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[1] Long linear wave transformation in a basin of varying depth is studied for a case of a
convex bottom profile h(x) � x4/3. This bottom geometry provides the ‘‘nonreflecting’’
wave propagation at least in the framework of the one-dimensional shallow water
equation. In this case, shoaling effects are very strong and wave reflection occurs in the
immediate vicinity of the shoreline. The existence of traveling wave solutions (which
propagate without reflection) in this geometry is established through construction of a 1:1
transformation of the general 1-D wave equation to the analogous wave equation with
constant coefficients. The general solution of the Cauchy problem consists of two
traveling waves propagating in opposite directions and allows a detailed description of
the wavefield (vertical displacement and depth-averaged flow). It is found that generally
a zone of weak current is formed between these two waves. Waves are reflected from
the coastline so that their profile is inverted with respect to the calm water surface.
Long-wave runup on a beach with this profile is studied for the sine pulse, Korteweg-de
Vries soliton, and N wave. It is shown that in certain cases the runup height along the
convex profile is considerably larger than for beaches with a linear slope. The analysis
of wave reflection from the border of a shallow coastal area of constant depth and a
section with the convex profile shows that a transmitted wave always has a sign-variable
shape. Results of the wave transformation above the convex beach and beaches
following a general power law are compared. This simplified model demonstrates the
potential importance of the tsunami wave transformation along convex beaches.
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1. Introduction

[2] The wave transformation and shoaling of water waves
in basins of variable depth is a well developed task of fluid
dynamics and has numerous applications in physical ocean-
ography [Le Blond and Mysak, 1978; Mei, 1989; Massel,
1989; Dingemans, 1996]. Asymptotic methods are widely
applied to describe the wavefield for slow variations of the
water depth [Shen, 1975; Mei, 1989; Dingemans, 1996;
Berry, 2005; Dobrokhotov et al., 2006, 2007]. In the
simplified case of 1-D linear shallow water wave propaga-
tion, asymptotic methods lead to the well-known Green’s
law, A � h�1/4, for the change in the wave amplitude A (h is
a water depth), derived from the energy flux conservation.
Not all amplitude changes follow this law; for example, the
height of a solitary wave (soliton) may vary as A � h�1 in
the framework of the weakly nonlinear theory of dispersive
waves [Grimshaw, 1970; Ostrovsky and Pelinovsky, 1970].
A more complicated formula can be obtained for the solitary

wave of an arbitrary height [Pelinovsky, 1996]. The partic-
ular law of dependence of the wave amplitude on the
combination of the properties of the attacking wave and
of the medium, and the related problem of wave runup, is
one of the central questions in modeling of tsunamis and
coastal flooding.
[3] If the water depth in the coastal zone is rapidly

varying, the exact analytical solutions for wave transforma-
tion can be found within linear shallow water theory for
different bottom profiles. Such solutions usually are
expressed in terms of special functions [Le Blond and
Mysak, 1978; Massel, 1989; Mei, 1989]. Analytical, rigor-
ous solutions of the nonlinear shallow water system are only
known to exist for beaches of constant slope [Carrier and
Greenspan, 1958]. The solution of the nonlinear problem
strongly depends on the initial waveshape. Various shapes
of the periodic incident wave trains such as the sine wave
[Kaistrenko et al., 1991; Madsen and Fuhrman, 2007],
cnoidal wave [Synolakis, 1991] and nonlinear deformed
periodic waves [Didenkulova et al., 2006, 2007] have been
analyzed in the literature. The relevant analysis has been also
performed for a variety of solitary waves and single pulses
such as soliton [Pedersen and Gjevik, 1983; Synolakis,
1987; Kânoğlu, 2004], sine pulse [Mazova et al., 1991;
Didenkulova and Pelinovsky, 2008], Lorentz pulse
[Pelinovsky and Mazova, 1992], Gaussian pulse [Carrier et
al., 2003; Kânoğlu and Synolakis, 2006], Nwaves [Tadepalli
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and Synolakis, 1994], and ‘‘characterized tsunami waves’’
[Tinti and Tonini, 2005]. The numerical methods are now
widely applied to study wave transformation and shoaling in
the coastal zone (see review paper by Dalrymple et al.
[2006]).
[4] The approximation of a linearly varying depth is not

particularly realistic. Various equilibrium bottom profiles in
the vicinity of the shoreline including power asymptotic
h(x) � xd are discussed in literature. The most common is
the famous Dean’s Equilibrium Profile with d = 2/3 [see,
e.g., Dean and Dalrymple, 2002]. For Dutch dunes profiles
d = 0.78 provides a better fit [Steetzel, 1993]. Kit and
Pelinovsky [1998] found a range of d = 0.73–1.1 for Israeli
beaches. Various asymptotic approximations for beach pro-
files in terms of power laws are also used in theoretical
models [Kobayashi, 1987; Kit and Pelinovsky, 1998]. How-
ever, in many cases, bottom profiles have a composite
structure with one shape near the beach and another profile
shape at greater depths. Figure 1 demonstrates the bottom
profile measured at Pirita Beach, Estonia [Soomere et al.,
2007]. It is clearly seen that the profile for the depths of
2–10 m can be approximated by the power law with d = 4/3.
A similar approximation with d > 1 can be found for
continental Pacific shelf of Northern Chile for the coastal
line down to the depth of 5 km (Figure 2).
[5] Therefore, it is important to analyze the wave trans-

formation and runup for various realistic bottom profiles
matching more general power laws (not only the popular
case d = 1). The case d = 4/3 is of special interest, because
the solution of linearized shallow water equations can be

obtained in elementary functions for this profile [Cherkesov,
1976; Pelinovsky, 1996; Tinti et al., 2001]. In previous
studies, this case was considered mainly to simplify the
final expressions describing wave dynamics, but a compre-
hensive analysis of wave properties and transformation
along this type of coastal slope is missing.
[6] In this paper we study the linear dynamics of shallow

water waves for the convex depth profile h(x) � x4/3 for a
wide class of initial conditions. The main aim is to establish
the potential threats to the coastal zone through enhanced
amplitude amplification of approaching waves and poten-
tially larger runup height of long waves along beaches
containing convex sections of the coastal slope. The paper
is organized as follows. The properties of traveling waves
along the convex bottom are described in section 2. The
uniqueness of such traveling wave solutions is proved in
section 3 by means of introducing a 1:1 transformation of
the governing wave equation with varying coefficients to
the constant coefficient wave equation. This transformation
enables us to obtain the solution of the Cauchy problem and
to study wave evolution for various initial conditions in a
straightforward manner. Wave runup on a beach of a special
profile with d = 4/3 is analyzed in section 4, with an
important implication that wave amplification for such a
beach can be much more significant than for a plane beach.
The monochromatic wavefield in the basin of a general
power profile is described in section 5. Special attention is
paid to the phase shift between reflected and incident waves
versus a profile power. The wave propagation along the
beach containing a shallow coastal area and a section of

Figure 1. Measured bottom profile at Pirita Beach, Estonia (dashed line) and its power asymptotic
(solid line).

Figure 2. Bottom profile extracted from the Historical Tsunami Database [Gusiakov, 2002] for Pacific
coast of northern Chile at 7.7�S 78.51�W.
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convex beach is studied in section 6. The main results are
summarized in conclusion.

2. Traveling Waves Above an Uneven Bottom

[7] The basic model for the linear, long-crested, 2-D
shallow water waves in the basin of a variable depth is a
1-D linear wave equation for the vertical displacement of
the water surface h (x, t)

@2h
@t2

� @

@x
c2 xð Þ @h

@x

� �
¼ 0; c xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
gh xð Þ

p
; ð1Þ

where c(x) is the wave speed, h(x) is the water depth and g is
the gravity acceleration. The domain, boundary and initial
conditions for equation (1) will be discussed later.
[8] Traveling wave solutions for the wave equation with

slowly varying coefficients, equivalently, for the waves
above slowly varying bottom relief, are usually studied
with the use of asymptotic methods. Exact solution of the
wave equation for a sine wave above a convex beach with
power d = 4/3 has the same form [Cherkesov, 1976;
Pelinovsky, 1996]. We will shortly recall these results
from the viewpoint of the structure of the traveling water
waves.
[9] Traveling (progressive) waves are sought in the form

h x; tð Þ ¼ A xð Þ exp i wt �Y xð Þ½ �f g; ð2Þ

where A(x) and Y(x) are real functions (local amplitude and
phase, respectively) which should be determined, and w is
the wave frequency. After substitution of equation (2) to
equation (1) the real and imaginary parts of the resulting
equation are the following two ordinary differential
equations:

w2

gh xð Þ � k2 xð Þ
� �

Aþ d2A

dx2
þ 1

h

dh

dx

dA

dx

� �
¼ 0; ð3Þ

2k
dA

dx
þ A

dk

dx
þ 1

h

dh

dx
kA ¼ 0: ð4Þ

Here k(x) = dY/dx is a variable wave number. Equation (3)
can be interpreted as the generalized dispersion relation for
waves in an inhomogeneous medium whereas equation (4)
has the meaning of the energy flux conservation. While
equation (4) can be easily integrated

A2 xð Þk xð Þh xð Þ ¼ constant; ð5Þ

equation (3) is a second-order differential equation with
variable coefficients which generally has no analytic
solutions in closed form. This equation is not simpler than
the initial wave equation (1).
[10] Further progress toward analytically solving

equation (3) can be made when the wave propagates above
a slowly varying bottom. In this case both variations of the
water depth and the wave amplitude are slow; the terms in
the second bracket of equation (3) are small compared to

other additives and can be ignored in the first approxima-
tion. In this case, equation (3) is simply solved

k xð Þ ¼ wffiffiffiffiffiffiffiffiffiffiffi
gh xð Þ

p : ð6Þ

Equation (6) is a generalization of the well-known
dispersion relation for water waves in the basin of slowly
varying depth. Solution (6) together with equation (5),
determine the wave amplitude (that in this case evidently
follows Green’s law) and phase. The relevant asymptotic
procedure and all higher-order corrections of the wave
amplitude and phase are described in detail by Maslov
[1987, 1994], Babich and Buldyrev [1991], and Berry
[2005].
[11] Basically, equation (3) can be solved numerically

for an arbitrary function h(x) or analytically for specific
bottom profiles. As a result, solution (2) can be deter-
mined completely. Sometimes, solutions of this type are
called traveling waves in an arbitrarily inhomogeneous
medium (without any specific applications for water
waves) and can be interpreted as a description of compli-
cated physical processes of wave transformation and
reflection in a basin of variable depth [Ginzburg, 1970;
Brekhovskikh, 1980].
[12] We, however, concentrate on the analysis of the

potential existence of exact traveling wave solutions to
equation (1) and their propagation and reflection properties.
The procedure to select the traveling wave solution from the
entire set of solutions of equation (3), does not have a
rigorous formulation in the literature. Historically, a subset
of such solutions has been found by ensuring that the
following two equations:

w2

gh xð Þ � k2 xð Þ ¼ 0 ð7Þ

and

d2A

dx2
þ 1

h

dh

dx

dA

dx

� �
¼ 0 ð8Þ

are satisfied simultaneously. Obviously, any set of solutions
{A, k, h} to equations (7) and (8) also solves equation (3),
although generally solutions to equation (3) do not solve
equations (7) and (8) simultaneously. The solution of
equation (7) is straightforward and given by equation (6);
thus the function k(x) is uniquely defined. The system of
equations (5) and (8) is overdetermined for the wave
amplitude. Its consistent solution can be achieved if and
only if

h xð Þ ¼ p xþ bð Þ4=3; ð9Þ

where p and b are arbitrary constants. The desired solution
therefore only exists for beaches having a specific convex
bottom profile. As constant b can be eliminated by a shift
~x = x � b of the x axis, we can assume b = 0 without the loss
of generality. Doing so simply means that the origin x = 0 is
located at the coastline. For the bottom profile presented by
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equation (9) the components of the traveling wave in ansatz
(2) are then completely and uniquely defined

k xð Þ ¼ wffiffiffiffiffi
gp

p x�2=3;Y xð Þ ¼ 3wffiffiffiffiffi
gp

p x1=3 þ const;A xð Þ ¼ const

x1=3
:

ð10Þ

The corresponding full solution to equation (1) can be
rewritten in traveling wave form

h x; tð Þ ¼ A xð Þ exp iw t � t xð Þ½ �f g;A xð Þ ¼ A0

h0

h xð Þ

� �1=4
;

t xð Þ ¼
Zx

x0

dy

c yð Þ; ð11Þ

where A0 and h0 are the amplitude and the water depth at the
point x = x0, respectively. The location of the point x = x0
can be chosen arbitrarily. This feature enables analysis of
waves approaching from offshore as well as waves
generated in the vicinity of the coast. The solutions given
by equation (11) correspond to right-going (propagating
offshore in this geometry) monochromatic wave trains
[Cherkesov, 1976; Pelinovsky, 1996]. The resulting expres-
sions coincide with the asymptotic wave solution for a
slowly varying bottom profile, but are correct for any
bottom slope. A similar solution can be obtained for a wave
propagating to the left (onshore) direction by simply picking
up another sign of t(x) in equation (11). In the linear
framework the principle of linear superposition holds and
these waves do not interact with each other. The resulting
surface displacement or the local current in areas where they
overlap is just the sum of displacements or currents caused
by the counterparts.
[13] The previous studies into the problem in question

have been limited to the analysis of properties of mono-
chromatic or sine waves. An obvious generalization of the
existing results is with the use of Fourier analysis to obtain
the superposition of such sine waves with different frequen-
cies, the technique obviously being applicable in this linear
framework. With the use of the Fourier integral of spectral
components (11), the traveling wave of an arbitrary shape
can be presented in a general form

h x; tð Þ ¼ A xð Þf t � t xð Þ½ �; ð12Þ

where f(t) describes the waveshape (interpreted here as the
variation with time of the surface elevation at a fixed point).
An important feature is that representation (12) allows
consideration of wave pulses of finite duration being
generalized solutions of the wave equation.
[14] Another important property of the shallow water

wavefield is the wave-induced, depth-averaged flow veloc-
ity. This velocity can be calculated from the water displace-
ment using one of the equations of the linear shallow water
system

@u

@t
þ g

@h
@x

¼ 0: ð13Þ

In particular, the velocities induced by the monochromatic
wave (11) and by a pulse (12) are

u x; tð Þ ¼ U xð Þ 1þ
ffiffiffiffiffi
gh

p

4hiw
dh

dx

� �
exp iw t � t xð Þ½ �f g;

U xð Þ ¼ A xð Þ
ffiffiffiffiffiffiffiffiffi
g

h xð Þ

r
¼ A0

ffiffiffi
g

h

r
h0

h xð Þ

� �1=4
; ð14Þ

u x; tð Þ ¼ U xð Þ f xð Þ þ
ffiffiffiffiffi
gh

p

4h

dh

dx
F xð Þ

� �
; ð15Þ

where F(x) =
R
f(x) dx and x = t � t(x). Notice that the first

terms in equations (14) and (15) correspond to the
asymptotic solution of equation (1) above a slowly varying
bottom, for which the shapes of the water displacement and
the wave-induced water flow coincide. The second term
becomes important in the vicinity of the shoreline.
[15] If the wave generated at the depth h0 is periodic

(regular or irregular), there is no limitation on the waveshape.
The natural restriction of realistic pulses – that the wave
disturbance should have a limited energy (equivalently, finite
effective wave duration) – leads to the following condition
of zero setup

Zþ1

�1

f tð Þdt ¼ 0; ð16Þ

from which it follows that the shape of a water displacement
should be sign variable. This condition, as it will be shown
later, is valid for the traveling wave only. As it is not obvious
from the viewpoint of the classical d’Alembert solution of
the generic wave equation (which may consist of two sign-
constant impulses propagating in different directions), we
will discuss it in more detail in section 3 where the Cauchy
problem will be solved.

3. Transformation to a Wave Equation With
Constant Coefficients

[16] From the form of equation (11) it follows that the
function f[t(x) ± t] should satisfy a wave equation with
constant coefficients. The key component of the analysis of
the existence and uniqueness of solutions to equation (1)
corresponding to traveling waves in a basin of a variable
depth is establishing a 1:1 transformation of equation (1) to
a similar equation with c(x) = const.
[17] Let us seek the solution of equation (1) in the form

h x; tð Þ ¼ B xð ÞH t xð Þ; t½ �; ð17Þ

where B(x) and t(x) should be determined, and the function
H satisfies the constant coefficient wave equation with c = 1
[see also Tinti et al., 2001]

@2H

@t2
� @2H

@t2
¼ 0: ð18Þ
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Substitution of equation (17) into equation (1) results in
equation (18) if and only if the unknown functions B(x) and
t(x) satisfy the following three equations:

d

dx
h xð Þ dB

dx

� �
¼ 0; ð19Þ

h xð Þ dB
dx

dt
dx

þ d

dx
h xð ÞB xð Þ dt

dx

� �
¼ 0; ð20Þ

gh xð Þ dt
dx


 �2

¼ 1: ð21Þ

These equations are generalizations of equations (5), (7),
and (8). They are also overdetermined in the sense that they
have a solution if and only if h(x) is given by equation (9).
In other words, the desired transformation exist if and only
if the bottom profile is h(x) � x4/3. This solution is unique
for a reasonable choice of initial or boundary conditions and
coincides with that of equations (10) and (11) if B(x) = A(x).
Moreover, if B(x) and t(x) together with h(x) � x4/3 solve
equations (19)–(21), then the transformation given by
equation (18) reduces equation (1) to equation (18) for the
unknown function H.
[18] The transformation (17) for the bottom profile h(x) �

x4/3 proves the existence of exact traveling wave solutions
above strongly varying bottom relief. There is another
important consequence of the existence of transformation
(17): wave equation (18) has been extensively studied in
mathematical physics, and many theorems and approaches
can be directly applied to the particular solutions in ques-
tion. In what follows, we use this connection for construct-
ing the general solution of equation (1).
[19] Wave equation (1) has a clear meaning in the given

geometry and should be solved on semiaxis (0 < t < 1)
only where the origin x = 0 is a singularity point of the
solution. An important simplification of the problem is that
the point t = 0 corresponding to the shoreline (x = 0) is not
singular in equation (18).
[20] A realistic interpretation of the convex bottom profile

in the vicinity of the point x = 0 is a reef crest just touching
the free surface. In reality, a large part of the wave would
break and/or overwash such a reef (in the linear theory,
however, this phenomenon is not considered) whereas a part
of the wave energy would be reflected back to the sea. As it
is suggested by Stoker [1957] and Sretensky [1977] wave
breaking in framework of the linear theory can be param-
eterized by the fully nonreflecting boundary condition.
Mathematically it implies unboundedness of certain param-
eters of the wavefield at the point x = 0. According to
equation (17) the wavefield is unbounded if the function H
is nonzero at this point.
[21] If at the point x = 0 the convex profile ends with a

vertical wall, the wave energy should be fully or partially
reflected. Mathematically the full reflection can be de-
scribed within the linear theory with the use of the following
boundary condition

H t ¼ 0; tð Þ ¼ 0: ð22Þ

In this case the water displacement h(x = 0, t) and water
discharge always remain bounded on the shoreline, but as it
will be shown later, velocity field is unbounded.
[22] The possibility of defining different meaningful

boundary conditions at the shoreline indicates that the
situation at the coast in question accepts several mathematical
treatments whereas it is not clear beforehand, which of those
best describe the physics of water motion at the coastline. The
universal consequence of the classical versions of boundary
conditions in linear equations is that a certain property of the
wavefield is unbounded. This implies that generic numerical
methods, strictly speaking, may not be suitable for an
adequate description of the situation in the vicinity of the
coastline. They have been usually designed for nonsingular
flows and may simply override more complex situations. The
basic choice is between accepting unboundedness of either
velocities or wave heights. Below we shall use the traditional
concept, according to which the wave height should be
bounded and volume discharge should be zero.
[23] In this case the domain for equation (18) can be

formally extended to the whole axis (�1 < t < +1). The
extension is physically meaningful if the initial conditions
are continued for t < 0 as H(�t, 0) = � H(t, 0). This choice
is frequently called the ‘‘imaginary mirror’’ reflection con-
dition. In this case the wavefield has a clear physical
interpretation in the domain t 
 0 only. In fact, boundary
condition (22) leads to the ‘‘antisymmetric’’ wave reflection
off a beach, when each spectral component shifts on p. This
process will be further discussed in section 5 and compared
with a general case of bottom profiles following a power law.
[24] The general solution of the Cauchy problem for

equation (1) describing free evolution of waves generated
from the generic initial disturbance of the water surface and
the velocity field

h x; 0ð Þ ¼ h0 xð Þ; u x; 0ð Þ ¼ u0 xð Þ ð23Þ

can be expressed as

h x; tð Þ ¼ 1

x1=3
fþ t xð Þ � t½ � þ f� t xð Þ þ t½ � � f� �t xð Þ þ t½ �f g;

ð24Þ

u x; tð Þ ¼
ffiffiffi
g

p

r
1

x
fþ t � tð Þ � f� t þ tð Þ � f� �t þ tð Þ½ �

� g

3x4=3
Fþ t � tð Þ � F� t þ tð Þ þ F� �t þ tð Þ½ �; ð25Þ

where functions f+ and f� (representing the waves
propagating offshore and onshore, respectively) can be
found from initial conditions (23) and F± (x) =

R
f± (x) dx.

The condition (22) is satisfied automatically.
[25] In the theory of tsunami wave generation above an

inclined bottom only the vertical displacement in the source
is usually used [Mei, 1989; Pelinovsky, 1996; Carrier et al.,
2003; Tinti and Tonini, 2005;Dutykh et al., 2006]. In this case

fþ ¼ f� ¼ f0 t xð Þ½ � ¼ 0:5x1=3h0 xð Þ: ð26Þ

Generally, function f0 can have an arbitrary shape
determined by the initial displacement. Figure 3 displays
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the water displacement and velocity for the case, when the
initial displacement in the source (located approximately at
a depth of 20 m) is a sign-variable function (N wave, first
derivative of sech2) that satisfies equation (16)

f0 tð Þ ¼ � 4s

3

tanh 2 t � 60ð Þ=3½ �
cosh2 2 t � 60ð Þ=3½ �

; ð27Þ

where s is a numerical coefficient with dimension of m4/3.
Its particular value is unimportant in the context of this
study and in the calculations below we assume that s = 1.
The waves propagate along a convex bottom profile with a
coefficient p = 0.01 m�1/3, so the water depth at the distance
of 500 m from the shoreline reaches 40 m.
[26] The initial disturbance is split into two waves after

some time. The right-going wave moves quickly offshore.
Its amplitude rapidly decreases and it propagates out of the
computational domain (from 0 to 500 m) after 20 s. The
amplitude of the left-going wave increases as it approaches
the shore. The maximum amplitude occurs at the coastline.
This scenario does not depend on the particular choice of
the boundary condition on the shoreline because the wave
only approaches it. In the case of the nonreflecting bound-
ary condition, the amplitude of the wave increases to the
infinity at the shoreline where it reaches within a finite time.
[27] In the case of the antisymmetric boundary condition

(22) the solution experiences perfect reflection from the
shore and propagates to the right with a decreasing ampli-
tude. The two right-going waves remain separated in space.

[28] The accuracy of the calculations is estimated by
means of tracking the accuracy of the conservation of the
mass and energy

M ¼
Z1
0

h x; tð Þdx ¼ const; E ¼
Z1
0

h xð Þu2 x; tð Þdx

þ g

Z1
0

h2 x; tð Þdx ¼ const ð28Þ

in our calculations M = �0.1960 m2 and E = 8.7264 m4/s2.
These integrals maintain their initial values with an
accuracy of 10�8. The kinetic and potential energies are
equal after the splitting of the initial disturbance into two
separated traveling waves.
[29] Another instructive example (Figure 4) is the prop-

agation of the initial disturbance, located entirely above the
calm water level. Let us consider evolution of the wave
system generated from a disturbance in the form of solitary
wave

f0 tð Þ ¼ ssech2 2 t � 60ð Þ=3½ �: ð29Þ

An interesting feature here is the formation of a weak
current between left-going and right-going pulses. It follows
from the behavior of functions F± (x) that do not vanish at
both ends of the area in question. The magnitude of this
current is very small, only a few percent of the maximum
velocities near wave crests (Figure 5). The mass and energy

Figure 3. (left) Water displacement and (right) velocity for initial disturbance (27). The bottom profile
is shown at the bottom.
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are also conserved here, they are equal to M = 11.7600 m2

and E = 24.5431 m4/s2 with an accuracy of 10�8.
[30] Initially, only positive disturbance of the water sur-

face (elevation) is present in the system. As in the previous
example, the right-going wave propagates rapidly out of the
computational domain without qualitative changes in its
shape. The sign of the water elevation caused by the left-
going wave, however, is inverted in the process of reflection
from the coastline. After this reflection, two right-going
waves exist in the system, together forming a sign-variable
disturbance as expected from equation (16).
[31] The appearance of the residual current is a highly

interesting feature, the presence of which indicates that the
wavefield contains certain other components additionally to
a superposition of the traveling waves. The water velocity
field evidently includes certain distributed components. The
overall appearance of such a field is similar to the one that is
generated during a classical wave reflection above a vari-
able depth profile (linear or parabolic profiles) that includes
the formation of a wave tail behind a shoaling pulse. The
presence of such a tail can be explained for the case of the
wave propagation above smoothly varying bottom profile.
Conservation of the wave period and energy implies that
l � h1/2 and A � h�1/4. The water volume of the wave
approaching the beach is proportional to Al � h1/4. There-
fore, the wave must shed a part of its volume during
shoaling. This local change in the water volume (which
should be conserved totally) becomes evident as the current
under discussion. Note that such a residual current must
arise always when the shape of the disturbance is substan-
tially deformed so that it loses (or gains) some mass. When

the entire system is mass conserving, a residual current
between the sister disturbances is a natural agent that keeps
the mass balance. It is eventually the strongest in the case in
question when a wave of elevation is transformed into a
wave of depression in the reflection process.
[32] If the depth is varying abruptly, the wave amplitude is

less than the one predicted by the Green’s law and the tail
appears in both water elevation and velocity fields. However,
in the case of the convex bottom profile the amplitude of the
water elevation satisfies the Green’s law and the tail appears

Figure 5. Formation of a space-variable current between
the two pulses in Figure 4.

Figure 4. (left) Water displacement and (right) velocity for the initial disturbance presented by
equation (29).
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in the velocity field only. That is why we use inverted
commas for the ‘‘nonreflecting’’ bottom profile: in this case
the water displacement field is presented as a sum of ‘‘pure’’
traveling waves.
[33] It is straightforward to extend the above analysis to

the case of waves propagating along an ambient current.
The latter can be expressed via a nonzero initial velocity
field. The procedure of finding the solution is then as
follows. One of the functions, for instance f+, can be
expressed through the initial displacement (24)

fþ tð Þ ¼ x1=3h0 xð Þ � f� tð Þ: ð30Þ

For the other function, the following differential equation
for f� (or F�) can be derived from equation (25)

� f� tð Þ þ 1

t
F� tð Þ ¼ � tð Þ;� ¼ h3=4

2
ffiffiffi
g

p u0 xð Þ � h1=4

2
h0 xð Þ

þ 1

2t

Z
h1=4h0dx: ð31Þ

This equation can be easily integrated to give

F� tð Þ ¼ �t
Z

� zð Þdz
z

: ð32Þ

The effect of the initial velocity is manifested in an
additional difference between the left-going (onshore) and
right-going (offshore) waves.

4. Wave Runup Along a Convex Beach

[34] From the practical point of view the behavior of the
wavefield at the shoreline (x = 0) is the most interesting.
Details of the process of wave reflection and accompanied
amplitude amplification and potential runup, have important
applications in tsunami modeling, forecast, and mitigation
studies. Formally, linear theory is not valid in the vicinity of
the shoreline where the wave amplitude becomes compara-
ble with the water depth. In the case of a plane beach of a
constant slope it has been demonstrated that the extreme
runup characteristics can be calculated rigorously from
linear shallow water theory even for the nonlinear problem
[Synolakis, 1991; Didenkulova et al., 2006, 2007].
[35] If the wave approaches the beach from an infinitely

remote region, the wave solution of equation (1) also
satisfying the boundary condition of the full reflection at
the shoreline (22), has the following form [see equations
(24) and (25)]:

h x; tð Þ ¼ 1

x1=3
f t þ t xð Þ½ � � f t � t xð Þ½ �f g; ð33Þ

u x; tð Þ ¼ �
ffiffiffi
g

p

r
1

x
f t þ tð Þ þ f t � tð Þ½ �

þ g

3x4=3
F t þ tð Þ � F t � tð Þ½ �; ð34Þ

where f(t + t) is the shape of an incident wave approaching
the shoreline x = 0 (t = 0). The vertical displacement of the

water surface at x = 0 can be found from equation (33)
exactly using Taylor’s series in the vicinity of t = 0

R tð Þ ¼ h 0; tð Þ ¼ 6ffiffiffiffiffi
gp

p
df t � t0ð Þ

dt
; ð35Þ

where t0 is a travel time from a fixed point x = L (chosen far
offshore) to the shore. Taking into account that the incident
wave at x = L is

hin tð Þ ¼ f tð Þ
L1=3

; ð36Þ

Equation (35) can be rewritten as

R tð Þ ¼ 2t0
dhin t � t0ð Þ

dt
: ð37Þ

Thus, the amplitude of water level oscillations at the
shoreline is proportional to the vertical velocity of water
particles in the incident wave. If the incident wave has the
form of a solitary crest, the water level on the shoreline
experiences first runup, followed by rundown. The runup
height is determined by the ratio of the travel time t0 to the
wave period T. Therefore, it is bigger if the incident wave
approaches from deeper waters. This feature suggests that
beaches that have extensive convex slopes offshore may
experience considerable amplification of waves compared
with beaches with linearly increasing depth with an
amplification factor

ffiffiffiffiffiffiffiffiffi
t=T

p
[Didenkulova et al., 2007].

The large shoaling above a convex bottom profile appears in
the vicinity of the shoreline where a section of a small depth
continues over larger distances than for a beach of constant
slope. Far from the shoreline the wave amplitude follows
the Green’s formula for both profiles.
[36] The maximum velocity of water particles in the

vicinity of the shore x = 0 is unbounded and proportional to

u x ! 0; tð Þ � � 6

p
ffiffiffiffiffi
gp

p
1

x1=3
d2f

dt2
: ð38Þ

This feature may be interpreted as an implicit manifestation
of wave breaking. However, wave breaking is not accounted
in the framework of equation (1). Although the water
velocity becomes infinitely large at the shoreline, the water
discharge is bounded, because

h xð Þu x; tð Þ ! � 6xffiffiffiffiffi
gp

p
d2f

dt2
! 0: ð39Þ

The shore therefore plays a role of an equivalent to a vertical
wall perfectly reflecting the wave energy from the beach.
[37] The singularity in the water velocity in the vicinity of

the shoreline can be excluded by a small variation of the
bottom profile, more precisely, by variations of the face
slope which is zero in a given geometry. For example, in
the case of a profile of a constant slope a in the vicinity of
the shoreline the maximal value of water velocity on the
shoreline is [Didenkulova et al., 2007]

Umax ¼
wmax h 0; tð Þ½ �

a
ð40Þ
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for a sinusoidal incident wave. This formula can be also
derived from the geometry of the moving shoreline. It
follows from equation (40) that the water velocity tends to
the infinity when the face slope tends to zero, as for a
convex bottom profile. The discharge is zero for all
variations of the face slope within the linear theory.
[38] To illustrate the processes in the vicinity of the

coastline, time records of the water displacement during
the runup of a sign-variable wave (N wave, equation (27)),
computed with the use of equation (33), are presented in
Figure 6 at selected points of the coastal slope. Far from the
shoreline, the time series contains both incident and
reflected waves (the latter having an inverted shape as
discussed above). The wave amplification when the wave
approaches the shore and the transformation of the wave-
shape at the shoreline are clearly seen from Figure 6. For
this particular waveshape, the rundown amplitude signifi-
cantly (by approximately 3 times) exceeds the runup am-
plitude. According to equation (37) the maximal runup
height is 5.7 m, and rundown depth is 17 m for the initial
amplitude of 11 cm. The wave amplitude on such a beach
can be amplified by an order of magnitude and even more, if
the wave breaking is neglected.
[39] As an example, let us calculate the runup height

analytically for the case when the incident wave is the
solitary wave solution of the Korteweg-de Vries equation

h tð Þ ¼ Asech2
ffiffiffiffiffiffiffiffi
3Ag

4h2

r
t

" #
: ð41Þ

The runup height induced by an approaching solitary wave
is

Rmax ¼ 4L
A

h


 �3=2

: ð42Þ

If we introduce the mean slope of a beach a = h/L,
expression (42) can be rewritten as

Rmax ¼ 4
A

a

ffiffiffi
A

h

r
� A3=2: ð43Þ

Comparison of this result with the asymptotic formula for
runup of a solitary wave on the plane beach [Synolakis,
1987]

Rmax ¼ 2:8312
Affiffiffiffi
a

p A

h


 �1=4

� A5=4; ð44Þ

suggests that the runup of solitary waves of moderate
amplitudes on convex beaches may lead to considerably
larger inundation of the land than similar processes on
beaches of constant slope.
[40] The runup of waves of an arbitrary shape can be

studied in a similar way. Recently it has been shown in the
framework of Carrier-Greenspan transformation for a plane
beach that the runup height of asymmetric incident waves,
where the face slope exceeds the back slope, is higher in
comparison to the runup of symmetric waves [Didenkulova
et al., 2006, 2007]. This feature may be observed for
beaches of various profiles and it is inherently evident from
equation (37) for the convex beach.

5. Monochromatic Wavefield Over Bottom
Profile Following a Power Law

[41] A convex bottom profile (9) is a particular case of a
general bottom profile with a power law

h xð Þ ¼ pxd: ð45Þ

The linear wave dynamics for such bottom profiles can be
analyzed analytically for the particular waveshape. The

Figure 6. Time series of the water surface of the wave system generated from initial disturbance given
by equation (27) at the shoreline and at two offshore points.
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monochromatic solution of the linear wave equation (1) is
expressed through the Bessel functions

h xð Þ ¼ C1x
dJn bxgð Þ þ C2x

dNn bxgð Þ; ð46Þ

where

d ¼ 1� d

2
; g ¼ 2� d

2
; n ¼ 1� d

2� d
;b ¼ 2wffiffiffiffiffi

gp
p

2� dð Þ ; ð47Þ

and C1 and C2 are arbitrary constants and we consider the
case d < 3/2 only. The water flow is described by

u xð Þ ¼ i

ffiffiffi
g

p

r
xdþg�1 C1Jn�1 bxgð Þ þ C2Nn�1 bxgð Þð Þ: ð48Þ

In the case of 0 < d < 1(1/2 > n > 0) the water displacement
is bounded everywhere including the shoreline (x = 0).
Nevertheless the water velocity is bounded on the shoreline
only if C1 = 0. In this case solution (46) is fully determined
and represents standing wave, where C2 can be expressed
through the linear runup height R as follows:

h xð Þ ¼ �R
bn sin npð ÞG 1� nð Þxd

2n
Nn bxgð Þ; ð49Þ

where G(z) is the gamma function. Far from the shoreline,
the wavefield is described by the asymptotic expression

h xð Þ ¼ R
bn sin npð ÞG 1� nð Þxd

2n

ffiffiffiffiffiffiffiffiffiffi
2

pbxg

s
cos bxg þ p

4
� pv

2

� �
:

ð50Þ

After multiplying by exp (iwt), the latter expression can be
presented as the superposition of two waves propagating in
opposite directions with the phase shift

Y ¼ 1

2
� n


 �
p: ð51Þ

In the case d ! 0 (n ! 1/2), there is no phase shift between
the incident and reflected waves at the shoreline. This is not
unexpected, because the process is equivalent to the
reflection from a vertical wall. When d ! 1 (n ! 0), that
is, in the case of a plane beach, the phase shift tends to p/2
and equation (46) becomes

h xð Þ ¼ RJ0
2wffiffiffiffiffi
gp

p x1=2

 �

ð52Þ

and coincides with the well-known solution presented by
Carrier and Greenspan [1958], Synolakis [1987], and
Didenkulova et al. [2007].
[42] In the case of 1 < d < 3/2 (0 > n > �1) the water

displacement is bounded everywhere including the shore-
line (x = 0) only if C1 = 0. The water velocity is unbounded
at the shoreline but the water discharge is still bounded as it
has been demonstrated for a convex bottom profile. In this
case, solution (46) coincides with equation (49) and the

phase shift is described by equation (51). The phase shift
between the reflected and incident waves increases with an
increase in d and reaches p for d = 4/3. This value of the
phase shift has been obtained in section 3 in the case of a
convex beach directly from the boundedness of the wave-
field at the shoreline, which corresponds to the antisym-
metric boundary condition (22).
[43] The wave amplification can be also studied using

equation (49). Its asymptotic expression far from the shore-
line coincides with the Green’s law A � h�1/4 for all values
of d.
[44] Thus, the analysis of the wave dynamics above a

power bottom profile (45) demonstrates a gradual change in
the magnitude of the phase shift between the incident and
reflected waves when the shape of the bottom varies from
the vertical wall (Y = 0) over a constant slope (Y = p/2) to a
convex bottom profile (Y = p). In the general case of a
bottom profile with a power law, the wavefield cannot be
split into two traveling waves (except when it is far from the
shoreline where the Green’s law is valid) and always
contains a sort of ‘‘tail.’’ The reason for this feature is that
energy of the incident wave generally is continuously
transferred into the reflected wave. This process leads to a
more complicated wave dynamics than just that of two
traveling waves, and, in particular, is the basic reason for
emerging the residual current.
[45] Highly interesting and intriguing questions are wheth-

er reflections of this type may occur in realistic conditions
and whether they can be reproduced using classical numer-
ical methods that generally treat the sea bottom as a piece-
wise linear function. While almost exact representation of
deeper parts of the convex nearshore by means of increasing
the resolution of the models may lead to adequate results, an
adequate representation of processes in the nearly singular
vicinity of the shoreline may become a more demanding
challenge, full solution of which may require a specific
combination of analytical and numerical tools.

6. Wave Reflection From a Zone of Increasing
Depth

[46] The solution obtained for a beach with a convex
profile (9) contains a singularity at x = 0. To eliminate the
role of the singularity, let us consider the situation when
the water flow continues moving inland in a channel of
small but finite depth. This situation is realistic at a port
entrance or at a mouth of a small river with a weak
current. The analysis can be done by considering the
geometry of the following bottom relief in which the
origin separates a shallow area of constant depth from a
convex slope (Figure 7)

h xð Þ ¼ h0 x < 0

h0 1þ x=Lð Þ4=3 x > 0
:

�
ð53Þ

In this case, both the velocity field and water displacement
are bounded everywhere. As the coastal slope is discontin-
uous at the origin, the presence of this inflection point gives
rise to a specific problem of transmission of wave energy
between different areas and reflection from this point.
[47] Let us first consider the case when an incident sine

wave approaches the convex coast from a zone of constant
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depth (x < 0). Following the classical theory of long-wave
reflection, the wavefield in this zone is presented by the
superposition of the incident and reflected waves

h x; tð Þ ¼ Ai exp iw t � x=c0ð Þ½ � þ Ar exp iw t þ x=c0ð Þ½ �: ð54Þ

Here c0 =
ffiffiffiffiffiffiffi
gh0

p
is the long-wave speed on an even bottom

and Ai and Ar are the amplitudes of the incident and reflected
waves, respectively. The monochromatic wave along the
convex slope is described by equation (11). Assume that it
has an amplitude A0 at the point x = 0. At the inflection point
the solutions expressed by equations (54) and (11) must
match each other in terms of the continuity of the water level
and the total discharge. These boundary conditions allow
calculating the relative amplitudes of the reflected and
transmitted waves from the following expressions for the
coefficients of reflection and transmission:

Ar

Ai

¼ � 1

1þ iwt
;
A0

Ai

¼ iwt
1þ iwt

; ð55Þ

where t = 6L/c0. These amplitudes depend on ratio of the
wave frequency (period) and the travel time of wave
propagation to the zone of variable depth. As expected, for
steep bottom slopes (wt � 1) the wave is almost completely
reflected and experiences a phase shift of 180�. For gentle
slopes (wt � 1) the incident wave passes to the zone of
variable depth almost without reflection.
[48] Another important particular case is the reflection of

a solitary wave propagating offshore. In this case equation
(55) presents the operator form of the ordinary differential
equation (that can be obtained from this equation by
replacing iw by d/dt)

hr tð Þ þ t
dhr
dt

¼ �hi tð Þ: ð56Þ

This equation allows finding reflected waves in the vicinity
of the inflection point if an incident wave at the same point
is known. The details of the dispersion relation transfor-
mation to differential equations for the general case are

described by Whitham [1974]. The reflected wave can be
calculated as an integral

hr tð Þ ¼ � exp �t=tð Þ
t

Z t

0

hi zð Þ exp z=tð Þdz; ð57Þ

where it is assumed that the reflected wave is absent before
the incident wave approaches the inflection point. If the
incident wave is a pulse of finite duration T (0 < t < T) then
from equation (57) it follows that the reflected wave
amplitude at the inflection point exponentially decreases
after passing the incident wave t > T

hr t > Tð Þ ¼ � exp �t=tð Þ
t

ZT
0

hi zð Þ exp z=tð Þdz: ð58Þ

Sometimes it is said that the reflected waves have an
exponentially decreasing tail in such cases.
[49] From equation (58) it follows that the solitary wave in

the water channel may entirely cross the convex slope and the
inflection point without any loss of its energy. This happens
for specific shapes of the incident wave and specific values of
beach parameters, for which integral in equation (58) is zero.
We do not include these cases in our analysis.
[50] From equation (56) it follows that

Zþ1

�1

hr tð Þdt ¼�
Zþ1

�1

hi tð Þdt: ð59Þ

Thus, if the incident wave is a wave of elevation (pure crest),
a wave of depression (pure trough) dominates in the reflected
wave. This feature can be interpreted as a generalization of
the property of the shape inversion in the process of
reflection from the coastline as discussed above.
[51] As an example of the transformation of a wave pulse

with a limited duration, we consider an incident sine pulse
(Figure 8)

hi tð Þ ¼ A
sin Wtð Þ 0 < Wt < p

0 out of the interval
:

�
ð60Þ

Figure 7. The geometry of a shallow coastal area and a
convex slope.

Figure 8. The relative water surface elevation in an
incident wave described by equation (60).
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An important feature of such a pulse is that it originally
contains discontinuities of the surface slope that are
gradually smoothed in the process of propagation. The
profile of the surface elevation in the reflected wave,
computed from equation (57), is

hr tð Þ ¼ �A
q

1þ q2

�
0 Wt < 0

exp �qWtð Þ þ q sin Wtð Þ � cos Wtð Þ 0 < Wt < p
1þ exp qpð Þð Þ exp �qWtð Þ p < Wt

8<
: ;

ð61Þ

where

q ¼ 1

Wt
¼ tan q

8W

ffiffiffi
g

h

r
; ð62Þ

where q is the angle at the inflexion point.
[52] In accordance with the above analysis, the shape of

the reflected wave is inverted for all values of the parameter
q (Figures 9 and 10). Its amplitude decreases and its tail
becomes gradually longer. The growth of the tail is more
pronounced for gentle beaches. The shape of the wave
reflected from steep beaches is almost the same as for
incident wave but has an opposite polarity.

[53] Expressions (61) and (62) describe the shape of the
reflected wave near the inflection point. It is straightforward
to show, using Fourier superposition of the spectral compo-
nents [equation (54)], that the reflected wave preserves its
shape at all distances from the inflection point.
[54] The transmitted wave in the immediate region of the

inflection point can be found from the boundary condition
of continuity of water displacement

ht tð Þ ¼ hi tð Þ þ hr tð Þ: ð63Þ

Because of equation (59), condition (16) is satisfied
automatically, a feature that was expected for the traveling
wave solution (see section 2) and confirmed here by
equations (63) and (59).
[55] The oscillations of the water level in the immediate

vicinity of the inflection point are of specific influence,
because they can be the starting point of studies to further
describe wave attack and runup with the use of more
detailed models of the coastal zone. The time series of
water surface at this point is presented in Figure 10 for the
incident sine pulse. It demonstrates that a sign-variable
wave is excited and propagates onshore after the inflection
point. As expected, the amplitude of this wave is quite small
in the case of steep convex beaches, yet almost full
transmission may occur if the convex section of the beach
has a moderate slope.
[56] According to equation (12), the transmitted wave

does not change its shape in time, but its amplitude and
phase do change with the distance from the inflection point.
The shape of the velocity field in a transmitted wave
changes with distance as well, see equation (15). In the
immediate vicinity of the inflection point, the velocity of
wave particles can be found from the continuity of dis-
charge boundary condition

ut tð Þ ¼
ffiffiffiffiffi
g

h0

r
hi tð Þ � hr tð Þ½ �: ð64Þ

Velocity time series are presented in Figure 11 for the case
of an incident sine pulse for several values of parameter q.
The velocity is always positive (as for incident wave). The
velocity pulse is, however, somewhat modified and contains
an elongated tail, the effective duration of which is longer

Figure 9. The shape of reflected waves for various values
of parameter q.

Figure 10. The shape of transmitted wave after the
inflection point for various values of parameter q.

Figure 11. The shape of transmitted velocity after the
inflection point for various values of parameter q.
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for gently sloping beaches. The shape of the velocity
variations in a transmitted wave varies with distance
according to equation (15) and do not necessarily follow
the shape of the water surface displacements. Nevertheless,
far from the inflection point, the first term in equation (15)
dominates and the shape of the velocity variations matches
the shape of surface displacements. These processes are
illustrated in Figure 11.

7. Conclusions and Discussion

[57] The above analysis of linear long-wave dynamics in
a basin of variable depth confirms the intuitively obvious
conjecture that simple, analytical traveling wave solutions
of the variable coefficient wave equation (1) exist for a very
limited number of situations. In fact, such solutions exist for
a convex-shaped bottom, the water depth along which
increases as h(x) � x4/3. For this particular case a 1:1
transformation exists, which converts the general 1-D wave
equation into an analogous equation with constant coeffi-
cients. In other words, the analyzed situation is the sole case
in which the patterns of complex dynamics and reflections
of long waves propagating over an uneven bottom can be
fully described in terms of simple solutions for a basin of
constant depth. Notice that another generic form of the wave
equation allows such solutions for another profile (h � x4)
of the coastal slope and in this case the wave equation for
velocity is solved [Didenkulova et al., 2008].
[58] The obvious benefit of the existence of such solu-

tions it that quite complex wave phenomena can be ana-
lyzed with the use of the large pool of results obtained for
certain seabed shapes. This allows us to get important
insight into how long traveling waves behave when
approaching convex sections of the ocean coasts. While
the majority of properties of wave propagation along a
convex bottom mirrors those occurring in the basin of
linearly varying depth, some interesting distinguishing fea-
tures become evident; for example, the shapes of water
displacement and velocity in the traveling wave do not
coincide. As expected, the general solution of the Cauchy
problem to the wave equation for water displacement in the
case of the convex bottom profile in question is expressed
through two traveling waves propagating in opposite direc-
tions. It is demonstrated that the wave amplitude satisfies
the Green’s law even for not smoothly varied bottom. The
situation is more complicated in the case of water velocity,
where a zone of space-variable currents generally exists
between these two waves. Such a zone cannot be presented
by the sum of two pure traveling waves and inevitably
contains certain other motion components. As the additional
components cannot be generated out of interaction of these
two linear waves, they must be born through a specific
reflection and transition processes. That is why we use
inverted commas when speaking about a nonreflecting
beach.
[59] More generally, the convex beach in question pos-

sesses somewhat unexpectedly strong reflective features.
Additionally to producing the above discussed local current,
the boundary condition for the flow at the shoreline (H = 0)
produces the result equivalent to the one occurring if there
were a vertical wall at the coastline. This feature may lead to

prominent energy reflection from certain realistic coasts
with very shallow coastal areas.
[60] A very interesting feature is that runup of certain

wave classes on a beach with this sort of bottom relief may
be considerably higher than for a beach with a linear profile,
and with an equal mean slope. This property has been
shown to hold for shallow water Korteweg-de Vries solitary
waves (solitons) which frequently are used as a convenient
model of tsunami waves. It is also shown that the shape of
the water oscillations at the shoreline is determined by the
first derivative of the incident waveshape. As a result, if the
incident wave has a steep front, the runup height will be
higher. This property is in line with recent developments in
the theory of runup of asymmetric waves that indicate a
strong dependence of the runup height for waves of equal
height on the steepness of the face slope of the wave
[Didenkulova et al., 2006, 2007].
[61] Although initial development of the pair of waves

from a wave of elevation (or depression) may lead to the
formation of two waves of elevation (depression), a sign-
variable shape of the whole wavefield is necessarily created
after some time. Similarly, if the incident wave approaches a
zone of increasing depth, the reflected onshore-going wave
has a sign-variable shape. This reflection inverts the sign of
the surface disturbance and creates a wavefield consisting of
both elevations and depressions for any initial waveshape.
[62] This particular, rigorous result of our analysis has no

simple interpretation in practical applications. The inversion
of the sign of the water surface elevation is a principally
new feature of this geometry which does not become
evident in the theory of wave reflection from a plane slope
or a vertical wall. Notice that it results neither from the
presence of a singularity of the beach at the shoreline x = 0
(in the sense that the bottom profile touches the water
surface at the shoreline) nor from an imperfect choice of
the boundary conditions. Instead, this phenomenon
becomes apparent because of specific properties of wave
reflection from convex profiles, during which phase shifts
larger than p/2 may occur. This property serves as one of the
fundamental differences of the reflections under discussion
from those that occur at concave beaches (including from
those having the shape of the Dean’s Equilibrium Profile)
and that have phase shifts in the range from 0 to p/2.
[63] Although the exact results of the above studies are

valid for a limited class of bottom profiles, they are
eventually approximately correct for a much wider class
of basins with a convex bottom slope, or containing
extensive sections of such slopes. An important aspect to
be mentioned once more is that the performed analysis does
not require slow variation of the basin depth and remains
valid for quite large slopes. This property opens perspec-
tives for extensive use of the obtained solutions and results
for developing practically usable models of, for example,
tsunami waves, and also provides new perspectives in the
development of the weakly nonlinear theory of water waves
in a basin of variable depth.
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