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Abstract The coloring problem is studied in the paper for graph classes defined
by two small forbidden induced subgraphs. We prove some sufficient conditions for
effective solvability of the problem in such classes. As their corollary we determine the
computational complexity for all sets of two connected forbidden induced subgraphs
with at most five vertices except 13 explicitly enumerated cases.

Keywords Vertex coloring - Computational complexity -
Polynomial-time algorithm

1 Introduction

The coloring problem is one of classical problems on graphs. Its formulation is as
follows. A coloring is an arbitrary mapping of colors to vertices of some graph. A graph
coloring is called proper if any neighbors are colored in different colors. The chromatic
number of a graph G (denoted by x (G)) is the minimal number of colors in proper
colorings of G. The coloring problem for a given graph and a number & is to determine
whether its chromatic number is at most k. The vertex k-colorability problem is to
verify whether vertices of a given graph can be colored with at most k colors. The
edge k-colorability problem is formulated by analogy.

A graph H is called an induced subgraph of G if H is obtained from G by deletion
of vertices. The induced subgraph relation is denoted by C;. In other words, H C; G
if H is an induced subgraph of G. A class is a set of simple unlabeled graphs. A class
of graphs is called hereditary if it is closed under deletion of vertices. It is well known
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2262 D. S. Malyshev

that any hereditary (and only hereditary) graph class X can be defined by a set of its
forbidden induced subgraphs S. We write X = Free(S) in this case. If a hereditary
class can be defined by a finite set of forbidden induced subgraphs, then it is called
finitely defined. For a finitely defined class X = Free(S) and a graph G the problem
whether G belongs to X is decided in polynomial time (e.g., by determining in G an
induced copy of a graph in S).

The coloring problem for G-free graphs is polynomial-time solvable if G <; Py
or G C; P3 @ K and it is NP-complete in all other cases [1]. A study of forbidden
pairs was also initialized in the paper. When we forbid two induced subgraphs, the
situation becomes more difficult than in the monogenic case. Here only partial results
are known [2-6]. The next statement is a survey of such achievements [5].

Theorem 1 Let G| and G be two fixed graphs. The coloring problem is NP-complete
for Free({G1, G2}) if:

- Cp Ci Gy for some p > 3 and Cy C; G for some g > 3

- K13S; Grand K13 S; G2

— K13 Ci Gy and either K4 C; Gy or K4 — e C; G (or vice versa)

- K13 S Grand Cp C; G for some p > 4 (or vice versa)

— G and G contain a spanning subgraph of 2K» as an induced subgraph

- (3G Grand K1, C; G for some p > 5 (or vice versa)

— C3C; Gy and Pigs C; Gy (or vice versa)

- Cp Ci Gy for p = 5 and G, contains a spanning subgraph of 2K, as an induced
subgraph (or vice versa)

— either C, @ K1 C; Gy for p € {3, 4} orC_q C; Gy for g = 6 and Gy contains a
spanning subgraph of 2K, as an induced subgraph (or vice versa)

It is polynomial-time solvable for Free({G1, G2}) if:

— G and G, are induced subgraphs of Py or Pz ® K

- G1 S Ki3and Gy S; C3 @ K (or vice versa)

— G1 S, paw and Gy # K| 5 is a forest with at most six vertices (or vice versa)

- G C; paw and either Go <; pKy or G C; Ps & pKy for some p >
1(or vice versa)

- G1 S Ky for p > 3 and either G, C; qK; or Go C; Ps @ qKy for some
q > 1(or vice versa)

— G C; gem and either G, C; Py @ Ky or Gp C; Ps (or vice versa)

— G| C; Psand either G, C; P4 ® K1 or Gy C; 2K5 (or vice versa)

In the present article we prove some sufficient conditions for NP-completeness and
polynomial-time solvability of the coloring problem for {G, G;}-free graphs. They
add new information about its complexity for some cases that Theorem 1 does not
cover. For instance, the problem is NP-complete for {K 4, bull}-free graphs, but it is
polynomial-time solvable for Free({K 3, Ps}), Free({K1 3, hammer}),

Free({Ps, C4}). The complexity was earlier open for these four cases. As a corollary
of the conditions we determine the complexity for all sets {G1, G2} of connected
graphs with at most five vertices except 13 listed cases.
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The coloring problem for classes with two small obstructions 2263

2 Notation

As usual, P, Cy, K, O, and K, stand respectively for the simple path with
n vertices, the chordless cycle with n vertices, the complete graph with n ver-
tices, the empty graph with n vertices and the complete bipartite graph with p
vertices in the first part and g vertices in the second. The graph K, — e is
obtained by deleting an arbitrary edge in K,. The graph paw is obtained from
K13 by adding a new edge incident to its vertices of degree two. The graphs
fork, gem, hammer, bull, butter f1y have the vertex set {1, 2, 3, 4, 5}. The edge set
for fork is {(1, 2), (1, 3), (1, 4), (4,5)}, for gem is {(1, 2), (1, 3), (1,4), (1, 5), (2, 3),
(3,4), (4,5)}, for hammer is {(1, 2), (1, 3), (2, 3), (1, 4), (4, 5)}, for bull is {(1,2),
(1,3),(2,3), (1,4), (2,5)}, for butterflyis {(1, 2), (1, 3), (2, 3), (1, 4), (1, 5), (4,5)}.

The complement graph of G (denoted by G) is a graph on the same set of vertices
and two vertices of G are adjacent if and only if they are not adjacent in G. The sum
G1 ® G, is the disjoint union of G| and G». The disjoint union of k copies of a graph
G is denoted by kG. For a graph G and a set V' C V(G) the formula G\V’ denotes
the subgraph of G obtained by deleting all vertices in V.

3 Boundary graph classes

The notion of a boundary graph class is a helpful tool for the analysis of the compu-
tational complexity of graph problems in the family of hereditary graph classes. This
notion was originally introduced by Alekseev for the independent set problem [7].
It was applied for the dominating set problem later [§]. A study of boundary graph
classes for some graph problems was extended in the paper of Alekseev et al. [9],
where the notion was formulated in its most general form. Let us give the necessary
definitions.

Let IT be an NP-complete graph problem. A hereditary graph class is called IT-
easy if IT is polynomial-time solvable for its graphs. If the problem IT is NP-complete
for graphs in a hereditary class, then this class is called IT-hard. A class of graphs
is said to be Il-limit if this class is the limit of an infinite monotonically decreasing
sequence of [1-hard classes. In other words, &’ is IT-limit if there is an infinite sequence
X1 D Xj D ...of IT-hard classes, such that X = ﬂ,fil AX. A minimal under inclusion
IT-limit class is called [T-boundary.

The following theorem certifies the significance of the boundary class notion.

Theorem 2 [7] A finitely defined class containing a T1-boundary class is T1-hard. If
it does not contain T1-boundary classes, then it is T1-easy (unless P = N P).

The theorem shows that knowledge of all IT-boundary classes leads to a complete
classification of finitely defined graph classes with respect to the complexity of IT.
Two concrete classes of graphs are known to be boundary for several graph problems.
First of them is S. It is constituted by all forests with at most three pendant vertices
in each connected component. The second one is 7, which is a set of the line graphs
of graphs in S. The paper [9] is a good survey about graph problems for which either
S or 7T is boundary.
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2264 D. S. Malyshev

Some classes are known to be limit and boundary for the coloring problem. The set
of all forests (denoted by F) and the set of line graphs of forests with degrees at most
three (denoted by 7”) are limit classes for it [10]. The set co(7) = {G : G € T}
is a boundary class for the problem [11]. The set of boundary graph classes for the
coloring problem is continuum [12,18]. Some continuum sets of boundary classes for
the vertex k-colorability and the edge k-colorability problems are known for any fixed
k>3[11,13].

4 NP-completeness of the coloring problem for {Kj 4, bull}-free graphs

The results listed above on limit and boundary classes for the coloring problem together
with Theorem 2 allow to prove NP-completeness of the problem for some finitely
defined classes. Namely, if ) is a finite set of graphs and no one graph in ) belongs to
aclassin {F, 7", co(T)}, then the problem is NP-complete for Free()). But this idea
cannot be appliedto Free({K 4, bull}),because K| 4 € F, bull € T', bull € co(T).
Nevertheless, the coloring problem is NP-complete for it. To show this we use the
operation with a graph called the diamond implantation.

Let G be a graph and x be one of its nonpendant vertex. Applying the diamond
implantation to x implies:

— an arbitrary splitting of the neighborhood of x into two nonempty parts A and B
— deletion of x and addition of new vertices y1, y2, y3, Y4
— addition of all edges of the kind (y1, @), a € A and of the kind (y4, b),b € B

— addition of the edges (y1, y2), (¥1, ¥3), (¥2, ¥3), (¥2, y4), (3, y4)

Clearly that for any graph and any its nonpendant vertex applying the diamond
implantation preserves vertex 3-colorability. This property and the paper [14] give the
key idea of the proof of Lemma 1.

Lemma 1 The vertex 3-colorability problem (hence, thecoloringproblem) is NP-
complete for the class Free({K 4, bull}).

Proof The vertex 3-colorability problem is known to be NP-complete for triangle-free
graphs with degrees at most four [15]. Let us consider connected such a graph with
at least two vertices. We will sequentially apply the described above operation to its
vertices with edgeless (i.e., inducing the empty graph) neighborhoods. In other words,
if H is a current graph, then it is applied to an arbitrary vertex of H that does not
belong to any triangle. The sets A and B are arbitrarily formed with the condition
[|A] — |B|| < 1. The whole process is finite, because the number of its steps is no
more than the quantity of vertices in the initial graph. Hence, the resultant graph is
formed in polynomial time. It belongs to Free({K| 4, bull}), since (with respect to
the definition of the diamond implantation) degrees of its vertices are at most four and
any its vertex belongs to an induced copy of K4 — e, whose two vertices of degree
three have in the resultant graph the same degrees. Thus, the vertex 3-colorability
problem for triangle-free graphs with degrees at most four is polynomially reduced
to the same problem for graphs in Free({K| 4, bull}). Hence, it is NP-complete for
Free({K1 4, bull}). O
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The coloring problem for classes with two small obstructions 2265

5 Some structural results on graphs in some classes defined by small
obstructions

For a hereditary class X' and a number k the class [X]x is a set of graphs, for which
one can delete at most k vertices such that the result belongs to X'.

Lemma 2 If some connected graph G € Free({K1 3, Ps}) contains an induced cycle
C of length at least four, then G € [Free({03})]s.

Proof Length of C is equal to either four or five. We will show first that C dominates
all vertices of G. Assume that there is a vertex of G that does not belong to C and
adjacent to no one vertex of the cycle. Then due to the connectivity of G there are
vertices x, y € V(G)\V (C), such that (x, y) € E(G), x is not adjacent to any vertex
of C and y is adjacent to at least one vertex of C. Since G € Free({K13}), then y
is adjacent to exactly two vertices of C. The vertices x, y and some three consecutive
vertices of the cycle (one of which is adjacent to y) induce the subgraph Ps. Thus, C
dominates all vertices of G.

We will show that the graph G\ V (C) does not contain three pairwise nonadjacent
vertices. This fact implies the validity of Lemma 2. Assume that G\ V (C) has a set
V' of three pairwise nonadjacent vertices. Since G is K 3-free, then the intersection
of the neighborhood of each vertex in V’ with V(C) is a set of at least two (three for
C = Cs) consecutive vertices of C.

Let us consider the case C = Cs. No one vertex of V' can be adjacent to all vertices
of C, since otherwise some vertex of C is adjacent to all vertices of V' (and G contains
K3 as an induced subgraph). One can assume that no one vertex in V' is adjacent to
exactly four vertices of the cycle C, since in this case the graph G contains the induced
cycle C4 and the case C = C4 will be considered later. Therefore, we can consider
only the situation, where each vertex of V' is adjacent to three consecutive vertices of
C and the corresponding sets of three consecutive vertices are distinct (otherwise G
contains K 3 as an induced subgraph). Then, some two vertices of V' and some three
vertices of C induce Ps. So, if C = C5, then we have a contradiction.

Now we consider the case C = Cy. It is easy to verify that avoiding induced K 3
in G leads to only the following situations:

— one vertex of V' is adjacent to all vertices of C and the other two vertices of V'’ are
adjacent to disjoint pairs of its consecutive vertices

— one vertex of V' is adjacent to two consecutive vertices of C and each of the other
two vertices is adjacent to three consecutive vertices of C, they have two common
neighbors in C and the first vertex has only one common neighbor in C with each
of them

— each of two vertices of V' is adjacent to two consecutive vertices of C, the third
one is adjacent to three consecutive vertices of C and any two vertices of V/ have
only one common neighbor in C

The graph G contains Ps as an induced subgraph in all three cases. We come to a
contradiction. Thus, the initial assumption was false. O

Lemma 3 Ifsome connected graph G € Free({K1 3, hammer}) contains an induced
cycle C,, (n > 7), then G is isomorphic to C,,.
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2266 D. S. Malyshev

Proof Assume opposite i.e., there is a vertex x € V(G)\V (C,). One can easily show
that the vertex x is adjacent to at least one vertex of C,,. It is easy to verify that the set
of x’s neighbors in C,, is constituted either by two, three or four consecutive vertices or
by two pairs of consecutive vertices (otherwise G ¢ Free({K13})). In both situations
the graph G contains hammer as an induced subgraph. Hence, the assumption was
false. O

Lemma 4 If some connected graph G € Free({K| 3, hammer}) contains Ce as an
induced subgraph, then G\'V (Ce) is the disjoint union of at most three cliques.

Proof Let us consider the set V' = V(G)\V (Co). It is easy to verify that the intersec-
tion of the neighborhood of each vertex in V’ with Cg induces in G the subgraph 2K>.
Let us consider now two arbitrary vertices in V’. If they are adjacent, then they have
in Cg the same sets of neighbors and if they are not adjacent, then the mentioned sets
are distinct. This implies that V'’ does not contain four pairwise nonadjacent vertices.
Thus, G\ V (Ce) is the disjoint union of at most three cliques. O

Lemma S For any connected graph G € Free({K1 3, hammer}) at least one of the
following properties is true:

— G is a simple cycle

— G contains the induced subgraph Cg

— G has a pendant vertex

— G belongs to the class Free({Ps})

— G belongs to the class [Free({03})]5

Proof Assume that G ¢ Free({Ps}). Let us consider an induced path P, of G having
the maximal length. Clearly, n > 5. Let us consider an arbitrary end of this path. One
can assume that it is adjacent to some vertex x € V(G)\V (P,), otherwise G contains
a pendant vertex. By the maximality of P, the vertex x is adjacent to at least two
vertices of the path. One can consider that x is adjacent to at least one interior vertex
of P,, otherwise G is a simple cycle (by Lemma 3) or it contains C¢ as an induced
subgraph.

Let n > 5. To avoid induced K 3 the vertex x must be adjacent to three or four
consecutive vertices of P, or to both its ends or to three vertices of P, that induce
the subgraph K> @ K in G or to four vertices inducing 2K». The graph G contains
hammer as an induced subgraph in all these situations.

Let n = 5 now. One can assume that the graph G\ V (Ps) has three pairwise non-
adjacent vertices (otherwise G € [Free({03})]s). It is easy to check that any of these
three vertices must be adjacent to either three central vertices of Ps or to all its vertices,
except central or to the first, the third and the fourth vertices of Ps (counting from
some of the Ps’s ends) or to the first and the last its vertices. The graph G contains Cg
as an induced subgraph in the last case. Hence, we can consider that no one among the
three vertices is adjacent to only the ends of Ps. If one of the three vertices is adjacent
to the first, the third and the fourth vertices of Ps5 and other of these vertices is adjacent
to the second, the third and the fifth ones, then G contains induced C¢. Therefore, one
can assume that there are no such two vertices. Either the second or the fourth vertex
of Ps is adjacent to the three vertices and, hence, G is not K 3-free. Thus, the initial
assumption was false. O
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The coloring problem for classes with two small obstructions 2267

6 On formulae connecting the chromatic numbers of a graph and of its induced
subgraphs

The following statement is obvious.

Lemma 6 If G is a connected graph with at least three vertices and a pendant vertex
v, then x (G\{v}) = x(G).

Lemma 7 Let G be a connected graph in Free({Ps, C4}) that contains an induced
copy of Cs. Let V7 be the set its vertices that are adjacent to all vertices of Cs, V, be
the set of vertices in G that have three neighbors in Cs, G1 and G, be the subgraphs
of G, induced by V(G)\(V1 U Vo U V(Cs)) and Vi U Vo U V(Cs) correspondingly.
Then, G is Oz-free and the relation x (G) = max(x(G1), x (G2)) holds.

Proof Any vertex outside Cs that is adjacent to at least one vertex of the cycle must be
adjacent to either all vertices of the cycle or to some three consecutive its vertices. It is
easy to verify taking into account that G is { Ps, C4}-free. Therefore, any such a vertex
belongs to either V; or V». Each vertex in V5 has no neighbors outside V (Cs5) U Vi UV,
(since G € Free({Ps})). Any vertex in V| is adjacent to every vertex in V{UV,UV (Cs)
except itself (if Vi U V; contains a pair of nonadjacent vertices and one of them is
in V1, then the vertices and two their common nonadjacent neighbors in Cs induce a
copy of C4). Assume that G, contains three pairwise nonadjacent vertices. No one of
them belongs to Vi, since any such a vertex is adjacent to each vertex of G, except
itself. If two of the mentioned three vertices belong to V>, then the union of their
neighborhoods must contain V (Cs) (otherwise G is not {Ps, C4}-free). Hence, one
(and exactly one) of the three vertices belongs to V(Cs). The neighborhoods of the
two remaining vertices do not cover Cs. We have a contradiction and G, is O3-free.
The inequality x (G) > max(x (G1), x(G»)) is obvious. We will show that G can be
colored with max(x (G1), x (G2)) colors. Let ¢; and ¢, be optimal colorings of G| and
G, correspondingly. If x (G1) > x(G3),thency has x (G1)—|Vi| = x(G2)—|Vi| >0
colors that do not appear in V;. Hence, c| can be extended to a proper coloring of G
with x (G1) colors by coloring G, \ V| with x (G2) —| V1| colors of the mentioned type.
By the same reasons c; is extendable to a proper coloring of G with x (G2) colors
when x (G2) = x(G1). O

7 Some results on polynomial-time solvability of the coloring problem

Lemma 8 Let X be an easy case for the coloring problem, the problem whether a
graph belongs to X is polynomial-time solvable and for some fixed number p the
inclusion X C Free({O,}) (p > 2) holds. Then, for any fixed q this problem is
polynomial-time solvable in the class [X],.

Proof Let G be a graph in [X],. Deleting some set V' (|V'| < ¢) of its vertices
leads to a graph in X (this set is determined in polynomial time by the exhaustive
search algorithm). We will consider all partial proper colorings of G with at most | V|
color classes, in which every vertex of V' is colored. Obviously, any such a coloring
has at most (p — 1)g colored vertices (hence, all partial colorings are enumerated
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in polynomial time). For any considered partial coloring deleting all colored vertices
leads to a graph in X and its chromatic number is computed in polynomial time. For
every our partial coloring we will find the sum of the number of used colors and the
chromatic number of the subgraph induced by the set of uncolored vertices. Any such a
sum corresponds to the number of colors in a proper coloring of G (by optimal coloring
the uncolored part with colors different from the used ones in the earlier colored part).
Hence, any sum is at least x (G). Every optimal coloring of G can be partitioned in
two parts: vertices having a common color with a vertex in V' and the other vertices.
The sum of the chromatic numbers of the subgraphs induced by the parts is equal to
x (G). Hence, extending some of the partial colorings leads to an optimal coloring of
G. Therefore, minimal among the corresponding sums is equal to x (G). Thus, x (G)
is computed in polynomial time. O

A graph is called chordal if it does not contain induced cycles with four or more
vertices. The problem whether a graph is chordal is solved in polynomial time [16].
The coloring problem is known to be polynomial-time solvable for chordal graphs
[16].

Lemma9 The classes Free({Ki 3, Ps}), Free({K1 3, hammer}), Free({Ps, C4})
are easy for the coloring problem.

Proof We will show that for every considered class the coloring problem is polyno-
mially reduced to the same problem for chordal graphs. This fact implies the lemma.
The problem is polynomial-time solvable in Free({O3}), since it is equivalent to the
matching problem. The reduction for {K 3, Ps}-free graphs follows from this obser-
vation, Lemmas 2 and 8.

Let G be a graph in Free({K 3, hammer}) containing the induced subgraph Cg.
By Lemma 4, deleting vertices of this cycle leads to a chordal O4-free graph. Hence,
by Lemma 8, x(G) is computed in polynomial time. Thus, by Lemmas 5 and 6 the
coloring problem for the class is polynomially reduced to the same problem for graphs
in Free({K13, Ps}) U[Free({03})]s. Hence, it is reduced to chordal graphs.

Let G be aconnected graphin Free({ Ps, C4}) thatis not chordal. Hence, G contains
an induced copy of Cs. The graphs G and G defined in the formulation of Lemma 7
are constructed in polynomial time. Moreover, G, is Osz-free and |V (G)|— |V (G1)| >
5. Therefore, by Lemma 7 the considered problem for {Ps5, C4}-free graphs is also
polynomially reduced to the same problem for chordal graphs. O

8 The main result and its corollaries

Remind that  is the class of forests, 7" is the set of line graphs of forests with degrees
at most three and co(7') is constituted by complement graphs of line graphs of forests
with at most three pendant vertices in each connected component.

The following theorem is the main result of the paper.

Theorem 3 Let Hy and H, be graphs. If there is a class Y € {F,T', co(T)} with
either Hy, Hy ¢ Y or K14 C; Hy and bull C; Hs(orviceversa), then the coloring
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The coloring problem for classes with two small obstructions 2269

problem is NP-complete for Free({Hy, H}). It is polynomial-time solvable in the
class if at least one of the following properties holds:

- H G ProrHy S Py
— H{ C; Psor Hy C; K5 (or vice versa)
C; Ps or Hy C; gem (or vice versa)
C; Psor Hy C; Cy (or vice versa)
— Hy C; Psor Hy C; Ky 3 (or vice versa)
Ci K14 or Hy C; paw (or vice versa)
C; fork or Hy C; paw (or vice versa)
— Hy C; Ky 30r HY C; hammer (or vice versa)

Proof The classes F,7’, co(T) are limit for the coloring problem. This fact, The-
orem 2 and Lemma 1 imply the first part of the statement. The set of Ps-free
graphs is well known to be an easy case for the coloring problem [17]. The classes
Free({Ps, gem}) and Free({ P5, Ks}) are easy for the problem [2,5]. The same is true
for Free({ fork, paw}) [5] and Free({K; 4, paw}) [1]. These facts and Lemma 9
imply the second part of the theorem. O

Both parts of Theorem 3 add new information about the complexity of the col-
oring problem for some classes. For example, its complexity status for the classes
Free({K13, bull}), Free({K13, Ps}), Free({K1 3, hammer}), Free({Ps, C4}) was
open.

Theorem 3 gives the following criterion.

Corollary 1 Let Hy and Hy be connected graphs with at most four vertices. The
coloring problem is polynomial-time solvable for { Hy, H»}-free graphs if either Hy C;
Py or Hy C; Pyor {Hy, Hb} = {K1 3, paw} or {H1, Hy} = {K13, C3}. It is NP-
complete in all other cases.

Theorem 3 can not be applied to some pairs of connected graphs with at
most five vertices. If {Hj, Hp} is such a set, then either H; or H» belongs to
{K1,3, fork, K1 4, Ps}. This observation helps to enumerate all connected cases with
at most five vertices that the theorem does not cover.

Corollary 2 Theorem 3 does not give the complexity status of the coloring problem
for the following sets of forbidden induced connected subgraphs (a number in the
brackets shows the quantity of such kind sets):

— {K1,3, G}, where G € {bull, butterfly} (2)

— {fork, bull} (1)

— {Ps5, G}, where G ¢ {Ks, gem} is an arbitrary connected five-vertex graph in
co(T) (10)

Determining the complexity of the problem for any of the listed above 13 cases is
a challenging research problem.
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