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Abstract—For a complete Cartan foliation (M, F') we introduce two algebraic invariants go (M, F')
and g1(M, F') which we call structure Lie algebras. If the transverse Cartan geometry of (M, F') is
effective then go(M, F) = g1 (M, F'). We prove that if go (M, F) is zero then in the category of Cartan
foliations the group of all basic automorphisms of the foliation (M, F') admits a unique structure of
a finite-dimensional Lie group. In particular, we obtain sufficient conditions for this group to be
discrete. We give some exact (i.e. best possible) estimates of the dimension of this group depending
on the transverse geometry and topology of leaves. We construct several examples of groups of all
basic automorphisms of complete Cartan foliations.
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1. INTRODUCTION

The automorphism group is associated with every object of a category. One of the central problems
is the question whether the group of all automorphisms of the object may be endowed with a finite-
dimensional Lie group structure [1] (see also [2]).

According to the results of Cartan, Myers and Steenrod, Nomizy, Kobayashi, Ehresmann and others
the groups of all automorphisms of different geometries are often Lie groups of transformations (an
overview can be found, for example, in [3] and [1]).

In the theory of foliations with transverse geometries an isomorphism is a diffeomorphism which
maps leaves onto leaves and preserves transverse geometries. We study the category of foliations with
transverse Cartan geometries which are referred to as Cartan foliations.

When investigating foliations (M, F') admit a transverse geometry ¢ it is natural ask if there exists a
finite-dimensional Lie group structure for the group of all basic automorphisms of (M, F').

Leslie [4] was the first who solved a similar problem for smooth foliations on compact manifolds.
For foliations with complete transversal projectable affine connection this problem was formulated by
Belko [5]. Groups of basic automorphisms of complete foliations (M, F') with effective transverse rigid
geometries were investigated in [6].

Ineffective Cartan geometries have nontrivial gauge groups which are very important in theoretical
physics [7]. For example, spin geometries are based on ineffective models. Some parabolic geometry of
rang one has finite gauge groups [8].

The goal of this paperis to give sufficient conditions for the group of basic automorphisms of complete
Cartan foliations to admit a finite-dimensional Lie group structure without assumption of effectiveness
of the transverse Cartan geometry.
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272 SHEINA, ZHUKOVA

We wish to stress that in our work the gauge group of a transverse Cartan geometry may be indiscrete
in general case which is in contrast to [9] where assumptions imply the discreteness of the gauge group.

Assumptions. Throughout this paper we assume the manifolds and the maps to be C'*° smooth and
all neighborhoods to be open.

Notations. Let X(IV) denote the Lie algebra of smooth vector fields on a manifold N. [ 9t is a smooth
distribution on M and f : K — M is a submersion then let f*91 be the distribution on the manifold K
such that (f*M), 1= {X € T.K|fs:(X) € My(;)} where z € K. Let Xop(M) :={X € X(M) | X, €
M, Vu € M}.

Let ol be the category of foliations whose morphisms are smooth maps sending leaves into leaves.

If «: Gy — G9 is a group homomorphism, then Im(a) := a(Gy). Let the symbol = denotes an
isomorphism of objects in any category (according to the context).

We denote P(N, H) a principal H-bundle over the manifold N with the projection P — N.

2. CATEGORIES OF CARTAN FOLIATIONS AND FOLIATED BUNDLES

Spaces, now called Cartan geometries ([1, 9] and [10]), were introduced by Elie Cartan in the 1920s
under the name of espaces généralisés.

Let G be a Lie group and H be a closed subgroup of G. Denote g and b the Lie algebras of the Lie
groups G and H respectively. Let N be a smooth manifold. A Cartan geometry on N of type (G, H) (or
of type g/b) is a principal H-bundle P(N, H) with the projection p: P — N together with a g-valued
1-form w on P such that w is nondegenerate and H-equivariant, and w(A*) = A for any A € b, where
A* is the fundamental vector field defined by the element A.

The Cartan geometry is denoted £ = (P(N, H),w). The pair (N, §) is called a Cartan manifold.

Cartan geometry £ = (P(N, H),w) is referred to as complete if any vector field X € X(P) such that
w(X) = const is complete [1].

Let ¢ = (P(N,H),w) and ¢ = (P'(N', H),w') be two Cartan geometries of same type (G, H). A
smoothmapT' : P — P’is called a morphism from £ to ¢’ if [*w' =w and RyoI' =T o Ry,a € H. Ii
I'e Mor(&, &) then the projection v : N — N’ is defined such that p’oT' =~yop where p: P - N
and p’ : P' — N’ are the projections of the corresponding H-bundles. When & = ¢ the projection
v is called an automorphism of the Cartan manifold (N,§). Denote Aut(N,§) the group of all
automorphisms group of (N, £). The category of Cartan geometries is denoted €ar. Let A(P,w) := {I" €
Dif f(P)|T*w = w} be the automorphism group of the parallelizable manifold (P,w). Let A" (P,w) :=
{I' € A(P,w)[T o R, = RyoT'Va € H}, then A”(P,w) is a closed Lie subgroup of the Lie group
A(P,w) and Aut(¢) = AY(P,w) is the automorphism group of the Cartan geometry £&. The map
o: AT (P,w) — Aut(N,€) : T +— ~ sending T toits projection v is a Lie group epimorphism. The group
Gau(§) := ker(o) ={I' € Aut(§) | poT' = p} is called of the gauge transformation group of the
Cartan geometry . Remark that a Cartan geometry € is effective if and only if the gauge transformation
group Gau(§) is trivial.

We use the notion of a Cartan foliation introduced in [11]. As parabolic, conformal, Weyl, projective,
transversally homogeneous, pseudo-Riemannian, Lorentzian, Riemannian foliations and foliations with
transverse linear connection are Cartan foliations, our results are valid for all these classes of foliations.

Fora Cartan foliation (M, F') modelled on a Cartan geometry ¢ = (P(N, H),w) of type g/h according
to ([11], Proposition 2) there exists the principal H-bundle with the projection 7 : R — M, the H-
invariant foliation (R, ) and the g-valued H-equivariant 1-form 5 on R such that:

(i) the projection w : R — M is a morphism (R, F) — (M, F) in the category of foliations Fol, and
the restriction |z : £ — L on aleaf £ of (R, F) is a regular covering map onto some leaf L of (M, F');

(ii) B(A*) = Aforany A € b;

(iii) the map B, : T,R — g Vu € R is surjective, and ker(5,) = T, F;

(iv) the foliation (R, F) is e-foliation;

(v) the Lie derivative Lx /3 is equal to zero for every vector field X tangent to the foliation (R, F).

Definition 1. The principal H-bundle R(M, H) is said to be the foliated bundle. The foliation
(R, F) is called the lifted Joliation for (M, F).
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[f R is disconnected, then we consider a connected component of R.

Let (M,F) and (M',F’) are Cartan foliations modeled on transverse Cartan geometries £ =
(P(N,H),w) and &' = (P'(N', H),w') of same type g/h. Let 7 : R — M and 7’ : R — M’ be their
foliated bundles with the lifted foliations (R, F) and (R’, 7). Denote 8 and 8’ the g-valued 1-forms
defined on R and R’ indicated above.

Definition 2. A smooth map T : R — R’ is referred to as a morphism of the Cartan foliations
(M, F)and (M',F")of the same type (G, H) if T is a morphism of the foliated H-bundles R(M, H)
and R'(M', H) such that T*f3" = 3.

Note that I" is a morphism of (R, F) to (R, F’) in the category of foliations. Let us denote €F the
category of Cartan foliations. In the case when every Cartan foliation has the dimension zero the
category of Cartan foliations €§F coincides with the category Car.

Denote A$(M, F) the group of all automorphisms of a Cartan foliation (M, F) with a transverse
Cartan geometry ¢ in the category €F. Since every I' € AS(M, F) is an automorphism of the H-
bundle R(M, H), there exists the projection v € Dif f(M) satislying the equality m oI' =y om. The
natural homomorphism of the groups v : AS(M, F) — Dif f(M) : T~ ~ is defined. Let A(M, F)¢ :=
v(AS(M, F)). The group AgL(M, F):={f € A5(M,F) | f(£) = LYL € F} which we call the group
leaf automorphisms of (M, F), is a normal subgroup of the group A$(M, F). We say the quotient
group A$(M, F)/Ai(M, F) to be the group of basic automorphisms of the Cartan foliation (M, F)
denoted A%(M, F). Example 3 shows that the group A%(M, F) depends on the transverse Cartan
geometry .

Denote Ap (M, F)e :=={f € A(M,F)¢ | f(L) = LVL € F} the leal automorphism subgroup of the
group A(M, F')¢. We say the quotient group Ag(M, F)¢ := A(M, F)¢ /AL (M, F)¢ to be the projection
of the group A%(M, F) of the basic automorphisms to the leaf space M/F. Point out that if the
transverse Cartan geometry ¢ is effective then the groups A%(M, F) and Ap(M, F)¢ are canonically
isomorphic. The group A%(M, F) of basic automorphisms of a Cartan foliation (M, F) as well as its
projection Ap (M, F)¢ are invariants in the category €§.

Denote T'F' the distribution tangent to the foliation (M, F'). Fix a distribution 9% transversal to
(M,F),i.e,T,M=T,F&M,, x € M. Then the distribution M := M is transversal to the lifted
foliation (R, F).

The Cartan foliation (M, F') is said to be M-complete if any vector field X € X5, (R, F), M := 7*9M,
such that §(X) = const is complete. In other words, (M, F') is an 9t-complete foliation if and only

if the lifted e-foliation (R, F) is complete with respect to the distribution M = 7*9M in the sense of
Conlon [12].

Definition 3. A Cartan foliation (M, F') of a codimension q is said to be complete if there exists
a g-dimensional transverse distribution M on M such that (M, F) is M-complete [11].

Denote (G, H) the pair of Lie groups, where H is a closed subgroup of G. The maximal normal
subgroup K of G belonging to H is called the kernel of the pair (G, H), and K is denoted Ker(G, H).
A Cartan foliation modeled on an ineffective Cartan geometry £ = (P(N, H),w) of type (G, H) admits

the effective transverse Cartan geometry €= (P(N, H),®)of type (G, H), where G = G/K,H = H/K
and K is the kernel of the pair (G, H) ([11], Proposition 1). We say £ to be the effective Cartan geometry
associated with &.
Let ﬁ(M, ﬁ) be the principal H-bundle of the foliated bundle constructed for the effective Cartan
geometry £. Thefoliation (R, F) is called the associated lifted foliation for the Cartan foliation (M, F).
Let (M,F) be a complete Cartan foliation, (R, F) be the lifted e-foliation and (R, F) be the
associated lifted e-foliation. Repeating and summing up the relevant results of Molino [13] we obtain:

(i) the closure of the leaves of the foliation (R, F) are fibers of a certain locally trivial fibration
Ty R — W,
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(ii) the Toliations (CU(L), Flcizy) and (cz<2),f|0l@) induced on the closures CIL(L) and CI(L)
correspondingly are Lie foliations with dense leaves with the structural Lie algebras gy and g, respec-
tively, which do not depend of a choice of £ € F and LeF.

Definition 4. The structural Lie algebras go and g1 of the Lie foliations (CI(L), Flcc))
and (CZ(EA),]?\CI(E)) respectively are called the structural Lie algebras of the complete Cartan
foliation (M, F) and are denoted go(M, F') and g,(M, F).

For a Cartan foliation (M, F) modeled on an effective Cartan geometry we have go(M, F) =
g1(M, F). For Riemannian foliations on compact manifolds this notion was introduced by Molino [13].
Emphasize that the structural Lie algebras go(M, F') and g1 (M, F') are invariants in the category €F.

3. MAIN RESULTS
First, we prove the following theorem which gives us a sufficient condition for the existence of a
unique structure of a Lie group in the group of basic automorphisms of a complete Cartan foliation.
Theorem 1. Let (M,F) be a complete Cartan [oliation modeled on a Cartan geometry &
of type g/b. If the structural Lie algebra go(M, F') is zero, then the group A%(M, F) of basic
automorphisms of this foliation is a Lie group with dimension
dim(A% (M, F)) < dim(g), (1)

and the Lie group structure in A%(M, F) is unique. The estimate (1) is exact (i.e. best possible).

Recall that a leaf L of a foliation (M, F) is proper if L is an embedded submanifold in M. A foliation
is called proper if all its leaves are proper. A leaf L is said to be closed if L is a closed subset of M. Any
closed leaf is known to be proper.

Theorem 2. Let (M, F) be a complete Cartan [oliation modeled on a Cartan geometry & of
type g/b and let & be the associated effective transverse Cartan geometry. Suppose that both
structural Lie algebras go(M, F) and g1(M, F') are zero. Then

(i) both the group A%(M, F) of basic automorphisms and its projection Ag(M, F)¢ admit
unique Lie group structures, and

dim(Ap(M, F)¢) < dim(g) — dim(£), (2)
where tis the kernel of the pair of the Lie algebras (g, h);

(ii) if there exists an isolated proper leaf (or there exists an isolated closed leaf) or if the set
of proper leaves (or the set of closed leaves) is countable, then

dim(Ap (M, F)¢) < dim(Ap(M, F)) < dim(h) — dim(®); (3)

(iii) if the set of proper leaves (or the set of closed leaves) is countable and dense, then
dim(Ap(M, F)¢) = dim(Ap(M, F)g) =0. (4)

The estimates (2), (3) are exact (i.e. the best possible) and there exist foliations (M, F) for
which (4) holds.

Examples 1—3 show the exactness of estimates (2) and (3).

Theorem 3. Let (M, F) be a complete Cartan [oliation with a transverse Cartan geometry
€ of type g/b and let & be the associated Cartan geometry. Assume that the kernel of the pair
of the Lie algebras (g,b4) is zero and g1(M,F) = 0. Then go(M, F) = 0 and the groups A%(M, F),
Ap(M, F)g, A%(M, F)and Ap(M, F)g admit unique Lie group structures of the same dimension.

In the proves of theorems we use of notation of an Ehresmann connection 9% for a smooth foliation
(M, F') which belongs to Blumenthal and Hebda, where 9t is a transversal distribution to (M, F') [14].
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4. PROOFS OF THEOREMS
4.1. Proof of Theorem 1

Let (M, F) be an 9M-complete Cartan foliation and let R(M, H) be the foliated bundle with the
lifted foliation (R, F). As go(M, F) =0, so the leaves of (R, F) are fibers the locally trivial bundle
7 : R — W. The map

W x H—W: (w,a) ~ m(Re(u) V(w,a) € W x Hyu € m, * (w),

defines a locally free action of the Lie group H on the basic manifold W, and the orbits space W/H is
homeomorphic to the leaf space M/F. Identify W/H with M/F. The equality 7jo = (3 defines an g-
valued 1-form o on W such that o(Aj;,) = A, where Aj;, is the fundamental vector field on W defined
byAebhCag.

Denote by A(W, o) the Lie group of automorphisms of the parallelizable manifold (W, o), i.e
AW,0) ={f e Dif fW)|f*oc = o}. Let AT(W,0) = {f € A(W,0)|f oR, = Ry0 fVa € H}. Then
A" (W, o) and its unity component AX (W, o) are Lie groups as closed subgroups of the Lie group
AW, o).

Since I, T' € AS(M, F) preserves (R, F), there exists ¢ € Dif f(W) satisfying the equality 7, o T’ =
¢ o mp. It is not difficult to show that we have the map

ko A (M, F) = AS (M, F)/AS (M, F) — AT (W,0) : T - A5 (M, F) — ¢

which is a group monomorphism. Let us show that Im(k) is the open-closed Lie subgroup of the Lie
group AT(W, o).

Suppose that A” (W, o) is a discrete Lie group, then A%(M, F) is also discrete Lie group and the
required statement is true. Further we assume that dim(A* (W, o)) > 1. Let a be the Lie algebra of the
Lie group A" (W, o) and let B* be the fundamental vector field defined by an element B € a. Hence
X := B* is a complete vector field on W which defines the 1-parameter group ¢, t € (—o00, +00),
of transformations from A (W,s). Consequently 1)Lxo =0 and 2)Lx A}, = 0 where A}, is the
fundamental vector field on W defined by an element A € b.

Let f be any element from the identity component AX (W, o) of the Lie group A” (W, o). Then
there exist B € a and tp € (—o0,400) such that f = gofg where X = B*. Note that m, : R — W is
the submersion with the Ehresmann connection ﬁ where 9t = 79, Therefore there exists the unique
vector field Y € X5 (R) such that mp« Y = X, and Y is a foliated vector field, i.e. [Y, Z] € X77(R) for all
Z € X7pr(R). Completeness of the vector field X implies completeness of the vector field Y. Hence Y
defines the 1-parameter group ¥ ,t € (—o0, +00), of diflecomorphisms of the manifold R. Let us show
that ¢} € AS(M, F), forall t € (—oo, +00), i.e., we have to check the validity of the following two facts:
1)Ly =0;2) Ly A* =0forall A € b.

1. Let us denote Zy := m. Z for any foliated vector field Z € X(R).

Case I: The vector field Z € X(R) satisfies the condition 5(Z) = const. The relation 5 = o o mp»
implies that o(Zw) = B(Z) = const, so X (o(Zw)) = 0. In accordance with the choice of X we have
o € A(W,0), hence Lxo = 0. Therefore using formula for the Lie derivative Lxo we have

0= (Lxo)(Zw) = X(o(Zw)) — o([X, Zw]) = —o([X, Zw]). (9)

In the equality (Ly 8)(Z) = Y (8(Z)) — B([Y, Z]) the first term Y (3(Z)) is zero because 3(Z) = const.
The relations 8 = ¢ o m+ and (5) imply the following chain of equalities:

B([Y, Z)) = o(my-[Y, Z]) = o([mp Y, mp Z]) = 0 ([X, Zw]) = 0.

Therefore (Ly 8)(Z) = 0.
Case II: Consider any vector field Z in Xg5(R). Let Ej,i = 1,...,dim g, be a fixed basis of the vector
space g and let Z; be the vector fields in Xg(R) such that 3(Z;) = E;. In this case Z = h'Z; where
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h' are smooth functions on R. Due to linearity of 3 and the property of the Lie brackets we have the
following chain of equalities:

(LyB)(Z) =Y (B(h'Zy)) = B(IY, " Zi]) = h'(Y (B(Z:)) = B(IY, Zi]))
+Y (W)B(Z:) = Y (h)B(Zi) = W' (Y (B(Z:) — B(IY, Z))) = h'(Ly B)(Z:)-

Since 3(Z;) = const we apply Case I and get (Ly3)(Z) = 0VZ € X5,(R).

2. Let us pick any A € h. We denote A* and Aj;, the fundamental vector fields on R and W
defined by A € b respectively. As B(A*) = o(Aj,) = A, the vector field A* is foliated with respect to
(R, F). So the application of the equality Lx Aj;, = 0 allows us to get the following chain of equalities
e [A*, Y] = [mpe A%, mp Y] = [A}y,, X| = Lx Ajy, = 0, hence [A*, Y] € X7(R). Let as, t € (=00, +00),
be the 1-parametric transformation group of R generated by the fundamental vector field A*. Then
R, (u) = uay for every t. We get

(4%, Y] = lim 1 [(Re,).Y V] (6)

t—0
By the definition YV € X5,(R). Since 9 =M, the distribution M is H-invariant. Therefore,
(Ray)+Y € Xg5(R) and
(Ra, )Y =Y € X5(R) Vt € (=00, +00). (7)
Let us pick any point u € R, put x = w(u) € M. Due to (6), (7) and continuity of 7, using the fact that

the subspace 9, is closed in the topology of the tangent space T,, M = R™ we get the following chain of
relations

1 1
Tea([A% Y]) = T (lim 2 [(Ra, )Y = Y]) = lim = [(Ra, )Y — Y] € Mg, hence

T ([A7,Y]) € M. (8)

[t is followed from (8) that 7, [A*, Y] € Xon(X). Consequently [4*, Y] € X5(R).

The relations [A4*,Y] € X#(R) and [A*,Y] € X5 (R) imply the equality [A*,Y] =0 for all A € b.
This completes the check that 1) € AE(M, F).

Thus AZ(W,0) C Im(k) and & : A%(M, F) — AH(W,0) is the group isomorphism onto the open-
closed Lie subgroup I'm(x) of the Lie group A7 (W, o).

Since the group A%(M, F) is realized as a group of diffeomorphisms of the manifold W, the Lie group
structure in A%(M, F) is unique ([15], Theorem VT).

4.2. Proof of Theorem 2

(i). Let A%(M, F) and A%(M, F') be the groups of basic automorphisms corresponding to the
original Cartan geometry £ and to the associated Cartan geometry £. In accordance with the conditions
go(M,F) =0 and g;(M,F) =0 due to Theorem 1 both groups A%(M, F) and A%(M, F) are Lie
groups, and their Lie group structures are unique. Besides all leaves of the associated lifted foliation

(R, F) are closed and the manifold of the leal space W= R/F with the projection 7 : R — W are
defined. Denote by g the quotient algebra g/€, where € is the kernel of the pair of the Lie algebras (g,8).

Denote by ﬁ the respectlve g-valued 1-form on R. Let G be the § g-valued 1-form on 1% satisfying the
equality 7o := B.LetK = Ker(G,H)andletT : R — R = R /K be the quotient map. Pick any leaf £
of the foliation (R F), then 7(CL(L)) = Cl(r(L)), hence 7(CI(L)) = Lis a leaf of (R, F) and there is a
map7T: W — 1% satisfying the followmg equation 7 o, = 7, o 7. Since W= W/K, every orbitw - K,
w € W, is closed. Thereforen = (W(W K), o) is the Cartan geometry with the projection7 : W — w.
Observe that g-valued 1-form & satisfies the equality 7% = o, because 8 = B.
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For any ¢ € A%(M, F) which is considered as an element of A” (W, o) we have po Ry, = Ry o
¢ Vb e K. Then there exists ¢ € Dif f(W) such that Toyp = @o7. The direct check shows that
pe AgB(M,F). Thus the map g : A%(M,F) — AEB(M, F): ¢~ @ is defined, and p is a group
homomorphism.

Consider any 1-parametric group ¢5* C AX(W,0),t € RL. According to the proof of Theorem 1 we
may identify A%(M, F). with AZ(W, o) through the group isomorphism x. Using this identification it
is easy to get the inclusion ,u(A%(M, F).) C AEB(M, F). and to see that p : A%(M, F) — AEB(M, F)is
the Lie groups homomorphism. Therefore

dim(Im(p)) < dim(AgB(M, F)) < dim(g) = dim(g) — dim(#).

Efficiency of the associated Cartan geometry E implies the existence of a group isomorphism ([6],
Proposition 9) 6 : A%(M, F) — Ap(M, F)g. Note that Ag(M, F')¢ = 0(Im(p)). Thus Agp(M, F)¢ is a
Lie subgroup of the Lie group Ag(M, F)E’ and

dim(Ap(M, F)¢) = dim(Im(p)) < dim(g) — dim(g).

Since the group Ap(M, F)g is isomorphic to an open-closed subgroup of Aﬁ(W,’a\), the groups
Ap(M, F)g and Ap(M, F)¢ are realized as groups of diffeomorphisms of the manifold W, hence their
Lie group structures are unique.

(7i) Let s : W — /W/ﬁ be the canonical projection onto the orbit space and ¢ : M — M/F be the
canonical projection onto the leaf space. Assume now that there exists an isolated proper leaf L of
the foliation (M, F). Letx € L, v =7"1(x) and z = 7, (v) € W. Observe, that any automorphism of
a foliation transforms a proper leaf to the corresponding proper leaf. Since the orbit Af(/V[Z 0)-zof

the point z is connected subnanifold of W and q(L) = s(z), it is necessary that the orbit A’f(W, o)z
belongs to s7*(s(z)). Consequently we have

dim(Ap(M, F)e) < dim(Ap(M, F)) = dim(A7 (W,5) - 2) < dim()

= dim(h) = dim(h) — dim(¥).
Thus dim(Ag(M, F)¢) < dim(h) — dim(¥).
Suppose now that the set of proper leaves of (M, F) isAcEn\mtable (nonempty). Consider any 1-
parametric group ¢, t € (—oc, +00), from the Lie group AZ(W,5) = Ap(M, F)ée' Let L = L(x) be
any proper leaf, v = 771(z) and z = T (v) € W. Let z - H be the orbit of z respectively H. Since for any

fixed ¢ the automorphism ¢, transforms the proper leaf L to the proper leaf ¢, (L), the countability of the

set of proper leaves implies that ¢ (z - fI) =z H. Hence, by analogy with the previous case we have
the estimate (3).

(i7i) Now we suppose that the set of proper leaves {L,|n € N} of (M, F') is countable and dense.
Let 2, € Ly, v, =7 Y(x,) and z, = 7p(v,) € W. Assume that dim(Ap(M, F)¢) > 1. Let ¢y,
t € (—00,400), be any 1-parametric subgroup of the automorphism group Ag(ﬁ\/, o) = Ap(M, F)E,e'
As it was proved above, it is necessary o4 (z;, - ﬁ) =2z, Hiorallte (—00,400) and n € N. Remark
that the leaf space M/ F' is homeomorphic to the orbit space I//[\//I? Denote ¢, the induced 1-parametric
group of homeomorphisms of the leaf space M/F. Therefore, for every ¢t € (—o0,4+00), t # 0, the
homeomorphism @; has dense subset {[Lp]|[Ln] = (2 - H),n € N} of fixed points in M/F = /W/ﬁ.

Continuity and openness of the canonical projection ¢ : M — M/F imply that the leaf space M/F

is a first-countable topological space, that is every its point has a countable basis of neighborhoods.
Then for every fixed ¢ € (—o0, +00) the transformation ¢; of M/ F is sequentially continuous. Therefore
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the existence of the dense subset of fixed points of the homeomorphism ¢ implies ¢y = Idy;/p. Hence
¢ = Idg; for every t € (—o0, +00) that contradicts to the assumption.

Thus, dim(Ag(M, F)¢) = dim(Ap(M, F)g) = 0and (4) is proved.

4.3. Proof of Theorem 3
Use the notations from the proof of Theorem 2. By definition, K is the kernel of the pair (G, H).
The condition € = 0 implies that K is a discrete normal subgroup in both the Lie groups G and

H. Therefore the submersion 7: R — R := R/K is a regular covering map. Observe that due to
the condition g; (M, F') = 0 this implies go(M, F') = 0, hence the leaves of the lifted foliation (R, F)
are fibres of the basic fibration m, : R — W. Moreover, the quotient map 7: W — W/K satisfies the

equality 7 o, = 7, o 7. Therefore the map 7: W — W= W/K is the regular covering map with the
deck transformation group K" := {Ry|b € K}.

In the case when dim(Ap(M, F)g) =0 the groups A%(M,F), Ap(M, F)e, AEB(M, F) and
Ap(M, F)g are discrete and Theorem 3 is valid.

Let dim(Ap(M, F)g) > 1. According to the proof of Theorem 2 we have A%(M, F). = AH(W,0)

and A%(M, F), = A?(W,E). Let us show that in this case p induces the group epimorphism ¢ :
AE(W, o) — A?(W,a). Let gp? be 1-parametric group in Ag(W,E). This is equivalent to the
fulfillment of the following two conditions: 1)[A*W’ Z) =0VAehand 2)Lzo =0. Since 7: W — W
is the covering map, there exists the unique vector field Z on W such that 7.7 = Z. Observe, that for
any fixed point w € W and w € 771(@) the curve ¢f (w) is the lift to point w of the curve go?({z}) with
origin in w respectively the covering map 7 : W — W.Dueto7: W — W is the covering map, for any
point w € W there exists neighborhood U of w such that 7|y : U — 7(U) is a diffeomorphism. The Lie
brackets of vector fields have an infinitesimal character, hence the conditions [X, Y] = 0 and [X,Y] =0
are equivalent for every vector fields X, Y € %(/W) and theirlifts X, Y € X(W). Let Aj;, be thelift of Afw,
then the equality [AfW, Z) = 0 implies [A}y, Z] = 0. Note that the Lie derivative has also infinitesimal
character. Since 7 is a local diffeomorphism and o = 7*@, the equality Lzo = 0 is equivalent to the
equality L 7o = 0. This means that gotZ is 1-parametric subgroup of the Lie group AH(VV, o).

Thus, € : Ag(M, F)¢ e — Ap(M, F)ae is a Lie group epimorphism. Discreteness of fibers of 7

implies discreteness of the kernel of . Therefore the kernel of ¢ : A%(M, F)— AEB(M, F) is also

discrete and the following Lie groups A%(M, F), Ap(M, F)g, AEB(M, F)and Ag(M, F)g have the same
dimension.

5. CONSTRUCTIONS OF EXAMPLES

Suspended foliations Let Q and 7" be smooth connected manifolds. Denote p: G := m(Q, z) —
Dif f(T) a group homomorphism. Let ¥ := p(G). Consider the universal covering map p : Q—Q
as a right G-space. A right action of the group G on the product of manifolds Q x T is defined
as follows: © : Q x T x G — Q x T : (z,t,9) — (x - g, p(g~)(t)), where the covering transformation
Q — Q:ax — x-gis induced by an element g € G. The quotient manifold M := (@ x T)/G with the
canonical projection fo: Q x T — M = (C~2 x T')/G are determined. Then the projection fj : QxT—

M induced the smooth foliation F = {fo(Q x {t})|t € T} on M. The pair (M, F) is called a suspended
foliation and is denoted Sus(T', @, p).

The following easy proved statement will be useful further.
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Proposition 8. Let £ = (P(T,H),w) be a complete effective Cartan geometry on a simply
connected manifold T and p : m (N, x) — Aut(§) be a group homomorphism. Suppose that ¥V :=
Im(p) is a discrete subgroup of Aut(§) and the normalizer N(¥) of ¥ belongs to the centralizer
Z(V) of U in the group Aut(§). Then (M, F):= Sus(T,B,p) is a complete Cartan [oliation
modelled on &, and there exists a Lie group isomorphism between A%(M, F)= Ap(M,F)¢ and
the Lie quotient group N(V)/ .

Example 1. Let G be a Lie group and H be a closed subgroup of G. Denote by g and b the Lie
algebras of the Lie groups G and H respectively. Suppose that the kernel of the pair of Lie groups (G, H)
is equal to the intersection K = Z(G) N Z(H) of the centres of the groups G and H. Denote wg the
Maurer—Cartan g-valued 1-form on the Lie group G, then ¢° = (G(G/H, H),w¢) is a Cartan geometry.
Consider any smooth manifold L. Denote M the product of manifolds M = L x (G/H) and F =
{L x {z}|z € G/H}. Hence AgBO(M, F) =2 Aut(¢°) and dim(Ag(M, F)) =dimg. By assumption,
K = Z(G) N Z(H) is the kernel of the pair (G, H), hence Gau(&°) = {Ly|b € K}. Thus, Ag(M, F)e0 =
Aut(£°)/Gau(€") = G/K, hence dim(Ap(M, F)eo) = dim(g) — dim(€).

Example 2. Let E2 = (R2, g) be the Euclidean plane with the Euclidean metric g and ¢ be the
respective Cartan geometry. Let ¢ be the rotation of the Euclidean plane E? around the point 0 € E?
by the angle § = 27wk, k € R. Denote J(E?) the full isometry group of E2. It is well known that
J(E?) =2 0(2) x R,

Let py: m1(S1,b) =2 Z — J(E?) be defined by the equality px(1) := g, 1 € Z. Then we have the
suspended Riemannian foliation (M, F},) := Sus(E?, S, p.) with the global holonomy group ¥ :=
Im(py). This foliation has a unique closed leaf which is compact.

Since N (V) = Z(¥;) = O(2), Proposition 8 is applicable. ~ Consequently Ag(M, F); =
N(Vy)/¥, = O(2)/¥;. Hence Ag(M, F)¢ admits a Lie group structure if and only if ¥, is a closed
subgroup of O(2), that is equivalent to § = 27k for some rational number k.

If 6 = 27k, where k # 0 is rational number, then Ag(M, F)¢ = O(2).

Remark 3. /. V. Belko ([5], Theorem 2) stated that the existence of a closed leaf of a
foliation (M, F) with complete transversally projectable affine connection is sufficient for the
group Ag(M, F)¢ of basic automorphisms to admit a Lie group structure. Example 2 shows that
this statement in general is not correct.

Example 3. Let us consider the foliation (M, F}), constructed in Example 2 for a rational number
k as a transversally similar foliation modeled on the Cartan geometry £ := (G(G, H),wg) where G =
CO(2) x R? and H = CO(2). In this case N(¥}) = Z(¥},) = CO(2) and according to Proposition 8
the Lie group Agp(M, F},)¢ is isomorphic to the Lie quotient group N (W¥y)/¥; =2 CO(2). Therefore
AS(M, F) = CO(2).

Thus, the group A%(M, Fy) =2 Ag(M, Fy,)¢ = CO(2) is not isomorphic to the group ACB(M, Fp) =
Ap(M, Fy,)¢c = O(2) where ¢ is the Euclidean geometry on the plane considered in Example 2.

Example 4. Consider the standard 2-dimension torus T? = R2/Z2. Let Q : R? — T? be the quotient
map which is the universal covering of the torus. Let g be the flat Lorentzian metric on the torus T? given

2 m
in the standard basis by the matrix ¢ ( ) ,where m € Z, |m| > 2 and ¢ is any non zero real number.
m 2

Denote ¢ the effective Cartan geometry which is defined by g. Introduce notations J(T?2, g) for the full
isometry group of this Lorentzian torus (T2, g) and Jo(T?, g) for the stationary subgroup of the group
J(T?, g) at point 0 = ©(0), 0 = (0,0) € R?. Asitis known ([16], Example 3), J(T?, g) = Jo(T?, g) x T2,

1 ~ 01
and the group Jo(T?, g) is generated by f, f;and (—E), where A = (m and A = ( , hence
-10

10

J(T?, g) = (Zo x Zg x Z) x T2. Denote f the Anosov automorphism of the torus T2 determined by the
matrix A € SL(2,7Z), while by E the identity 2 x 2 matrix.
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Let @ = S' and T = T? in the definition of suspended foliation given above. Define the group
homomorphism p : 71(S') = Z — J(T?, g) by the equality p(k) := (f41)*, k € Z. Then the foliation
(M, F) := Sus(T?, S, p) is Lorentzian, and its global holonomy group ¥ is the group of all lifts of
transformations from the group ® := (f4) respectively the universal covering map € : R? — T2 It is
not difficult to show the existence of a group isomorphism 6 : Ag(M, F)¢ — N(¥)/¥.

The direct check shows that N(¥) /¥ = Zy x Zs. Thus
A%(M,F) = AB(M,F)g = Zg X ZQ.

Remark 4. /1 is well known that the set of periodic orbits of an Anosov automorphism of the
torus T2 is countable and dense. Therefore the foliation (M, F) constructed in Example 4 has a
countable dense set of closed leaves and according to item (iii) of Theorem 2, its group of basic
automorphisms Ag(M, F)¢ is a discrete Lie group. Our result Ag(M, F)¢ = Zo X Zy illustrates
this statement.
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