (cylinders)
would increase exponentially as a function of time (at least,
on average). We call these cells VFs. The independence of
different cells implies that the neighborhood does not affect a
filament. In particular, two filaments do not disturb each other
significantly even when the distance between them is small.

Two VFs with opposite signs of vorticity can be closed
and form a ring with two turning points on the sphere where
large-scale forces are located. Our cylindric model does not
allow linking of vortex lines.

3. Statistical description

3.1. Introduction of statistics

Introduction of stochasticity into the Navier–Stokes is usually
done by adding some random large-scale forces acting on
the entire liquid volume. It is assumed that, being large
scale, these forces do not distort the flow at the scales inside
the inertial range, but only pump the energy, providing the
energy flux from larger to smaller scales. However, in real
physical systems there are usually no volume external forces.
A more ‘realistic’ problem statement would imply stochastic
boundary conditions; but in such a formulation, a problem
becomes difficult to solve. The approach we propose in
the VF model allows us to reformulate stochastic boundary
conditions as a stochastic coefficient in the equation that
describes vorticity evolution along a particle’s trajectory.
Actually, equation (6) (or its 3D analogue) contains a
large-scale value p2(x) that has the meaning of a force acting
at the boundary of the flow.

Thus, we consider equation (6) (or, in the general case,
its 3D analogue) instead of the NSE and suggest that p2(t) is
a random process. Since p2 is large scale, we assume it to be
independent of local vorticity.

Since we now treat p2(t) as a random process, we need
an ensemble of realizations of the large-scale flow (1). In each
realization, the evolution of the small-scale flow is described
by equation (6) with some definite p2(t). The statistical
properties of a flow can be obtained by averaging over all
possible realizations.

3.2. Correlators of vorticity

For simplicity, we first assume that p2(t) is Gaussian and
delta-correlated, and then generalize the consideration.

Calculation of vorticity correlators based on the 1D
equation (6), as well as the corresponding 3D general
equation, was performed in [10, 11, 14]. Here we recall the

results and comment on them from the point of view of the
cylindrical model.

Consider equation (6) again, and rewrite it as a set of two
first-order equations:

ω̇ = ν, ν̇ = p2ω.

Let p2 be a stationary Gaussian random function. Supposing
delta-correlation of p2 and integrating (6) with different
weights, we obtain a set of linear ordinary first-order
differential equations for the moments 〈ωkνm

〉, k + m = n ∈

N . It is evident that the solutions to this equation set are
exponents; in particular,〈

ωn(t)
〉
∝ eλn t .

Substituting this into the set of equations, one obtains an
algebraic equation for λn . Since we are interested in large
values of t , we must choose the largest root for each n. It
appears that λn(n) is a concave function, which means that
the statistical moments of vorticity demonstrate intermittent
behavior: 〈ωn+m

〉> 〈ωn
〉〈ωm

〉.
To understand the mechanism that provides these

intermittent correlators, and also in order to extend the results
to the cases of finite correlation time or non-Gaussianity, it
is useful to develop a mathematical tool for calculating λn

analytically. It appears that the WKB method is a tool that
works very well in the simple case, and can work under
weaker assumptions. To simplify the notation, we hereafter
write p(t) instead of p2(t). The probability density P[p](t)
is Gaussian, and any average can be written in terms of a
continual integral; in particular,

〈ωk(t)〉 =

∫ ∏
τ

dp(τ )P[ρ](t)ωk(t)

=

∫ ∏
τ

dp(τ )e−
1
2

∫ t
0 p2(t ′)dt ′

ωk[t, p(τ )].

Suppose that a major contribution to the integral is made
by the trajectories where p is very large. (We will prove it later
on.) The WKB method, up to pre-exponent accuracy, gives
for (6) an approximate solution |ω(t)| ∼ e

∫
dt ′

√
p(t ′). Thus, we

obtain

〈ωk(t)〉 ∼

∫ ∏
τ

dp(τ )e

t∫
0
(−ρ2/2+k

√
p)dt ′

.

We use the method of saddle points to calculate this
integral. The saddle-point trajectory p∗(t) is the one that
gives the maximal exponent. Taking the variational derivative
with respect to p(τ ), we obtain −p∗(t)+ k

2 p−1/2
∗ (t)= 0,

hence p∗(t, k)= (k/2)2/3. We see that the realizations
with large and nearly constant p(t, k) give the main
contribution to 〈ωk

〉. This justifies our supposition made in
the beginning of the derivation. Substituting p∗(t), we obtain

〈ωk(t)〉 ∼ exp
{

3
2

(
k
2

)4/3
t
}
. Thus,

λk ∝ k4/3.
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Although this result is obtained as an approximation at large
values of k, it works very well also for small values. The
asymptote is close to the exact values beginning with k = 2
(discrepancy ∼ 0.1 for k = 2). One can show that the results
are also valid if δ correlation of p(t) is not assumed [14].

In [15], we also derived the equation for the PDF f (ω, ν)
for the cylindrical model. We found the asymptote for the
integral P(ω)=

∫
f (ω, ν)dν at large ω:

P(ω)= Cω−4 + · · · . (7)

An analogous expression with the same dependence on ω
was obtained in [9] for the general 3D case.

3.3. Gaussianity and negative p

We have already mentioned that in the cylindrical model, there
is a restriction demanding that a(t)must be finite. This means
that p(t) cannot be Gaussian and delta-correlated. However,
this apparent contradiction does not spoil the model. Actually,
we can see from the analysis that, under the assumption of
Gaussianity and δ correlation (and also for finite correlation
time), a major contribution to the correlators is made by the
realization of the random process p(t) such that p is positive
and nearly constant. The corresponding solution for ω(t) is
a growing exponent. The distortions of the statistics of p(t)
caused by the restriction of a finite a concern only the region
of negative values p and small ω. So, these corrections would
not change the results.

On the other hand, in the general 3D case there are
no such restrictions for variables analogous to p, and the
assumption of Gaussianity (or at least symmetry) of its PDF
is natural. Thus the cylindrical model reflects correctly the
statistical properties at large vorticities: for vorticities close
to zero, the model is much less confident.

One more comment concerns the requirement of constant
sign of vorticity along a trajectory. In the 3D case the
corresponding tensor equation requires no such restrictions,
and any projection of vorticity may oscillate. However,
the absolute value of vorticity would on average grow
exponentially, even though p is Gaussian and oscillating
regimes for every projection alternate with exponentially
growing/decreasing regions.

4. Velocity structure functions

We now discuss the application of the cylindrical model to
the calculation of velocity structure functions. We will be
interested in longitudinal and transverse structure functions;
these are

S‖

n(l)=

〈∣∣∣∣v(r + l)− v(r) ·
l
l

∣∣∣∣n〉
,

S⊥

n (l)=

〈∣∣∣∣v(r + l)− v(r)×
l
l

∣∣∣∣n〉
,

respectively. The average is taken over all pairs of points
separated by a given l. Within the inertial range of scales, the
functions demonstrate the scaling behavior

S‖

n(l)∝ lζ
‖
n , S⊥

n (l)∝ lζ
⊥
n .

The scaling exponents ζ ‖

n and ζ⊥
n are proved to coincide in

isotropic flows for n = 2 and 3. For other n, the question
of whether they coincide or not is open. Many recent
experiments and DNS show a difference between ζ ‖

n and ζ⊥
n

for larger n, and this is to be understood theoretically.
The cylindrical model is not isotropic. However, isotropy

can be obtained if we combine many cylindrical ‘bunches’
with different orientations.

In [15, 16], we proposed a combination of the VF
model with the MF framework. This allowed us to calculate
both kinds of scaling exponents. Our assumption is that a
major contribution to structure functions (and to intermittent
statistics in general) is made by the same high-vorticity VFs
that contribute most to vorticity moments. For these filaments,
the statistical moments of vorticity and the extremal behavior
of the vorticity PDF as ω→ ∞ are known both in the
cylindrical model and in the general 3D case [9, 10, 14].
However, it is difficult to relate the statistical characteristics
of vorticity to those of velocity. The MF framework provides
the means of reaching this goal.

Here we recall briefly the results (which are suited
to both the general 3D case and the cylindrical example)
and concentrate on the properties of extreme filaments that
contribute to the largest-order structure functions.

4.1. Difference between the transverse and longitudinal
structure functions: the simplest case

Consider now the simplest case of an axially symmetric
filament. In this case, u = ρ ×ω. In the exponentially growing
filament, b = −2s = ω̇/ω� ω; thus, u forms a major part
of the whole velocity and should make a major contribution
to structure functions. However, it does not contribute to the
longitudinal structure functions:

1v‖ = (v (r + l)− v(r)) · l/ l ' (al2
⊥

+ bl2
z )/ l ∼ al.

In contrast,

1v⊥ = |(v (r + l)− v(r))× l/ l| ' ωl⊥lz/ l ∼ ωl.

We find that 1v⊥ �1v‖; in this simple example, there is
no equivalence between longitudinal and transverse structure
functions. Considering a set of such filaments with randomly
oriented axes restores the isotropy of the flow but does not
change the relation between the structure functions. However,
adding some asymmetry to each filament would restore the
equality.

In our opinion, this may be a clue to understand better
the difference observed between longitudinal and transverse
velocity scaling exponents.

4.2. MF conjecture

We now recall briefly the main points of the MF model
[7, 8]. The model generalizes the Kolmogorov theory (K41)
to describe the observed nonlinear dependence of scaling
exponents on their order.

The assumption of the model is that a main contribution
to velocity structure functions is made by the solutions where

δv(l)= |v (r + l)− v(r)| ∼ lh(r).

5
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So, to calculate structure functions, it is enough to consider
only a set of scaling solutions that can be numbered by h.
This property is called local scale invariance.

The behavior of correlations at l → 0 is deliberately
determined by rare events (otherwise they would be trivial
and much smaller, 〈1vn

〉 ∼ ln). From the large fluctuations
theorem it follows that the probability of the measured
velocity difference 1v(l) to have the scaling h is a power-law
function of l: p = l3−D(h). Knowing D(h), one could in
principle calculate all structure functions:

〈1vn
〉 =

∫
lnhl3−D(h)dµ(h).

Here dµ(h) is the measure that is responsible for the relative
weights of different values of h. It makes a pre-exponential
factor which could give logarithmic corrections to scaling
laws. In the limit l → 0, only the smallest exponent
contributes to the integral; using the steepest descent method,
we obtain

lim
l→0

ln〈1vn
〉(l)

ln l
= ζn, ζn = min

h
(nh + 3 − D(h)) . (8)

D(h) is a concave function reaching its maximum at some h0;
according to (8), the requirement ζ0 = 0 leads to D(h0)= 3.

4.3. Combination with the VF model

The regions of high vorticity are VFs, so they determine the
vorticity PDF at large ω. Making use of the ergodic theorem,
we write the probability density of vorticity as the spatial
average over all filaments:

P(ω)=
1

V

∫
drδ(ω−�(r))=

1

V

∑
i

∫
Vi

drδ(ω−�i (r)).

Here V is the entire volume of the liquid, the sum is taken
over all filaments, and Vi is the volume occupied by the i th
filament; �i (r) is the spatial distribution of vorticity inside
the i th filament.

The VFs are strongly elongated, and locally, most of them
can be thought of as those in the cylindrical example. Taking,
for simplicity, an axially symmetric cylindrical filament with
vorticity directed along the z-axis, we obtain

P(ω)=
2πL

V

∑
i

∫
dr r δ (ω−�i (r))=

2πL

V

∑
i

ri (ω)

|�i
′

r |
.

Here the derivatives are taken at the values of r where vorticity
is equal to ω. Multiplying both parts by ω4 and making use
of (7), we obtain ∑

i

ri (ω)ω
4

|�i
′

r (ω)|
= const.

The VFs are supposed to be the regions responsible for
the scaling behavior. Different filaments can have different
scaling, so they belong to different ‘MF classes’ h and make
the most important part of each h-class. Thus, we rewrite the

sum as an integral over all classes h:∫
l3−D(h)dµ(h)

r�4

|�′
r |

= const.

We now account for the scaling properties inside a fractal.
At the given scale l, the major contribution to 1v from a
given filament comes from r ∼ l. Taking account of scaling
properties inside a fractal and taking the average over radius
l; we obtain �∼1v(l)/ l ∼ lh−1, �′

r ∼ lh−2, r ∼ l. Then∫
l3−D(h)+3h−1dµ(h)= 1.

As l → 0, with the WKB accuracy the integral is equal to

l
min

h
(3h+2−D(h))

. The right-hand side does not depend on l,
hence

min
h

(3h + 2 − D(h))= 0. (9)

Comparing this with (8), we find that the condition is just
equivalent to

ζ3 = 1. (10)

Thus, we obtain the well-known exact statement of
Kolmogorov’s theory just from the MF theory, adding the
ideas of cylindrical filament and the stationary vorticity
distribution function, without any assumptions on D(h).

4.4. Extreme filament

The range of possible h is restricted by some hmin. From the
condition [8] ζ ′′

n < 0 and from the absence of singularities
of 1v at l → 0, it follows that (ζn)

′

n > 0 for any n; hence
hmin > 0.

In terms of ζn , h = hmin corresponds to the limit n → ∞.
This limit, in turn, corresponds to very rare events with
extremely large values 1v(n) ' 〈1vn

〉
1/n . To give an estimate

of these rare events, we note that

〈1vn
〉

1/n
∝ lζn/n

→n→∞ lhmin .

A stronger constraint for hmin could appear if the Euler
equation would not allow singular behavior of 1v at
extremely small l, like 1v(l)∼ lα, α > 0. Actually, the
steeper the 1v(l) for a given vortex, the lower the h to which
it contributes. The Euler equation gives no limitations for the
slope1v(l), so no positive h can be picked as the lower limit.
To make sure of that, we consider the extreme filament that
corresponds to h = hmin = 0.

The value hmin = 0 is possible if there exists a filament
with 1v ∼ l0 at very small l. This condition is satisfied if we
take in our cylindrical model a filament (‘cell’) with

u = eφ · c(t). (11)

To satisfy (4), the function c(t) has to be c(t)∝

exp{−
∫ a(t)

R dt}. One can check that in this extreme case,
indeed, δv(l)∼ l0. The pressure diverges logarithmically; this
means that for any positive h, there exists a corresponding
velocity distribution with converging pressure.

6



Phys. Scr. T155 (2013) 014005 V A Sirota and K P Zybin

Thus, in the cylindrical model of stretching filaments we
have vortices that correspond to all possible values of h, up to
the extremal value

hmin = 0. (12)

The behavior of D(h) in the vicinity of hmin = 0 is
also determined by very rare events (or very small regions)
with highest velocity differences. Which events should we
take into account? To clarify the situation, we first calculate
the contribution to velocity structure functions made by the
‘extreme’ cylindrical filament (11). Recalling that a � ω in
the cylindrical model, we neglect the ‘large-scale’ velocities;
only u is to be taken into account. Then, expanding sinφ near
its maximum and using the saddle point method to calculate
the integral over r , we find that

〈|δv‖|
n
〉 = cn

∫ 2π

0
dφ

∫ R

0
rdr | sinφ|

n

∣∣∣∣∣ r√
r2+2rl cosφ+l2

−1

∣∣∣∣∣
n

' cn
∫ 2π

0
| sinφ|

ndφ
∫ R

0

(
r

√
r2 + l2

− 1

)n

rdr

' 2

√
2π

n
cn l2

en2
= l2 O(n−5/2).

For transverse structure functions, using Cartesian coordinates
and expanding the integrand in the vicinity of the saddle point
x = −l/2, we obtain

〈|δv⊥|
n
〉 = cn

∫ ∫
dxdy

∣∣∣∣∣ l + x√
l2 + 2lx + y2

−
x√

l2 + y2

∣∣∣∣∣
n

'
2n

n
l2 ln

R

l
.

We see that in both cases the extreme cylindrical filament
provides the same limit of the scaling exponent |ζn|n→∞ = 2,
which corresponds to D(0)= 1. This is reasonable to expect
since the value D(h) has the meaning of the probability of
finding the region corresponding to h inside a sphere of radius
l. So, the dimension of the extreme cylindrical filament is
unity.

However, the pre-exponents demonstrate different
behavior: actually, at large n values the contribution to the
longitudinal structure functions is very small, so it is not
noticeable compared to contributions from other filaments
with larger h. Thus, the extreme cylindric filaments determine
the extreme dimension D⊥(0)= 1 and the limit of the scaling
exponent for transverse structure functions:

D⊥(0)= 1, lim
n→0

ζ⊥

n = 2, (13)

but they do not contribute to the corresponding longitudinal
values. The reason is that, as we discussed above,
axially symmetric configurations do not produce longitudinal
structure functions. So, these functions must be contributed
by some other, even more ‘rare’, extreme configurations with
strongly broken axial symmetry. These are strongly curved
extreme filaments.

4.5. Extreme filaments for longitudinal structure functions

The cylindrical model fails to describe the extreme filament
that would make the most contribution to ζ ‖

n : it is impossible

to obtain D′′
� 1 in the cylindrical framework. However, the

extreme axial filament gives an idea of how other extreme
configurations can be found.

In order to correspond to h = hmin = 0, the ‘strongly
curved extreme filament’ must also satisfy 1v(l)∼ l0. For
simplicity, one can set vφ = 0 in spherical coordinates. Then
the non-divergent solution can be written as

vr =
1

sin θ

∂

∂θ
(B sin θ), vθ = −2B. (14)

To satisfy the Euler equation, we need

2B
∂

∂θ

(
1

sin θ

∂

∂θ
(B sin θ)

)
+ 4B2

= r
∂p

∂r
,

∂

∂θ

(
B2

)
− 2B2 cot θ = −

∂p

∂θ
.

Since the left-hand sides are independent of r , we obtain
p = −c1logr +π(θ). (As in the case of cylindrical extreme
filaments, logarithmic dependence means that p(r) converges
for any h > 0.) The analysis of the first equation then shows
that there are solutions that diverge logarithmically at θ = 0:
B(θ → 0)' θ

√
− log θ . This corresponds to π(θ → 0)∼ θ2

in the second equation.
Since 1v(l)∼ l0 and the average includes r2dr , the

solution gives 〈1vn
〉 ∝ l3; thus, limn→∞ ζn = 3, which

corresponds to
D‖(0)= 0. (15)

The logarithmic divergence along the axis θ = 0 would also
vanish if one allows any weak dependence on r , i.e. h < 0.
Such filaments could be made by folding up a ‘usual’
cylindrical filament, so that the kink is point-like. Also the
bending may generally be connected with links of different
filaments. Although very rare and unimportant at intermediate
n, they become more and more important as n increases.

We stress that all possible kinds of filaments may be
presented in a flow, and all of them contribute to all the
structure functions. But the fraction of the contributions is
different for longitudinal and transverse functions, and this
causes the difference between D‖(h) and D‖(h). This can
be clearly seen for h → 0 (n → ∞): the transverse scaling
exponents are dominated by roughly axially symmetric
configurations close to the extreme cylindrical filament (11).
The strongly curved configurations close to (14), although
occupying much less volume and insufficient for S⊥

n , still
dominate in S‖

n where the axial configurations count little.

4.6. Calculation of scaling exponents

Knowing D(0) allows us to find an approximation for D(h)
and thus for ζn , as was done in [16]. Actually, since we
consider the function D(h) as not far from its maximum
D(h0)= 3, the simplest function to approximate it is a
quadratic expression:

D(h)= 3 − b(h − h0)
2, h > 0. (16)

Here b and h0 are unknown; conditions (9) and (13), (15)
allow us to find these parameters for either D⊥(h) or D‖(h).
The corresponding scaling exponents are

ζn = nh0 − n2/4b, n 6 n∗ = 2bh0, (17)

7
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Figure 2. Euler longitudinal (upper branch) and transverse (lower
branch) scaling exponents: the results of DNS from [3] (◦, �)
and [2] (4, ∇) and the result of the theory (17) (lines).

where

h‖

0 ' 0.37, b‖
' 22.3; h⊥

0 ' 0.39, b⊥
' 13.1.

In figure 2, we reproduce the resulting graphs ζ⊥
n and ζ

‖

n

obtained in [16]. The scaling exponents fit the experimental
data very well so that there are no adjusting parameters. A
weakness of this result is that whereas it gives ζ⊥

3 = ζ
‖

3 by
construction, it does not satisfy the second exact requirement
ζ⊥

2 = ζ
‖

2 . However, the difference is very small: ζ ‖

n − ζ⊥
n '

10−2. The equality can be achieved if one takes the third-order
terms in D(h) into account. However, the contribution of
higher orders to ζn at n 6 10 would be very small.

For

n > n∗ = D′(hmin),

the minimum in (8) is reached at the boundary h = hmin.
From (8) it follows that ζn|n>n∗

= nhmin + 3 − D(hmin). If hmin

were positive, ζn would be a linear function; since hmin = 0,
ζn reaches its maximum and becomes constant: ζ ‖

n |n>n∗
= 3,

ζ⊥
n

∣∣
n>n∗

= 2. The saturation boundary n∗ in (17) is ζ ‖

n ' 16,

ζ⊥
n ' 10. Taking into account the higher-order terms in (16)

can shift the value of n∗ significantly. Also they would smooth
the transition to the constant.

5. Conclusion

We have discussed the cylindrical model that is a particular
case of the VF model. It treats VFs in a strongly simplified
way, making the picture effectively two dimensional. Still
the model provides practically the same results for ζ⊥

n and
a significant part of ζ ‖

n as the general VF theory. The reason
for the coincidence is probably that most of the filaments are
strongly stretched and hence roughly cylindrical. The extreme
filaments that contribute to ζ ‖

n and ζ⊥
n at large values of n

are considered in detail. We thank Professor Ya G Sinai, M
Bustamante, Professor H Baumert and Professor A Klimenko
for fruitful discussions. We also thank Professor A V Gurevich
for his kind interest in our work. This work was partially
supported by the RAS Program ‘Fundamental Problems of
Nonlinear Dynamics’.
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