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Abstract—For a complete Cartan foliation (M,F ) we introduce two algebraic invariants g0(M,F )
and g1(M,F ) which we call structure Lie algebras. If the transverse Cartan geometry of (M,F ) is
effective then g0(M,F ) = g1(M,F ). We prove that if g0(M,F ) is zero then in the category of Cartan
foliations the group of all basic automorphisms of the foliation (M,F ) admits a unique structure of
a finite-dimensional Lie group. In particular, we obtain sufficient conditions for this group to be
discrete. We give some exact (i.e. best possible) estimates of the dimension of this group depending
on the transverse geometry and topology of leaves. We construct several examples of groups of all
basic automorphisms of complete Cartan foliations.
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1. INTRODUCTION

The automorphism group is associated with every object of a category. One of the central problems
is the question whether the group of all automorphisms of the object may be endowed with a finite-
dimensional Lie group structure [1] (see also [2]).

According to the results of Cartan, Myers and Steenrod, Nomizy, Kobayashi, Ehresmann and others
the groups of all automorphisms of different geometries are often Lie groups of transformations (an
overview can be found, for example, in [3] and [1]).

In the theory of foliations with transverse geometries an isomorphism is a diffeomorphism which
maps leaves onto leaves and preserves transverse geometries. We study the category of foliations with
transverse Cartan geometries which are referred to as Cartan foliations.

When investigating foliations (M,F ) admit a transverse geometry ξ it is natural ask if there exists a
finite-dimensional Lie group structure for the group of all basic automorphisms of (M,F ).

Leslie [4] was the first who solved a similar problem for smooth foliations on compact manifolds.
For foliations with complete transversal projectable affine connection this problem was formulated by
Belko [5]. Groups of basic automorphisms of complete foliations (M,F ) with effective transverse rigid
geometries were investigated in [6].

Ineffective Cartan geometries have nontrivial gauge groups which are very important in theoretical
physics [7]. For example, spin geometries are based on ineffective models. Some parabolic geometry of
rang one has finite gauge groups [8].

The goal of this paper is to give sufficient conditions for the group of basic automorphisms of complete
Cartan foliations to admit a finite-dimensional Lie group structure without assumption of effectiveness
of the transverse Cartan geometry.

*E-mail: ksheina@hse.ru
**E-mail: nzhukova@hse.ru

271



272 SHEINA, ZHUKOVA

We wish to stress that in our work the gauge group of a transverse Cartan geometry may be indiscrete
in general case which is in contrast to [9] where assumptions imply the discreteness of the gauge group.

Assumptions. Throughout this paper we assume the manifolds and the maps to be C∞ smooth and
all neighborhoods to be open.

Notations. LetX(N) denote the Lie algebra of smooth vector fields on a manifoldN . IfM is a smooth
distribution on M and f : K → M is a submersion then let f∗M be the distribution on the manifold K
such that (f∗M)z := {X ∈ TzK|f∗z(X) ∈ Mf(z)} where z ∈ K. Let XM(M) := {X ∈ X(M) | Xu ∈
Mu∀u ∈ M}.

Let Fol be the category of foliations whose morphisms are smooth maps sending leaves into leaves.
If α : G1 → G2 is a group homomorphism, then Im(α) := α(G1). Let the symbol ∼= denotes an

isomorphism of objects in any category (according to the context).
We denote P (N,H) a principal H-bundle over the manifold N with the projection P → N .

2. CATEGORIES OF CARTAN FOLIATIONS AND FOLIATED BUNDLES

Spaces, now called Cartan geometries ([1, 9] and [10]), were introduced by Elie Cartan in the 1920s
under the name of espaces généralisés.

Let G be a Lie group and H be a closed subgroup of G. Denote g and h the Lie algebras of the Lie
groups G and H respectively. Let N be a smooth manifold. A Cartan geometry on N of type (G,H) (or
of type g/h) is a principal H-bundle P (N,H) with the projection p : P → N together with a g-valued
1-form ω on P such that ω is nondegenerate and H-equivariant, and ω(A∗) = A for any A ∈ h, where
A∗ is the fundamental vector field defined by the element A.

The Cartan geometry is denoted ξ = (P (N,H), ω). The pair (N, ξ) is called a Cartan manifold.
Cartan geometry ξ = (P (N,H), ω) is referred to as complete if any vector field X ∈ X(P ) such that

ω(X) = const is complete [1].
Let ξ = (P (N,H), ω) and ξ′ = (P ′(N ′,H), ω′) be two Cartan geometries of same type (G,H). A

smooth map Γ : P → P ′ is called a morphism from ξ to ξ′ if Γ∗ω′ = ω and Ra ◦ Γ = Γ ◦Ra, a ∈ H . If
Γ ∈ Mor(ξ, ξ′) then the projection γ : N → N ′ is defined such that p′ ◦ Γ = γ ◦ p where p : P → N
and p′ : P ′ → N ′ are the projections of the corresponding H-bundles. When ξ = ξ′ the projection
γ is called an automorphism of the Cartan manifold (N, ξ). Denote Aut(N, ξ) the group of all
automorphisms group of (N, ξ). The category of Cartan geometries is denoted Car. Let A(P, ω) := {Γ ∈
Diff(P )|Γ∗ω = ω} be the automorphism group of the parallelizable manifold (P, ω). Let AH(P, ω) :=
{Γ ∈ A(P, ω)|Γ ◦Ra = Ra ◦ Γ ∀a ∈ H}, then AH(P, ω) is a closed Lie subgroup of the Lie group
A(P, ω) and Aut(ξ) = AH(P, ω) is the automorphism group of the Cartan geometry ξ. The map
σ : AH(P, ω) → Aut(N, ξ) : Γ �→ γ sending Γ to its projection γ is a Lie group epimorphism. The group
Gau(ξ) := ker(σ) = {Γ ∈ Aut(ξ) | p ◦ Γ = p} is called of the gauge transformation group of the
Cartan geometry ξ. Remark that a Cartan geometry ξ is effective if and only if the gauge transformation
group Gau(ξ) is trivial.

We use the notion of a Cartan foliation introduced in [11]. As parabolic, conformal, Weyl, projective,
transversally homogeneous, pseudo-Riemannian, Lorentzian, Riemannian foliations and foliations with
transverse linear connection are Cartan foliations, our results are valid for all these classes of foliations.

For a Cartan foliation (M,F ) modelled on a Cartan geometry ξ = (P (N,H), ω) of type g/h according
to ([11], Proposition 2) there exists the principal H-bundle with the projection π : R → M , the H-
invariant foliation (R,F) and the g-valued H-equivariant 1-form β on R such that:

(i) the projection π : R → M is a morphism (R,F) → (M,F ) in the category of foliations Fol, and
the restriction π|L : L → L on a leaf L of (R,F) is a regular covering map onto some leaf L of (M,F );

(ii) β(A∗) = A for any A ∈ h;
(iii) the map βu : TuR → g ∀u ∈ R is surjective, and ker(βu) = TuF ;
(iv) the foliation (R,F) is e-foliation;
(v) the Lie derivative LXβ is equal to zero for every vector field X tangent to the foliation (R,F).
Definition 1. The principal H-bundle R(M,H) is said to be the foliated bundle. The foliation

(R,F) is called the lifted foliation for (M,F ).
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If R is disconnected, then we consider a connected component of R.
Let (M,F ) and (M ′, F ′) are Cartan foliations modeled on transverse Cartan geometries ξ =

(P (N,H), ω) and ξ′ = (P ′(N ′,H), ω′) of same type g/h. Let π : R → M and π′ : R′ → M ′ be their
foliated bundles with the lifted foliations (R,F) and (R′,F ′). Denote β and β′ the g-valued 1-forms
defined on R and R′ indicated above.

Definition 2. A smooth map Γ : R → R′ is referred to as a morphism of the Cartan foliations
(M,F ) and (M ′, F ′) of the same type (G,H) ifΓ is a morphism of the foliated H-bundlesR(M,H)
and R′(M ′,H) such that Γ∗β′ = β.

Note that Γ is a morphism of (R,F) to (R′,F ′) in the category of foliations. Let us denote CF the
category of Cartan foliations. In the case when every Cartan foliation has the dimension zero the
category of Cartan foliations CF coincides with the category Car.

Denote Aξ(M,F ) the group of all automorphisms of a Cartan foliation (M,F ) with a transverse
Cartan geometry ξ in the category CF. Since every Γ ∈ Aξ(M,F ) is an automorphism of the H-
bundle R(M,H), there exists the projection γ ∈ Diff(M) satisfying the equality π ◦ Γ = γ ◦ π. The
natural homomorphism of the groups ν : Aξ(M,F ) → Diff(M) : Γ �→ γ is defined. Let A(M,F )ξ :=

ν(Aξ(M,F )). The group Aξ
L(M,F ) := {f ∈ Aξ(M,F ) | f(L) = L∀L ∈ F} which we call the group

leaf automorphisms of (M,F ), is a normal subgroup of the group Aξ(M,F ). We say the quotient
group Aξ(M,F )/Aξ

L(M,F ) to be the group of basic automorphisms of the Cartan foliation (M,F )

denoted Aξ
B(M,F ). Example 3 shows that the group Aξ

B(M,F ) depends on the transverse Cartan
geometry ξ.

Denote AL(M,F )ξ := {f ∈ A(M,F )ξ | f(L) = L∀L ∈ F} the leaf automorphism subgroup of the
group A(M,F )ξ . We say the quotient group AB(M,F )ξ := A(M,F )ξ/AL(M,F )ξ to be the projection

of the group Aξ
B(M,F ) of the basic automorphisms to the leaf space M/F . Point out that if the

transverse Cartan geometry ξ is effective then the groups Aξ
B(M,F ) and AB(M,F )ξ are canonically

isomorphic. The group Aξ
B(M,F ) of basic automorphisms of a Cartan foliation (M,F ) as well as its

projection AB(M,F )ξ are invariants in the category CF.

Denote TF the distribution tangent to the foliation (M,F ). Fix a distribution M transversal to
(M,F ), i. e., TxM = TxF ⊕Mx, x ∈ M . Then the distribution ˜M := π∗M is transversal to the lifted
foliation (R,F).

The Cartan foliation (M,F ) is said to be M-complete if any vector field X ∈ X
˜M
(R,F), ˜M := π∗M,

such that β(X) = const is complete. In other words, (M,F ) is an M-complete foliation if and only
if the lifted e-foliation (R,F) is complete with respect to the distribution ˜M = π∗M in the sense of
Conlon [12].

Definition 3. A Cartan foliation (M,F ) of a codimension q is said to be complete if there exists
a q-dimensional transverse distribution M on M such that (M,F ) is M-complete [11].

Denote (G,H) the pair of Lie groups, where H is a closed subgroup of G. The maximal normal
subgroup K of G belonging to H is called the kernel of the pair (G,H), and K is denoted Ker(G,H).
A Cartan foliation modeled on an ineffective Cartan geometry ξ = (P (N,H), ω) of type (G,H) admits
the effective transverse Cartan geometry ̂ξ = ( ̂P (N, ̂H), ω̂) of type ( ̂G, ̂H), where ̂G = G/K, ̂H = H/K

and K is the kernel of the pair (G,H) ([11], Proposition 1). We say ̂ξ to be the effective Cartan geometry
associated with ξ.

Let ̂R(M, ̂H) be the principal ̂H-bundle of the foliated bundle constructed for the effective Cartan
geometry ̂ξ. The foliation ( ̂R, ̂F) is called the associated lifted foliation for the Cartan foliation (M,F ).

Let (M,F ) be a complete Cartan foliation, (R,F) be the lifted e-foliation and ( ̂R, ̂F) be the
associated lifted e-foliation. Repeating and summing up the relevant results of Molino [13] we obtain:

(i) the closure of the leaves of the foliation (R,F) are fibers of a certain locally trivial fibration
πb : R → W ;
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(ii) the foliations (Cl(L),F|Cl(L)) and (Cl( ̂L), ̂F|
Cl(̂L)) induced on the closures Cl(L) and Cl( ̂L)

correspondingly are Lie foliations with dense leaves with the structural Lie algebras g0 and g1, respec-
tively, which do not depend of a choice of L ∈ F and ̂L ∈ ̂F .

Definition 4. The structural Lie algebras g0 and g1 of the Lie foliations (Cl(L),F|Cl(L))

and (Cl( ̂L), ̂F|
Cl( ̂L)) respectively are called the structural Lie algebras of the complete Cartan

foliation (M,F ) and are denoted g0(M,F ) and g1(M,F ).

For a Cartan foliation (M,F ) modeled on an effective Cartan geometry we have g0(M,F ) =
g1(M,F ). For Riemannian foliations on compact manifolds this notion was introduced by Molino [13].
Emphasize that the structural Lie algebras g0(M,F ) and g1(M,F ) are invariants in the category CF.

3. MAIN RESULTS

First, we prove the following theorem which gives us a sufficient condition for the existence of a
unique structure of a Lie group in the group of basic automorphisms of a complete Cartan foliation.

Theorem 1. Let (M,F ) be a complete Cartan foliation modeled on a Cartan geometry ξ

of type g/h. If the structural Lie algebra g0(M,F ) is zero, then the group Aξ
B(M,F ) of basic

automorphisms of this foliation is a Lie group with dimension

dim(Aξ
B(M,F )) ≤ dim(g), (1)

and the Lie group structure in Aξ
B(M,F ) is unique. The estimate (1) is exact (i.e. best possible).

Recall that a leaf L of a foliation (M,F ) is proper if L is an embedded submanifold in M . A foliation
is called proper if all its leaves are proper. A leaf L is said to be closed if L is a closed subset of M . Any
closed leaf is known to be proper.

Theorem 2. Let (M,F ) be a complete Cartan foliation modeled on a Cartan geometry ξ of
type g/h and let ̂ξ be the associated effective transverse Cartan geometry. Suppose that both
structural Lie algebras g0(M,F ) and g1(M,F ) are zero. Then

(i) both the group Aξ
B(M,F ) of basic automorphisms and its projection AB(M,F )ξ admit

unique Lie group structures, and

dim(AB(M,F )ξ) ≤ dim(g)− dim(k), (2)

where k is the kernel of the pair of the Lie algebras (g, h);

(ii) if there exists an isolated proper leaf (or there exists an isolated closed leaf) or if the set
of proper leaves (or the set of closed leaves) is countable, then

dim(AB(M,F )ξ) ≤ dim(AB(M,F )
̂ξ
) ≤ dim(h)− dim(k); (3)

(iii) if the set of proper leaves (or the set of closed leaves) is countable and dense, then

dim(AB(M,F )ξ) = dim(AB(M,F )
̂ξ
) = 0. (4)

The estimates (2), (3) are exact (i.e. the best possible) and there exist foliations (M,F ) for
which (4) holds.

Examples 1–3 show the exactness of estimates (2) and (3).
Theorem 3. Let (M,F ) be a complete Cartan foliation with a transverse Cartan geometry

ξ of type g/h and let ̂ξ be the associated Cartan geometry. Assume that the kernel of the pair
of the Lie algebras (g, h) is zero and g1(M,F ) = 0. Then g0(M,F ) = 0 and the groups Aξ

B(M,F ),

AB(M,F )ξ , A
̂ξ
B(M,F ) and AB(M,F )

̂ξ
admit unique Lie group structures of the same dimension.

In the proves of theorems we use of notation of an Ehresmann connection M for a smooth foliation
(M,F ) which belongs to Blumenthal and Hebda, where M is a transversal distribution to (M,F ) [14].

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 2 2018



THE GROUPS OF BASIC AUTOMORPHISMS 275

4. PROOFS OF THEOREMS

4.1. Proof of Theorem 1

Let (M,F ) be an M-complete Cartan foliation and let R(M,H) be the foliated bundle with the
lifted foliation (R,F). As g0(M,F ) = 0, so the leaves of (R,F) are fibers the locally trivial bundle
πb : R → W . The map

W ×H → W : (w, a) �→ πb(Ra(u)) ∀(w, a) ∈ W ×H,u ∈ π−1
b (w),

defines a locally free action of the Lie group H on the basic manifold W , and the orbits space W/H is
homeomorphic to the leaf space M/F . Identify W/H with M/F . The equality π∗

bσ = β defines an g-
valued 1-form σ on W such that σ(A∗

W ) = A, where A∗
W is the fundamental vector field on W defined

by A ∈ h ⊂ g.

Denote by A(W,σ) the Lie group of automorphisms of the parallelizable manifold (W,σ), i.e.,
A(W,σ) = {f ∈ Diff(W )|f∗σ = σ}. Let AH(W,σ) = {f ∈ A(W,σ)|f ◦Ra = Ra ◦ f ∀a ∈ H}. Then
AH(W,σ) and its unity component AH

e (W,σ) are Lie groups as closed subgroups of the Lie group
A(W,σ).

Since Γ, Γ ∈ Aξ(M,F ) preserves (R,F), there exists φ ∈ Diff(W ) satisfying the equality πb ◦ Γ =
φ ◦ πb. It is not difficult to show that we have the map

κ : Aξ
B(M,F ) = Aξ

B(M,F )/Aξ
L(M,F ) → AH(W,σ) : Γ ·Aξ

L(M,F ) �→ φ

which is a group monomorphism. Let us show that Im(κ) is the open-closed Lie subgroup of the Lie
group AH(W,σ).

Suppose that AH(W,σ) is a discrete Lie group, then Aξ
B(M,F ) is also discrete Lie group and the

required statement is true. Further we assume that dim(AH(W,σ)) ≥ 1. Let a be the Lie algebra of the
Lie group AH(W,σ) and let B∗ be the fundamental vector field defined by an element B ∈ a. Hence
X := B∗ is a complete vector field on W which defines the 1-parameter group ϕX

t , t ∈ (−∞,+∞),
of transformations from AH(W,σ). Consequently 1)LXσ = 0 and 2)LXA∗

W = 0 where A∗
W is the

fundamental vector field on W defined by an element A ∈ h.

Let f be any element from the identity component AH
e (W,σ) of the Lie group AH(W,σ). Then

there exist B ∈ a and t0 ∈ (−∞,+∞) such that f = ϕX
t0 where X = B∗. Note that πb : R → W is

the submersion with the Ehresmann connection ˜M, where ˜M = π∗M. Therefore there exists the unique
vector field Y ∈ X

˜M
(R) such that πb∗Y = X, and Y is a foliated vector field, i.e. [Y,Z] ∈ XTF (R) for all

Z ∈ XTF (R). Completeness of the vector field X implies completeness of the vector field Y . Hence Y

defines the 1-parameter group ψY
t , t ∈ (−∞,+∞), of diffeomorphisms of the manifold R. Let us show

that ψY
t ∈ Aξ(M,F )e for all t ∈ (−∞,+∞), i.e., we have to check the validity of the following two facts:

1) LY β = 0; 2) LY A
∗ = 0 for all A ∈ h.

1. Let us denote ZW := πb∗Z for any foliated vector field Z ∈ X(R).

Case I: The vector field Z ∈ X(R) satisfies the condition β(Z) = const. The relation β = σ ◦ πb∗
implies that σ(ZW ) = β(Z) = const, so X(σ(ZW )) = 0. In accordance with the choice of X we have
ϕX
t ∈ AH(W,σ), hence LXσ = 0. Therefore using formula for the Lie derivative LXσ we have

0 = (LXσ)(ZW ) = X(σ(ZW ))− σ([X,ZW ]) = −σ([X,ZW ]). (5)

In the equality (LY β)(Z) = Y (β(Z))− β([Y,Z]) the first term Y (β(Z)) is zero because β(Z) = const.
The relations β = σ ◦ πb∗ and (5) imply the following chain of equalities:

β([Y,Z]) = σ(πb∗ [Y,Z]) = σ([πb∗Y, πb∗Z]) = σ([X,ZW ]) = 0.

Therefore (LY β)(Z) = 0.

Case II: Consider any vector field Z in X
˜M
(R). Let Ei, i = 1, ...,dim g, be a fixed basis of the vector

space g and let Zi be the vector fields in X
˜M
(R) such that β(Zi) = Ei. In this case Z = hiZi where
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hi are smooth functions on R. Due to linearity of β and the property of the Lie brackets we have the
following chain of equalities:

(LY β)(Z) = Y (β(hiZi))− β([Y, hiZi]) = hi(Y (β(Zi))− β([Y,Zi]))

+ Y (hi)β(Zi)− Y (hi)β(Zi) = hi(Y (β(Zi)− β([Y,Zi])) = hi(LY β)(Zi).

Since β(Zi) = const we apply Case I and get (LY β)(Z) = 0 ∀Z ∈ X
˜M
(R).

2. Let us pick any A ∈ h. We denote A∗ and A∗
W the fundamental vector fields on R and W

defined by A ∈ h respectively. As β(A∗) = σ(A∗
W ) = A, the vector field A∗ is foliated with respect to

(R,F). So the application of the equality LXA∗
W = 0 allows us to get the following chain of equalities

πb∗ [A
∗, Y ] = [πb∗A

∗, πb∗Y ] = [A∗
W ,X] = LXA∗

W = 0, hence [A∗, Y ] ∈ XF (R). Let at, t ∈ (−∞,+∞),
be the 1-parametric transformation group of R generated by the fundamental vector field A∗. Then
Rat(u) = uat for every t. We get

[A∗, Y ] = lim
t→0

1

t
[(Rat)∗Y − Y ]. (6)

By the definition Y ∈ X
˜M
(R). Since π∗˜M = M, the distribution ˜M is H-invariant. Therefore,

(Rat)∗Y ∈ X
˜M
(R) and

(Rat)∗Y − Y ∈ X
˜M
(R) ∀t ∈ (−∞,+∞). (7)

Let us pick any point u ∈ R, put x = π(u) ∈ M . Due to (6), (7) and continuity of π, using the fact that
the subspace Mx is closed in the topology of the tangent space TxM ∼= R

n we get the following chain of
relations

π∗u([A
∗, Y ]) = π∗u(lim

t→0

1

t
[(Rat)∗Y − Y ]) = lim

t→0

1

t
π∗u[(Rat)∗Y − Y ] ∈ Mx, hence

π∗u([A
∗, Y ]) ∈ Mx. (8)

It is followed from (8) that π∗[A∗, Y ] ∈ XM(X). Consequently [A∗, Y ] ∈ X
˜M
(R).

The relations [A∗, Y ] ∈ XF (R) and [A∗, Y ] ∈ X
˜M
(R) imply the equality [A∗, Y ] = 0 for all A ∈ h.

This completes the check that ψY
t ∈ Aξ

e(M,F ).

Thus AH
e (W,σ) ⊂ Im(κ) and κ : Aξ

B(M,F ) → AH(W,σ) is the group isomorphism onto the open-
closed Lie subgroup Im(κ) of the Lie group AH(W,σ).

Since the group Aξ
B(M,F ) is realized as a group of diffeomorphisms of the manifold W , the Lie group

structure in Aξ
B(M,F ) is unique ([15], Theorem VI).

4.2. Proof of Theorem 2

(i). Let Aξ
B(M,F ) and A

̂ξ
B(M,F ) be the groups of basic automorphisms corresponding to the

original Cartan geometry ξ and to the associated Cartan geometry ̂ξ. In accordance with the conditions

g0(M,F ) = 0 and g1(M,F ) = 0 due to Theorem 1 both groups Aξ
B(M,F ) and A

̂ξ
B(M,F ) are Lie

groups, and their Lie group structures are unique. Besides all leaves of the associated lifted foliation
( ̂R, ̂F) are closed and the manifold of the leaf space ̂W := ̂R/ ̂F with the projection π̂b : ̂R → ̂W are
defined. Denote by ĝ the quotient algebra g/k, where k is the kernel of the pair of the Lie algebras (g, k).
Denote by ̂β the respective ĝ-valued 1-form on ̂R. Let σ̂ be the ĝ-valued 1-form on ̂W satisfying the
equality π̂∗

b σ̂ := ̂β. Let K = Ker(G,H) and let τ : R → ̂R = R/K be the quotient map. Pick any leaf L
of the foliation (R,F), then τ(Cl(L)) = Cl(τ(L)), hence τ(Cl(L)) = ̂L is a leaf of ( ̂R, ̂F) and there is a
map τ̂ : W → ̂W satisfying the following equation τ̂ ◦ πb = π̂b ◦ τ . Since ̂W = W/K, every orbit w ·K,
w ∈ W , is closed. Therefore η = (W (̂W,K), σ) is the Cartan geometry with the projection τ̂ : W → ̂W .
Observe that ĝ-valued 1-form σ̂ satisfies the equality τ̂∗σ̂ = σ, because τ∗̂β = β.
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For any ϕ ∈ Aξ
B(M,F ) which is considered as an element of AH(W,σ) we have ϕ ◦Rb = Rb ◦

ϕ ∀b ∈ K. Then there exists ϕ̂ ∈ Diff(̂W ) such that τ̂ ◦ ϕ = ϕ̂ ◦ τ̂ . The direct check shows that

ϕ̂ ∈ A
̂ξ
B(M,F ). Thus the map μ : Aξ

B(M,F ) → A
̂ξ
B(M,F ) : ϕ �→ ϕ̂ is defined, and μ is a group

homomorphism.

Consider any 1-parametric group ϕX
t ⊂ AH

e (W,σ), t ∈ R
1. According to the proof of Theorem 1 we

may identify Aξ
B(M,F )e with AH

e (W,σ) through the group isomorphism κ. Using this identification it

is easy to get the inclusion μ(Aξ
B(M,F )e) ⊂ A

̂ξ
B(M,F )e and to see that μ : Aξ

B(M,F ) → A
̂ξ
B(M,F ) is

the Lie groups homomorphism. Therefore

dim(Im(μ)) ≤ dim(A
̂ξ
B(M,F )) ≤ dim(ĝ) = dim(g)− dim(k).

Efficiency of the associated Cartan geometry ̂ξ implies the existence of a group isomorphism ([6],

Proposition 9) θ : A
̂ξ
B(M,F ) → AB(M,F )

̂ξ
. Note that AB(M,F )ξ ∼= θ(Im(μ)). Thus AB(M,F )ξ is a

Lie subgroup of the Lie group AB(M,F )
̂ξ
, and

dim(AB(M,F )ξ) = dim(Im(μ)) ≤ dim(g)− dim(k).

Since the group AB(M,F )
̂ξ

is isomorphic to an open-closed subgroup of A
̂H(̂W, σ̂), the groups

AB(M,F )
̂ξ

and AB(M,F )ξ are realized as groups of diffeomorphisms of the manifold ̂W , hence their
Lie group structures are unique.

(ii) Let s : ̂W → ̂W/ ̂H be the canonical projection onto the orbit space and q : M → M/F be the
canonical projection onto the leaf space. Assume now that there exists an isolated proper leaf L of
the foliation (M,F ). Let x ∈ L, v = π̂−1(x) and z = π̂b(v) ∈ ̂W . Observe, that any automorphism of

a foliation transforms a proper leaf to the corresponding proper leaf. Since the orbit A ̂H
e (̂W, σ̂) · z of

the point z is connected subnanifold of ̂W and q(L) = s(z), it is necessary that the orbit A ̂H
e (̂W, σ̂) · z

belongs to s−1(s(z)). Consequently we have

dim(AB(M,F )ξ) ≤ dim(AB(M,F )
̂ξ
) = dim(A

̂H
e (̂W, σ̂) · z) ≤ dim( ̂H)

= dim(̂h) = dim(h)− dim(k).

Thus dim(AB(M,F )ξ) ≤ dim(h) − dim(k).

Suppose now that the set of proper leaves of (M,F ) is countable (nonempty). Consider any 1-

parametric group ϕt, t ∈ (−∞,+∞), from the Lie group A
̂H
e (̂W, σ̂) ∼= AB(M,F )

̂ξ,e
. Let L = L(x) be

any proper leaf, v = π̂−1(x) and z = π̂b(v) ∈ ̂W . Let z · ̂H be the orbit of z respectively ̂H . Since for any
fixed t the automorphism ϕt transforms the proper leaf L to the proper leaf ϕt(L), the countability of the
set of proper leaves implies that ϕt(z · ̂H) = z · ̂H . Hence, by analogy with the previous case we have
the estimate (3).

(iii) Now we suppose that the set of proper leaves {Ln|n ∈ N} of (M,F ) is countable and dense.
Let xn ∈ Ln, vn = π̂−1(xn) and zn = π̂b(vn) ∈ ̂W . Assume that dim(AB(M,F )ξ) ≥ 1. Let ϕt,

t ∈ (−∞,+∞), be any 1-parametric subgroup of the automorphism group A
̂H
e (̂W, σ̂) ∼= AB(M,F )

̂ξ,e
.

As it was proved above, it is necessary ϕt(zn · ̂H) = zn · ̂H for all t ∈ (−∞,+∞) and n ∈ N. Remark
that the leaf space M/F is homeomorphic to the orbit space ̂W/ ̂H . Denote ϕ̃t the induced 1-parametric
group of homeomorphisms of the leaf space M/F . Therefore, for every t ∈ (−∞,+∞), t 
= 0, the
homeomorphism ϕ̃t has dense subset {[Ln]|[Ln] = s(zn · ̂H), n ∈ N} of fixed points in M/F ∼= ̂W/ ̂H .

Continuity and openness of the canonical projection q : M → M/F imply that the leaf space M/F
is a first-countable topological space, that is every its point has a countable basis of neighborhoods.
Then for every fixed t ∈ (−∞,+∞) the transformation ϕ̃t of M/F is sequentially continuous. Therefore
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the existence of the dense subset of fixed points of the homeomorphism ϕ̃t implies ϕ̃t = IdM/F . Hence
ϕt = Id

̂W
for every t ∈ (−∞,+∞) that contradicts to the assumption.

Thus, dim(AB(M,F )ξ) = dim(AB(M,F )
̂ξ
) = 0 and (4) is proved.

4.3. Proof of Theorem 3

Use the notations from the proof of Theorem 2. By definition, K is the kernel of the pair (G,H).
The condition k = 0 implies that K is a discrete normal subgroup in both the Lie groups G and
H . Therefore the submersion τ : R → ̂R := R/K is a regular covering map. Observe that due to
the condition g1(M,F ) = 0 this implies g0(M,F ) = 0, hence the leaves of the lifted foliation (R,F)
are fibres of the basic fibration πb : R → W . Moreover, the quotient map τ̂ : W → W/K satisfies the
equality τ̂ ◦ πb = π̂b ◦ τ . Therefore the map τ̂ : W → ̂W := W/K is the regular covering map with the
deck transformation group KW := {Rb|b ∈ K}.

In the case when dim(AB(M,F )
̂ξ
) = 0 the groups Aξ

B(M,F ), AB(M,F )ξ , A
̂ξ
B(M,F ) and

AB(M,F )
̂ξ

are discrete and Theorem 3 is valid.

Let dim(AB(M,F )
̂ξ
) ≥ 1. According to the proof of Theorem 2 we have Aξ

B(M,F )e ∼= AH
e (W,σ)

and A
̂ξ
B(M,F )e ∼= A

̂H
e (̂W, σ̂). Let us show that in this case μ induces the group epimorphism ε :

AH
e (W,σ) → A

̂H
e (̂W, σ̂). Let ϕ

̂Z
t be 1-parametric group in A

̂H
e (̂W, σ̂). This is equivalent to the

fulfillment of the following two conditions: 1)[A∗
̂W
, ̂Z] = 0 ∀A ∈ ̂h and 2)L

̂Z
σ̂ = 0. Since τ̂ : W → ̂W

is the covering map, there exists the unique vector field Z on W such that τ̂∗Z = ̂Z. Observe, that for

any fixed point ŵ ∈ ̂W and w ∈ τ̂−1(ŵ) the curve ϕZ
t (w) is the lift to point w of the curve ϕ

̂Z
t (ŵ) with

origin in ŵ respectively the covering map τ̂ : W → ̂W . Due to τ̂ : W → ̂W is the covering map, for any
point ŵ ∈ ̂W there exists neighborhood U of ŵ such that τ̂ |U : U → τ̂(U) is a diffeomorphism. The Lie
brackets of vector fields have an infinitesimal character, hence the conditions [ ̂X, ̂Y ] = 0 and [X,Y ] = 0

are equivalent for every vector fields ̂X, ̂Y ∈ X(̂W ) and their liftsX,Y ∈ X(W ). Let A∗
W be the lift ofA∗

̂W
,

then the equality [A∗
̂W
, ̂Z] = 0 implies [A∗

W , Z] = 0. Note that the Lie derivative has also infinitesimal
character. Since τ̂ is a local diffeomorphism and σ = τ̂∗σ̂, the equality LZσ = 0 is equivalent to the
equality L

̂Z σ̂ = 0. This means that ϕZ
t is 1-parametric subgroup of the Lie group AH(W,σ).

Thus, ε : AB(M,F )ξ,e → AB(M,F )
̂ξ,e

is a Lie group epimorphism. Discreteness of fibers of τ̂

implies discreteness of the kernel of ε. Therefore the kernel of δ : Aξ
B(M,F ) → A

̂ξ
B(M,F ) is also

discrete and the following Lie groups Aξ
B(M,F ), AB(M,F )ξ , A

̂ξ
B(M,F ) and AB(M,F )

̂ξ
have the same

dimension.

5. CONSTRUCTIONS OF EXAMPLES

Suspended foliations Let Q and T be smooth connected manifolds. Denote ρ : G := π1(Q,x) →
Diff(T ) a group homomorphism. Let Ψ := ρ(G). Consider the universal covering map p̃ : ˜Q → Q

as a right G-space. A right action of the group G on the product of manifolds ˜Q× T is defined
as follows: Θ : ˜Q× T ×G → ˜Q× T : (x, t, g) → (x · g, ρ(g−1)(t)), where the covering transformation
˜Q → ˜Q : x → x · g is induced by an element g ∈ G. The quotient manifold M := ( ˜Q× T )/G with the
canonical projection f0 : ˜Q× T → M = ( ˜Q× T )/G are determined. Then the projection f0 : ˜Q× T →
M induced the smooth foliationF = {f0( ̂Q×{t})|t ∈ T} on M . The pair (M,F ) is called a suspended
foliation and is denoted Sus(T,Q, ρ).

The following easy proved statement will be useful further.
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Proposition 8. Let ξ = (P (T,H), ω) be a complete effective Cartan geometry on a simply
connected manifold T and ρ : π1(N,x) → Aut(ξ) be a group homomorphism. Suppose that Ψ :=
Im(ρ) is a discrete subgroup of Aut(ξ) and the normalizer N(Ψ) of Ψ belongs to the centralizer
Z(Ψ) of Ψ in the group Aut(ξ). Then (M,F ) := Sus(T,B, ρ) is a complete Cartan foliation
modelled on ξ, and there exists a Lie group isomorphism between Aξ

B(M,F ) ∼= AB(M,F )ξ and
the Lie quotient group N(Ψ)/Ψ.

Example 1. Let G be a Lie group and H be a closed subgroup of G. Denote by g and h the Lie
algebras of the Lie groups G and H respectively. Suppose that the kernel of the pair of Lie groups (G,H)
is equal to the intersection K = Z(G) ∩ Z(H) of the centres of the groups G and H . Denote ωG the
Maurer–Cartan g-valued 1-form on the Lie groupG, then ξ0 = (G(G/H,H), ωG) is a Cartan geometry.
Consider any smooth manifold L. Denote M the product of manifolds M = L× (G/H) and F =

{L× {x}|x ∈ G/H}. Hence Aξ0

B (M,F ) ∼= Aut(ξ0) and dim(Aξ0

B (M,F )) = dim g. By assumption,
K = Z(G)∩Z(H) is the kernel of the pair (G,H), hence Gau(ξ0) = {Lb|b ∈ K}. Thus,AB(M,F )ξ0 ∼=
Aut(ξ0)/Gau(ξ0) ∼= G/K, hence dim(AB(M,F )ξ0) = dim(g)− dim(k).

Example 2. Let E
2 = (R2, g) be the Euclidean plane with the Euclidean metric g and ζ be the

respective Cartan geometry. Let ψk be the rotation of the Euclidean plane E
2 around the point 0 ∈ E

2

by the angle δ = 2πk, k ∈ R. Denote I(E2) the full isometry group of E2. It is well known that
I(E2) ∼= O(2)�R

2.
Let ρk : π1(S

1, b) ∼= Z → I(E2) be defined by the equality ρk(1) := ψk, 1 ∈ Z. Then we have the
suspended Riemannian foliation (M,Fk) := Sus(E2, S1, ρk) with the global holonomy group Ψk :=
Im(ρk). This foliation has a unique closed leaf which is compact.

Since N(Ψk) = Z(Ψk) = O(2), Proposition 8 is applicable. Consequently AB(M,F )ζ ∼=
N(Ψk)/Ψk = O(2)/Ψk . Hence AB(M,F )ζ admits a Lie group structure if and only if Ψk is a closed
subgroup of O(2), that is equivalent to δ = 2πk for some rational number k.

If δ = 2πk, where k 
= 0 is rational number, then AB(M,F )ζ ∼= O(2).
Remark 3. I. V. Belko ([5], Theorem 2) stated that the existence of a closed leaf of a

foliation (M,F ) with complete transversally projectable affine connection is sufficient for the
group AB(M,F )ζ of basic automorphisms to admit a Lie group structure. Example 2 shows that
this statement in general is not correct.

Example 3. Let us consider the foliation (M,Fk), constructed in Example 2 for a rational number
k as a transversally similar foliation modeled on the Cartan geometry ξ := (G(G,H), ωG) where G =
CO(2)�R

2 and H = CO(2). In this case N(Ψk) = Z(Ψk) = CO(2) and according to Proposition 8
the Lie group AB(M,Fk)ξ is isomorphic to the Lie quotient group N(Ψk)/Ψk

∼= CO(2). Therefore

Aξ
B(M,Fk) ∼= CO(2).

Thus, the group Aξ
B(M,Fk) ∼= AB(M,Fk)ξ ∼= CO(2) is not isomorphic to the group Aζ

B(M,Fk) ∼=
AB(M,Fk)ζ ∼= O(2) where ζ is the Euclidean geometry on the plane considered in Example 2.

Example 4. Consider the standard 2-dimension torus T2 = R
2/Z2. Let Ω : R2 → T

2 be the quotient
map which is the universal covering of the torus. Let g be the flat Lorentzian metric on the torus T2 given

in the standard basis by the matrix t

⎛

⎝

2 m

m 2

⎞

⎠, where m ∈ Z, |m| > 2 and t is any non zero real number.

Denote ξ the effective Cartan geometry which is defined by g. Introduce notations I(T2, g) for the full
isometry group of this Lorentzian torus (T2, g) and I0(T

2, g) for the stationary subgroup of the group
I(T2, g) at point 0 = Ω(0), 0 = (0, 0) ∈ R

2. As it is known ([16], Example 3), I(T2, g) = I0(T
2, g)�T

2,

and the group I0(T
2, g) is generated by fA, f

˜A
and (−E), where A =

⎛

⎝

m 1

−1 0

⎞

⎠ and ˜A =

⎛

⎝

0 1

1 0

⎞

⎠, hence

I(T2, g) ∼= (Z2 ×Z2 ×Z)�T
2. Denote fA the Anosov automorphism of the torus T2 determined by the

matrix A ∈ SL(2,Z), while by E the identity 2× 2 matrix.
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Let Q = S1 and T = T
2 in the definition of suspended foliation given above. Define the group

homomorphism ρ : π1(S
1) ∼= Z → I(T2, g) by the equality ρ(k) := (fA)

k, k ∈ Z. Then the foliation
(M,F ) := Sus(T2, S1, ρ) is Lorentzian, and its global holonomy group Ψ is the group of all lifts of
transformations from the group Φ := 〈fA〉 respectively the universal covering map Ω : R2 → T

2. It is
not difficult to show the existence of a group isomorphism θ : AB(M,F )ξ → N(Ψ)/Ψ.

The direct check shows that N(Ψ)/Ψ ∼= Z2 × Z2. Thus

Aξ
B(M,F ) ∼= AB(M,F )ξ ∼= Z2 × Z2.

Remark 4. It is well known that the set of periodic orbits of an Anosov automorphism of the
torus T

2 is countable and dense. Therefore the foliation (M,F ) constructed in Example 4 has a
countable dense set of closed leaves and according to item (iii) of Theorem 2, its group of basic
automorphisms AB(M,F )ξ is a discrete Lie group. Our result AB(M,F )ξ ∼= Z2 × Z2 illustrates
this statement.
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