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A Selection Principle for Mappings of Bounded Variation

S. A. Belov1 and V. V. Chistyakov 2

Department of Mathematics, Uni�ersity of Nizhny No�gorod, 23 Gagarin A�enue,
Nizhny No�gorod 603600, Russia

Submitted by Helene Frankowska´

Received November 29, 1999

E. Helly’s selection principle states that an infinite bounded family of real
functions on the closed inter�al, which is bounded in �ariation, contains a pointwise
con�ergent sequence whose limit is a function of bounded �ariation. We extend this
theorem to metric space valued mappings of bounded variation. Then we apply the
extended Helly selection principle to obtain the existence of regular selections of
Ž .non-convex set-valued mappings: any set-�alued mapping from an inter�al of the
real line into nonempty compact subsets of a metric space, which is of bounded
�ariation with respect to the Hausdorff metric, admits a selection of bounded �ariation.
Also, we show that a compact-valued set-valued mapping which is Lipschitzian,
absolutely continuous, or of bounded Riesz �-variation admits a selection which is
Lipschitzian, absolutely continuous, or of bounded Riesz �-variation, respectively.
� 2000 Academic Press
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1. INTRODUCTION

This paper is devoted to the question of existence of those selections of
Ž .a given set-valued mapping which preserve certain nice or regular prop-

erties of the mapping. There exists a vast literature on the existence of
Žregular selections for set-valued mappings with convex images cf. Michael

� � � � � � � �16 , Dommisch 10 , Aubin and Frankowska 1 , Dentcheva 9 , and refer-
.ences therein . If the images are not convex, one cannot in general expect

more than measurable selections or selections which are Baire mappings
˘Ž � � � �.see Kuratowski and Ryll-Nardzewski 15 and Coban 7 ; indeed, many
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examples exist to show that a continuous mapping from a closed interval
into nonempty compact subsets of a ball in �2 or even a Lipschitz-continu-
ous mapping from �3 into nonempty compact subsets of a ball in �3 need

Ž � �.not admit a continuous selection see, e.g., Hermes 13 .
We are going to show that the situation is different if the domain of the

set-valued mapping F under consideration is an interval of the real line,
the values of F lie in an arbitrary metric space, and the total variation of
F with respect to the Hausdorff metric is finite. We are interested in
finding those selections of bounded variation of F which pass through a
given point of the graph of F and whose total variation does not exceed

Ž .the total variation of F. If X is a finite- or infinite-dimensional Banach
space, the existence of regular selections of bounded variation in different

� �senses was proved in 2�6 under the assumption that the graph of the
Ž .set-valued mapping is compact for more details see Section 2 . In this

paper we generalize certain theorems on the existence of regular selec-
tions for set-valued mappings of bounded Jordan variation with images
that are arbitrary, nonempty, compact subsets of a metric space.

First we establish the following Helly type selection principle: an infinite
pointwise precompact family of metric space �alued mappings on the closed
inter�al of the real line, which is bounded in �ariation, contains a pointwise

Žcon�ergent sequence whose limit is a mapping of bounded �ariation Theorem
.1 . Then we apply the Helly selection principle to obtain the existence of

regular selections: any set-�alued mapping from an inter�al of the real line
into nonempty compact subsets of a metric space, which is of bounded
�ariation with respect to the Hausdorff metric, admits a selection of bounded

Ž .�ariation Theorem 2 . Finally, we show that the more regular the set-val-
Žued mapping is under consideration i.e., Lipschitzian, absolutely continu-

.ous, or of bounded generalized Riesz �-variation the more regular
Ž .selection it admits Theorem 3 .

2. PRELIMINARIES AND PRINCIPAL RESULTS

We begin with reviewing some definitions and facts needed for our
results.

Ž .Let X, d be a metric space, and let E � � be a nonempty set. Denote
by X E the set of all mappings f : E � X from E into X. Given f � X E,

Ž .the total Jordan �ariation of f is the quantity
m

V f , E � sup d f t , f t , 1Ž . Ž . Ž . Ž .Ž .Ý i i�1
T i�1

� 4mwhere the supremum is taken over all partitions T � t of E, i.e.,i i�0
� 4 Ž .m � �, t , t , . . . , t � E, and t � t , i � 1, . . . , m. If V f , E � �, the0 1 m i�1 i
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Ž .mapping f is said to be of bounded Jordan �ariation on E. In particular,
� � Ž � �.if E � a, b is a closed interval, then V f , a, b is equal to the right hand
Ž . � 4m � �side of 1 with the supremum taken over partitions T � t of a, b ofi i�0

the form m � � and a � t � t � ��� � t � t � b.0 1 m�1 m
E Ž .A family of mappings FF � X is said to be a of uniformly bounded

�ariation or bounded in �ariation if there exists a constant C 	 0 such that
Ž . Ž . Ž . � Ž .V f , E 
 C for all f � FF; b pointwise precompact if the set FF t � f t

4 Ž . Ž .� f � FF is precompact i.e., its closure is compact in X for all t � E; c
bounded in the case X � � if there is a constant C 	 0 such that
� Ž . � � 4� Ef t 
 C for all t � E and f � FF. A sequence of mappings f � Xn n�1
is said to be pointwise con�ergent on E to a mapping f � X E if

Ž Ž . Ž ..lim d f t , f t � 0 for all t � E.n�� n
�The classical Helly selection principle 12; 18, Chap. 8, Sect. 4, Helly’s

� � a, b4Theorem asserts that an infinite bounded family of functions FF � � of
� �uniformly bounded �ariation contains a sequence which con�erges on a, b to

a function of bounded �ariation. This theorem is essentially based on the
Ž � a, b �Jordan decomposition theorem i.e., a function f � � is of bounded

variation if and only if it is the difference of two bounded nondecreasing
. � �functions and the following theorem which was originally due to Helly 12

Žand is sometimes called a selection principle for monotone functions its
�proof can also be found, e.g., in the book of Natanson 18, Chap. 8, Sect. 4,

�.Lemma 2 :

THEOREM A. An infinite bounded family FF � � � a, b � of nondecreasing
� �functions contains a sequence which con�erges pointwise on a, b to a

bounded non-decreasing function.

Ž .The interest in the Helly selection principle s is natural due to its
numerous applications in analysis. Let us mention the recent work of

� �Fuchino and Plewik 11 where Theorem A is generalized onto monotone
mappings between linearly ordered sets. In this paper we present another
generalization of Helly’s selection principle for mappings of bounded
variation with values in metric spaces and its application to the selection
problem for set-valued mappings of bounded variation. In order to estab-

Žlish the existence of regular selections of multifunctions � set-valued
.mappings of bounded Jordan variation with respect to the Hausdorff

metric, the second author proved the following extension of the Helly
� �selection principle 2, 3 :

THEOREM B. If K is a compact subset of the metric space X and
FF � K � a, b � is an infinite family of continuous mappings of uniformly bounded

� ��ariation, then FF contains a sequence which con�erges pointwise on a, b to a
mapping f � X � a, b � of bounded �ariation. Moreo�er, if X is a Banach space
Ž .o�er the field � or � , the continuity condition on the family FF is redundant.
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Theorem A was extensively used in the proof of Theorem B, but for
metric space valued mappings the Jordan decomposition theorem is inap-

� �plicable, and, hence, the following structural theorem was used in 3 ; see
Theorem C below. In order to formulate it, recall that a mapping g :
E � X is said to be Lipschitzian if the following quantity, called the
Ž .minimal Lipschitz constant of g, is finite:

� �Lip g � sup d g t , g s � t � s � t , s � E, t � s . 2� 4Ž . Ž . Ž . Ž .Ž .
Also, the composition g �� : J � X of two mappings g : E � X and � :

Ž .Ž . Ž Ž ..J � E is defined as usual by g �� t � g � t for all t � J.

THEOREM C. A mapping f � X E is of bounded �ariation if and only if
f � g �� on E, where � � � E is bounded and nondecreasing and g maps the

Ž . � Ž . 4 Ž .image � E � � t � t � E of � into X and is Lipschitzian with Lip g 
 1.
Ž . ŽIn the necessity part one can define the function � by � t � V f , E �

Ž �.��, t , t � E.

Ž � �.Roughly speaking, to prove Theorem B see 2, 3 , one should write
each f � FF in the form f � g �� according to Theorem C, applyf f

� 4Theorem A to the family � � f � FF to extract a pointwise convergentf
� 4�sequence � , and then apply Arzela-Ascoli’s theorem to the sequence`f n�1n

� 4� � 4�g in order to get a uniformly convergent subsequence g . Thenf n�1 f k�1n nk
� 4� � �the sequence f converges pointwise on a, b to a mapping ofn k�1k

bounded variation.
Ž � Ž . �.However cf. 3, Remark 1 after Theorem 5.1 , it was not clear if the

condition ‘‘FF � K � a, b � where K � X is compact’’ in Theorem B could be
� � Ž . � Ž .replaced by a weaker condition: ‘‘for every t � a, b the set FF t � f t �

4 Ž .f � FF is precompact in X ’’ recall the Arzela-Ascoli theorem! . In the`
present paper we give the affirmative answer to this question. Moreover,
we will show that the continuity condition on the family FF as well as the
completeness of X are redundant even for metric space valued mappings.
The first main result of this paper, which will be proved in Section 3, is the
following

Ž . Ž .THEOREM 1 Helly type selection principle . Suppose that X, d is an
arbitrary metric space. An infinite pointwise precompact family of mappings
FF � X � a, b � of uniformly bounded �ariation contains a sequence which con-

� � � a, b ��erges pointwise on a, b to a mapping f � X of bounded �ariation.

To treat the selection problem for set-valued mappings of bounded
variation, we recall the definitions of the Hausdorff metric and set-valued

Ž .mappings. If X, d is a metric space and A, B � X are nonempty subsets,
the Hausdorff distance D � D between A and B is defined byd

D A , B � max e A , B , e B , A ,� 4Ž . Ž . Ž .
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where

e A , B � sup dist x , B and dist x , B � inf d x , y .Ž . Ž . Ž . Ž .
y�Bx�A

Ž .It is well known that the mapping D �, � is a metric on the set of all
nonempty closed bounded subsets of X and, in particular, on the set of all
nonempty compact subsets of X.

Given two nonempty sets E and X, any mapping F associating to each
Ž .point t � E a set F t � X, the image of t under F, is called a set-�alued

Ž . Ž .mapping from E into X in symbols, F: E � X . If all the images F t of
˙ Ž .F are nonempty, we write F: E � X. Given a metric space X, d , the

˙ Ž .set-valued mapping F: E � X is said to be a compact-�alued if the
Ž . Ž .image F t is a compact subset of X for each t � E; b of bounded
Ž .�ariation with respect to D � D on E � � ifd

m

V F , E � V F , E � sup D F t , F t � �,Ž . Ž . Ž . Ž .Ž .ÝD i i�1
T i�1

� 4mwhere the supremum is taken over all partitions T � t of the set E.i i�0
˙The mapping F: E � X is said to admit a selection if there exists a

Ž . E Ž . Ž .single-valued mapping f � X such that f t � F t for all t � E.
� �In 2 the following theorem on the existence of selections was proved

Ž Ž . .note that no convexity of images F t of F are assumed :

Ž .THEOREM D. Suppose that X is a Banach space o�er � or � , F:
˙� � Ž . �Ž .a, b � X is a set-�alued mapping with compact graph Gr F � t, x �

� � Ž .4 � � Ž .a, b � X � x � F t , t � a, b and x � F t . If F is of bounded �aria-0 0 0
Ž . � �tion respecti�ely, of bounded �ariation and continuous on a, b , then it

� a, b � Žadmits a selection f � X of bounded �ariation respecti�ely, which is of
. Ž . Ž � �.bounded �ariation and continuous such that f t � x and V f , a, b 
0 0

Ž � �.V F, a, b .

ŽMoreover, under conditions of Theorem D one may assume that F is
.compact-valued if X is finite-dimensional Lipschitzian F admits a Lips-

Ž � � �chitzian selection Hermes 14 if dim X � �, Mordukhovich 17, Theorem
� .D1.8 if dim X 
 � ; absolutely continuous F admits an absolutely contin-

Ž � � � � .uous selection Zhu Qiji 19 if dim X � �, Chistyakov 3 if dim X 
 � ;
and F of bounded generalized Riesz �-variation admits a selection of

Ž � �bounded generalized Riesz �-variation Chistyakov 4�6 if dim X 
 �
.and F is compact-valued . Thus, a set-valued mapping F having a property

ŽPP where PP is either Lipschitzian, absolutely continuous, of bounded
variation, continuous and of bounded variation, or of bounded generalized

.Riesz �-variation with respect to the Hausdorff metric D, generated by
the norm in X, admits a selection with the property PP with respect to the
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norm in X. If a selection of F inherits the property PP of F, it is called a
regular selection of F.

Ž .Having Helly’s type selection principle Theorem 1 at hand, we are able
to remove the conditions of linearity and completeness of X and the
compactness of the graph of F from Theorem D and to obtain the second
main result of this paper, which will be proved in Section 4:

Ž . Ž .THEOREM 2 existence of regular selections . If X, d is a metric space,
˙� �F: a, b � X is a compact-�alued set-�alued mapping of bounded �ariation,

� � Ž . � a, b �t � a, b and x � F t , then F admits a regular selection f � X of0 0 0
Ž . Ž � �. Ž � �.bounded �ariation such that f t � x and V f , a, b 
 V F, a, b .0 0

In Section 5 we show that if the compact-valued set-valued mapping F
� � Žfrom a, b into X is Lipschitzian respectively, continuous and of bounded

.variation, absolutely continuous, of bounded Riesz �-variation with re-
spect to the Hausdorff metric D � D , then it admits a regular selectiond

� a, b � Žf � X which is Lipschitzian respectively, continuous and of bounded
.variation, absolutely continuous, of bounded Riesz �-variation with re-

spect to the metric d on X.

3. PROOF OF THEOREM 1

In order to prove Theorem 1 we need a lemma.

Ž . ELEMMA 1. Gi�en a metric space X, d , if FF � X is an infinite pointwise
precompact family of mappings, then for any countable set J � E there exists a
sequence in FF which con�erges pointwise on J.

� 4�Proof. We use the standard Cantor diagonal process. Let J � t .k k�1
Ž . � Ž . 4Since the family FF t � f t � f � FF is precompact in X, it contains a1 1

� 1Ž .4�sequence denoted by f t , which is convergent in X. Similarly, letn 1 n�1

� 2Ž .4� � 1Ž .4�f t be a convergent subsequence of f t , and inductively,n 2 n�1 n 2 n�1

� kŽ .4�given k � �, k 	 2, denote by f t a convergent subsequence ofn k n�1

� k�1Ž .4� � n4�f t . Then the diagonal sequence f � FF is pointwise con-n k n�1 n n�1
vergent on the set J.

Proof of Theorem 1. For the sake of clarity we divide the proof into
six steps.

Ž .Step 1 common auxiliary part . Since the family FF is of uniformly
Ž � �.bounded variation, there exists a constant C 	 0 such that V f , a, b 
 C

for all f � FF. According to Theorem C, any f � FF can be written in the
� � Ž . Ž � �. � �form f � g �� on a, b , where � t � V f , a, t , t � a, b , and g :f f f f

Ž� �. Ž .E � � a, b � X is Lipschitzian with Lip g 
 1. Observe that any �f f f f
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Ž . �is nondecreasing, nonnegative, and � a � 0. Moreover, the family � � ff f

4 Ž Ž . Ž . Ž � �.� FF is infinite and bounded since � t 
 � b � V f , a, b 
 C forf f

� � .all t � a, b and f � FF , and so, by Theorem A, it contains a sequence
� 4� Ž� corresponding to the decomposition f � g �� i.e., � � �n n�1 n n n n f n

. � �and g � g for all n � �, which converges pointwise on a, b to an f n

Ž . � a, b �nondecreasing and bounded and nonnegative function � � � as
Ž � �. Ž � �.n � �. Setting ll � V � , a, b and ll � V �, a, b , we have ll �nn n

Ž . Ž .� b � � b � ll as n � �.n
In Steps 2�4 the following hypothesis will be used:

� � �� 4functions � and � are continuous on a, b . 3Ž .n n�1

Ž .Step 2. Under the hypothesis 3 the domain of g is the closedn
Ž� �. � �interval E � � a, b � 0, ll , n � �. Set L � sup ll , so that 0 
f n n� �n nn

L � � and ll � lim ll 
 L. We extend each mapping g to then�� nn
� � Ž . Ž . � �interval ll , L by setting g � � g ll if � � ll , L . Clearly, the newn nn n n

� � Ž .g is Lipschitzian on the interval 0, L with Lip g 
 1.n n
� 4� � �Let us prove that the set g is pointwise precompact on 0, L .n n�1

� � � � Ž .Given � � 0, L , for each n � � there exists t � a, b such that � tn n n
� �� � . Using the compactness of a, b and choosing a suitable subsequence

� 4� � �of t , we may suppose that t � t � a, b as n � �. By the assump-n n�1 n
� Ž . Ž Ž ..4� Ž .tion, the sequence f t � g � t � FF t is precompact in X, andn n n n�1

Ž .so it contains a subsequence denoted as the whole sequence such that
Ž Ž . . Ž Ž . .d f t , x � 0 as n � � for some x � X. We will show that d g � , xn n

� 0 as n � �.
For all n � � we have

d g � , x �d g � t , x 
 d g � t , g � t � d f t , xŽ . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n n n n n n n n n


 � t � � t � d f t , x .Ž . Ž . Ž .Ž .n n n n

Ž . Ž .By Step 1, � t tends to � t as n � �, and so it suffices to show thatn
Ž . Ž .� t � � t as n � �. Suppose that a � t � b. Given � � 0, by then n

Ž . � 4continuity of � there is a � � � � � 0, � 
 min t � a, b � t , such that
� Ž . Ž . � � � � �� s � � t 
 ��2 for all s � a, b with s � t 
 � . As t � t andn

� � Ž .� � � pointwise on a, b as n � �, there exists N � � � such that forn
Ž . � Ž . Ž . �all n 	 N � we have t � � 
 t 
 t � � , � t � � � � t � � 
 ��2n n

� Ž . Ž . �and � t � � � � t � � 
 ��2. Since � is nondecreasing, it followsn n
that

� t 
 � t � � 
 � t � � � ��2 
 � t � � ,Ž . Ž . Ž . Ž .n n n

� t 	 � t � � 	 � t � � � ��2 	 � t � � ,Ž . Ž . Ž . Ž .n n n

� Ž . Ž . � Ž .or � t � � t 
 � for all n 	 N � . Now the cases t � a and t � bn n
are treated with obvious modifications.
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Ž .Step 3. Using the hypothesis 3 let us prove that a subsequence of
� 4� � �g converges uniformly on the whole interval 0, L as n � �. Letn n�1

� 4� � � � 4�� be a dense sequence in 0, L . Since g is pointwise precom-k k�1 n n�1
� � Žpact on 0, L by Step 2, by virtue of Lemma 1 taking a suitable subse-

. � 4�quence we may suppose that g converges at each point of the setn n�1
� 4� � 4�� . We are going to show that, actually, the sequence g con-k k�1 n n�1

� � Ž .verges uniformly on 0, L . Given � � 0, choose a number k � � � with0
� � � Ž .4the following property: if � � 0, L , there exists a k � 1, . . . , k � such0

� � � Ž .4�that � � � 
 � . Since, as n � �, the sequence g � converges ink n k n�1
Ž . � Ž .4X as n � � and, hence, is Cauchy for all k � 1, . . . , k � , there exists0

Ž . Ž .N � � � such that for all n, m 	 N � we have0 0

d g � , g � 
 � , k � 1, . . . , k � .Ž . Ž . Ž .Ž .n k m k 0

� � � Ž .4 � �Now, given � � 0, L , there exists k � 1, . . . , k � with � � � 
 � , so0 k
Ž . Ž .that the inequality Lip g 
 1 n � � yieldsn

d g � , g � 
 d g � , g � � g � , g �Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .n m n n k n k m k

� d g � , g �Ž . Ž .Ž .m k m


 3� 4Ž .

Ž . � Ž .4�for all n, m 	 N � . It follows that the sequence g � is Cauchy in0 n n�1
X and, since it is precompact in X by Step 2, we infer that it converges in

� � Ž .X as n � � for all � � 0, L . Passing to the limit as m � � in 4 we get
� 4� � � � �the uniform convergence of g on 0, L . If g : 0, L � X is then n�1

� 4� Ž .uniform limit of g , then, clearly, g is Lipschitzian with Lip g 
 1.n n�1

Ž .Step 4. Now we establish Theorem 1 provided 3 holds. Since the
� �mapping g : 0, L � X from the end of Step 3 is Lipschitzian with

Ž . � a, b � Ž� �.Lip g 
 1, � � � is bounded and nondecreasing, and � a, b �
� � � � � �0, ll � 0, L , the composite mapping f � g �� : a, b � X is of bounded

� �variation by Theorem C. For all t � a, b we have

d f t , f t � d g �� t , g �� tŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n n n


 d g � t , g � t � d g � t , g � tŽ . Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .Ž .n n n n


 � t � � t � sup d g � , g �Ž . Ž . Ž . Ž .Ž .n n
� ��� 0, L

with the right hand side tending to zero as n � �. This proves the
� �pointwise convergence of f to f on the interval a, b .n

� 4�Step 5. Suppose now that functions � and � from Step 1 aren n�1
Ž . � �continuous on an open interval 	 , 
 � a, b . We will prove that a
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� 4� Ž . �� �4�subsequence of f converges pointwise on 	 , 
 . Let 	 , 
 ben n�1 k k k�1
Ž .an exhausting sequence of closed intervals for 	 , 
 , i.e., 	 � 	 � 
k�1 k k

� 
 , k � �, with 	 � 	 and 
 � 
 as k � �. For each n � �k�1 k k
˜ � �denote by f the restriction of f to 	 , 
 , so that we have then n 1 1

˜decomposition f � g �� where˜ ˜n n n

˜ � � � � � � � �� t � V f , 	 , t � V f , 	 , t � V f , a, t � V f , a, 	Ž . Ž . Ž . Ž .˜ Ž .n n 1 n 1 n n 1

� �� � t � � 	 , t � 	 , 
 ,Ž . Ž .n n 1 1 1

Ž� �. Ž .and g : � 	 , 
 � X is Lipschitzian with Lip g 
 1. Moreover, as˜ ˜ ˜n n 1 1 n
Ž . Ž . Ž . Ž . � �n � �, we have � t � � t � � t � � 	 for all t � 	 , 
 . Since �˜ ˜n 1 1 1 n

Ž .and � are continuous on 	 , 
 , it follows that � and � are continuous˜ ˜n
˜ �� � � 4 � �on 	 , 
 , n � �. Applying the result of Steps 2�4 to f on 	 , 
 ,1 1 n n�1 1 1

1 � ˜ �� 4 � 4we can choose a subsequence f of f , which is in fact an n�1 n n�1

� 4� � 14�subsequence of f , such that f converges pointwise on then n�1 n n�1
1̃ 1� � Žinterval 	 , 
 . In a similar manner denoting by f the restriction of f1 1 n n

� � . � 24� � 14�to 	 , 
 , and so on , choose a subsequence f of f which is2 2 n n�1 n n�1
� �convergent on the interval 	 , 
 , and inductively, given k � �, k 	 2,2 2

� k4� � k�14� � �choose a subsequence f of f which is convergent on 	 , 
 .n n�1 n n�1 k k

� n4�Then the diagonal sequence f converges pointwise on the intervaln n�1
Ž . � � �	 , 
 � � 	 , 
 as n � �.k�1 k k

Ž .Step 6 general case . Denote by E the set consisting of the discontinu-
� 4�ity points of functions � and � and points a and b. Since � and �n n�1 n

� � � �are nondecreasing on a, b , the set E � a, b is at most countable. By the
� 4� � �assumption, the sequence f is pointwise precompact on a, b , andn n�1

Ž .so, by Lemma 1, it contains a subsequence denoted by the same symbol
� �which converges pointwise on E. The difference a, b  E is at most a

Ž . � 4�countable union of open intervals a , b , k � �, and functions �k k n n�1
Ž .and � are continuous on each interval a , b . Applying Step 5, choose ak k

� 14� � 4� Ž .subsequence f of f which is convergent pointwise on a , b ;n n�1 n n�1 1 1
� 24� � 14�then choose a subsequence f of f which is convergent point-n n�1 n n�1

Ž .wise on a , b , and so on. As a result, we get the diagonal subsequence2 2
� n4� � 4� � Ž .f of f which is convergent pointwise on � a , b and E,n n�1 n n�1 k�1 k k

� � � �i.e., on the whole interval a, b . The pointwise limit f : a, b � X of
� n4�f � FF is a mapping of bounded variation by virtue of the lowern n�1

Ž � �.semi-continuity of the functional V �, a, b :

� � n � �V f , a, b 
 lim inf V f , a, b 
 C.Ž . Ž .n
n��

This completes the proof of Theorem 1.
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Ž .EXAMPLE 1. a If X is a finite-dimensional normed linear space with
� � � Ž .� � Ž .�the norm � , then, by virtue of the inequality f t 
 f t �0

Ž � �.V f , a, b , one may replace the condition ‘‘pointwise precompact family
� a, b � � a, b � Ž .FF � X ’’ in Theorem 1 by ‘‘family FF � X , for which FF t is closed

� �and bounded at t � t � a, b .’’ However, for an infinite-dimensional0
Banach space X one cannot weaken the conditions of Theorem 1 by

Ž . � Ž . 4assuming that the family FF t � f t � f � FF is precompact in X only at a
� � � � � � 1Ž .given point t � t � a, b . To see this, let a, b � 0, 1 and X � ll � be0

� 4� �the Banach space of all absolutely summable sequences x � x � �i i�1

� � � � � � � 1Ž .with the norm x � Ý x . For each n � � define f : 0, 1 � ll � asi�1 i n
Ž . � � � 4�follows: f t � te , t � 0, 1 , where e � x with x � 0 if i � n andn n n i i�1 i

� 4� Ž . � 4�x � 1. If FF � f , we have that FF t � t e is precompact inn n n�1 n n�1
1Ž . Ž � �.ll � if and only if t � 0; V f , 0, 1 � 1 for all n � �; no subsequencen
� Ž .4� � 4� 1Ž .of f t � te converges in ll � if 0 � t 
 1. This examplen n�1 n n�1

Ž . � �shows also that the precompactness of the families FF t , t � a, b , cannot
be replaced by their closedness and boundedness.

Ž .b On the other hand, Theorem 1 is wrong even in the classical
situation X � � if we drop the assumption that the family FF is of

Ž .uniformly bounded variation: in fact, if functions are defined by f t �n
Ž . � � Ž � �.sin 2� nt , t � 0, 1 , then V f , 0, 1 � 4n, n � �, and no subsequence ofn
� 4� � �FF � f converges at all points of the interval 0, 1 .n n�1

COROLLARY 1. Theorem 1 remains �alid if we replace the closed inter�al
� � Ž .a, b there by an arbitrary open, half-closed, bounded, or unbounded
inter�al I � �.

� �Proof. We apply the standard diagonal method. Let a , b , n � �, ben n
an increasing sequence of exhausting closed intervals for I. Since

� �V f , a , b 
 V f , I 
 C � �, f � FF , n � �,Ž .Ž .n n

� 14�by Theorem 1, the family FF contains a sequence f which is pointwisen n�1

� � � 14�convergent on the interval a , b . Similarly, f contains a subse-1 1 n n�1
� 24� � � � �quence f which is pointwise convergent on a , b � a , b , and son n�1 2 2 1 1

� n4�forth. The diagonal sequence f � FF converges pointwise on I to an n�1
Imapping from X of bounded variation.

4. PROOF OF THEOREM 2

� �Proof of Theorem 2. Let E � a, b be the set of all discontinuity points
� 4mof F. If E � t is finite, we set t � t for j � �, j � m, and since Fj j�1 j m

is of bounded variation, E is at most countable, and we may write
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� 4� � 2 n42 nE � t . For each n � � let T � t be a partition of the intervalj j�1 n i i�0

� � 2 n 2 n 2 n 2 na, b , that is, a � t � t � ��� � t � t � b, with the following0 1 2 n�1 2 n
two properties:

2 n � 4t � T i.e., t � t for some k n � 0, 1, . . . , 2n ,Ž .ž /j n j k Žn. jj

j � 0, 1, . . . , n; 5Ž .
lim max t 2 n � t 2 n � 0. 6Ž .Ž .i i�1

n�� 1
i
2 n

2 n Ž 2 n.We define elements x � F t , n � �, i � 0, 1, . . . , 2n, inductivelyi i
Ž .as follows. Let n � �. Assume first that a � t � b, so that k n �0 0

� 41, . . . , 2n � 1 .

Ž . 2 na Set x � x .k Žn. 00

Ž . � Ž .4 2 n Ž 2 n.b If i � 1, . . . , k n and the element x � F t is already0 i i
2 n Ž 2 n . Ž 2 n 2 n . Ž 2 n Ž 2 n ..chosen, pick x � F t such that d x , x � dist x , F t .i�1 i�1 i i�1 i i�1

Ž . � Ž . 4 2 n Ž 2 n .c If i � k n � 1, . . . , 2n and the element x � F t is al-0 i�1 i�1
2 n Ž 2 n. Ž 2 n 2 n. Ž 2 n Ž 2 n..ready chosen, pick x � F t such that d x , x � dist x , F t .i i i�1 i i�1 i

Ž . 2 n Ž 2 n. Ž .Now, if t � a, i.e., k n � 0, we define x � F t following a and0 0 i i
Ž . Ž . 2 n Ž 2 n.c , and if t � b, i.e., k n � 2n, we define x � F t in accordance0 0 i i

Ž . Ž .with a and b .
Also, for each n � � we define a mapping f � X � a, b � as follows:n

x 2 n if t � t 2 n , i � 0, 1, . . . , 2n ,i i
f t � 7Ž . Ž .n 2 n 2 n 2 n½ x if t � t , t , i � 1, 2, . . . , 2n.Ž .i�1 i�1 i

Ž . Ž 2 n . 2 n Ž . Ž .We have f t � f t � x � x and, by virtue of b and c ,n 0 n k Žn. k Žn. 00 0

2n 2 n
2 n 2 n 2 n 2 n� �V f , a, b � V f , t , t � d x , xŽ . Ž .Ž .Ý Ýn n i�1 i i i�1

i�1 i�1

2n
2 n 2 n � �
 D F t , F t 
 V F , a, b , n � �. 8Ž .Ž .Ž . Ž .Ž .Ý i i�1

i�1

In order to apply the Helly type selection principle, we have to verify
� Ž .4� � �that the sequence f t is precompact in X for all t � a, b . Ifn n�1

� 4 Ž . Ž . Ž .t � E � a, t , b , by 5 there exists a number n t � � depending on t0 0
Ž .such that t � T for all n 	 n t , and son 0

f t � F t , n 	 n t , 9Ž . Ž . Ž . Ž .n 0

Ž . Ž . Ž . Ž .thanks to 7 , a , b , and c , and it suffices to take into account the
Ž . Ž .compactness of F t . Now, if t � a, b  E and t � t , F is continuous at t0
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Ž . �with respect to D � D , and for every n � � there exists i n � 0, 1, . . . ,d
4 2 n 2 n Ž . Ž . 2 n2n � 1 such that t 
 t � t . It follows from 7 that f t � x �iŽn. iŽn.�1 n iŽn.

Ž 2 n . Ž . 2 nF t , n � �, and 6 implies t � t as n � �. Choosing, for eachiŽn. iŽn.
n Ž . Ž 2 n n. Ž 2 n Ž ..n � �, an element x � F t such that d x , x � dist x , F t , byt iŽn. t iŽn.

the continuity of F and the definition of the Hausdorff metric we have

d f t , x n 
 D F t 2 n , F t � 0 as n � �.Ž . Ž .Ž . Ž .ž /n t iŽn.

Ž . � n4� Ž .Since F t is compact and x � F t , there exists a subsequence oft n�1
� n4� Ž .x denoted by the same symbol which converges to an elementt n�1

Ž .x � F t as n � �. Therefore,t

d f t , x 
 d f t , x n � d x n , x � 0 as n � �, 10Ž . Ž . Ž .Ž .Ž . Ž .n t n t t t

� Ž .4�and so the sequence f t is precompact in X.n n�1
� 4� ŽBy Theorem 1, the family FF � f contains a subsequence for whichn n�1

.we use the notation of the whole sequence which converges pointwise on
� � � a, b � Ž .a, b to a mapping f � X of bounded variation. Clearly, f t � x .0 0

Ž . Ž . � � Ž . Ž .The inclusion f t � F t for all t � a, b follows from 9 and 10 .
Ž � �.It remains to observe that the lower semicontinuity of V �, a, b and

Ž .8 yield

� � � � � �V f , a, b 
 lim inf V f , a, b 
 V F , a, b .Ž . Ž .Ž .n
n��

This completes the proof of Theorem 2.

EXAMPLE 2. The inequality in Theorem 2 may be wrong if we drop the
1Ž .assumption that F is compact-valued. To see this, let ll � be as in

Ž . �Ž . 4� � 4 ŽExample 1 a , set A � 1 � 1�n e and B � e � A so that A andn n�2 1
1Ž .. � � 1Ž .B are only closed and bounded in ll � , and define F: 0, 1 � ll � by

Ž . Ž . � � 1Ž .F t � A if 0 
 t � 1 and F 1 � B. It follows that if f : 0, 1 � ll � is
Ž . Ž � �. Ž .any selection of F such that f 1 � e , we have V f , 0, 1 � 2 � D A, B1

Ž � �.� V F, 0, 1 .

ŽSet-valued mappings of bounded variation with noncompact images as
Ž . Ž . Ž . .FF t in Example 1 a and F t in Example 2 may admit regular selections

as can be seen from the following observation. Suppose that F satisfies the
conditions of Theorem 2 except that the values of F are not necessarily

� �compact, but assume also that for any t � a, b there exists a compact
Ž . Ž . Ž Ž . Ž .. Ž Ž . Ž ..subset F t � F t such that D F t , F s 
 D F t , F s for all t, s �0 0 0

˙� � � �a, b . Then F : a, b � X is of bounded variation and, by Theorem 2, F0 0
admits a selection, which is at the same time a selection of F.

COROLLARY 2. Theorem 2 remains �alid if we replace the closed inter�al
� � Ž .a, b there by an arbitrary open, half-closed, bounded, or unbounded
inter�al I � �.
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� 4Proof. Let I � � be an open interval, and let r � I be ank k � �

increasing sequence such that r 
 t 
 r , lim r � sup I and0 0 1 k �� k
� �lim r � inf I. Setting I � r , r , k � �, we have I � � I .k �� �k k k k�1 k � � k

Applying Theorem 2 on the interval I we find a selection f � X I0 of F0 0
Ž � .more precisely, of the restriction F of F to I of bounded variationI 00

Ž . Ž . Ž .such that f t � x and V f , I 
 V F, I . We define inductively0 0 0 0 0 0
Ik Ž . Ž .f � X to be a selection of F on I such that f r � f r andk k k k k�1 k

Ž . Ž .V f , I 
 V F, I , k � �. Given t � I, so that t � I for some k � �,k k k k
Ž . Ž . Iwe set f t � f t . Clearly, f � X is a selection of F on I such thatk

Ž . Ž . Ž � �.f t � x . The properties of the functional V �, � yield cf. 3, 2.10 0

n�1

� �V f , I � lim V f , r , r � lim V f , IŽ . Ž .Ž . Ý�n n k k
n�� n�� k��n

n�1

� �
 lim V F , I � lim V F , r , r � V F , I .Ž . Ž .Ž .Ý k �n n
n�� n��k��n

The case when I � � is a half-closed interval is treated similarly.

5. MORE REGULAR SELECTIONS

In this section we will show that the more regular the set-valued
mapping of bounded variation is under consideration, the more regular
selection it admits.

Ž .Let X, d be a metric space, and let E � � be a nonempty set. Recall
E Ž .that a mapping f � X is said to be: a absolutely continuous on E if there
Ž . Ž .exists a function � : 0, � � 0, � , depending on f , such that if � � 0,

� 4n Ž .a , b � E with arbitrary n � � , a � b 
 a � b 
 ��� 
 a � bi i i�1 1 1 2 2 n n
n Ž . Ž . n Ž Ž . Ž ..and Ý b � a 
 � � , then Ý d f b , f a 
 � ; more precisely, wei�1 i i i�1 i i

Ž . Ž . Ž . Ž .say that f is � � -absolutely continuous and write � � � � � ; b off
Ž .bounded generalized Riesz �-�ariation provided the following quantity is

finite:

m d f t , f tŽ . Ž .Ž .i i�1
V f , E � V f , E � sup � t � t ,Ž . Ž . Ž .Ý� � , d i i�1ž /t � tT i i�1i�1

� 4mwhere the supremum is taken over all partitions T � t of the set Ei i�0
� . � .and �: 0, � � 0, � is a convex continuous function vanishing at zero

Ž .only and such that lim � � �� � �.� ��
E Ž � �. Ž .Given f � X , it is known that e.g., 6, 8 : i if f is Lipschitzian or of

Ž .bounded Riesz �-variation, then f is absolutely continuous; ii if E is
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bounded and f is Lipschitzian, then f is of bounded Riesz �-variation;
Ž .iii if E is compact and f is absolutely continuous or of bounded Riesz

Ž . � ��-variation, then f is of bounded Jordan variation. Moreover 4, 6 ,
f � X � a, b � is absolutely continuous if and only if there exists a function �
Ž .with the properties as above such that f is of bounded Riesz �-variation

� �on a, b .
Ž � �.In what follows we need the counterpart of Theorem C see 3, 6 :

THEOREM E. Let E be a compact set. A mapping f � X E is absolutely
Ž .continuous respecti�ely, of bounded Riesz �-�ariation if and only if f � g ��

E Žon E, where � � � is absolutely continuous respecti�ely, of bounded Riesz
. Ž .�-�ariation , bounded, and nondecreasing and g maps the image � E �

� Ž . 4 Ž .� t � t � E of � into X and is Lipschitzian with Lip g 
 1. In the
Ž . Ž Ž �.necessity part one can define the function � by � t � V f , E � ��, t ,

Ž . Ž .t � E, in which case we ha�e � � � � � if f is absolutely continuous, and� f
Ž . Ž .V �, E � V f , E if f is of bounded Riesz �-�ariation.� �

˙Given a set-valued mapping F: E � X with compact images, we say
Ž .that it is absolutely continuous on E or of bounded Riesz �-�ariation

Ž . Ž .provided a or b above holds, respectively, with d there replaced by the
Hausdorff metric D � D and f by F. A similar definition applies tod

Ž Ž ..Lipschitzian F cf. 2 .
The main result of this section is the following.

Ž . Ž .THEOREM 3 existence of more regular selections . Suppose that X, d
˙� �is a metric space, F: a, b � X is a compact-�alued set-�alued mapping,

� � Ž . Ž .t � a, b and x � F t . We ha�e: a if F is Lipschitzian, then it admits a0 0 0
Ž . Ž . Ž .Lipschitzian selection f such that Lip f 
 Lip F ; b if F is continuous and

of bounded �ariation, then it admits a continuous selection f of bounded
Ž . Ž . Ž .�ariation; c if F is � � -absolutely continuous, then it admits a � � -ab-

Ž .solutely continuous selection f ; d if F is of bounded Riesz �-�ariation, then
Ž � �.it admits a selection f of bounded Riesz �-�ariation such that V f , a, b�

Ž � �. Ž . Ž .
 V F, a, b . Moreo�er, in the cases a � d the selection f of F can�

Ž . Ž � �.be additionally chosen in such a way that f t � x and V f , a, b 
0 0
Ž � �.V F, a, b .

Ž .Proof. a Since F is Lipschitzian, it is of bounded variation, so let
f � X � a, b � be a selection of F constructed in the proof of Theorem 2. With

Ž .no loss of generality, we may assume that the sequence 7 converges to f
� �pointwise on a, b as n � �. To prove that f is Lipschitzian, let a 
 t � s

Ž . Ž . � 4� b. Then for any n � � there exist i n , j n � 0, 1, . . . , 2n � 1 such
2 n 2 n 2 n 2 n Ž . Ž . 2 nthat t 
 t � t and t 
 s � t , and so 7 implies f t � xiŽn. iŽn.�1 jŽn. jŽn.�1 n iŽn.

Ž 2 n . Ž . 2 n Ž 2 n . Ž . Ž .� F t and f s � x � F t . Properties b and c in theiŽn. n jŽn. jŽn.

proof of Theorem 2 yield

d x 2 n , x 2 n 
 D F t 2 n , F t 2 n 
 Lip F � t 2 n � t 2 n .Ž .Ž . Ž . Ž . Ž .Ž .i i�1 i i�1 i i�1
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Ž . Ž . Ž .By 6 , i n � j n for n large enough, and it follows that

Ž .j n
2 n 2 n 2 n 2 nd f t , f s � d x , x 
 d x , xŽ . Ž .Ž . Ž .Ž . Ýn n iŽn. jŽn. i i�1

Ž .i�i n �1

Ž .j n
2 n 2 n 2 n 2 n
 Lip F � t � t � Lip F � t � t .Ž . Ž .Ž . Ž .Ý i i�1 iŽn. jŽn.

Ž .i�i n �1

Ž . Ž . Ž . Ž . 2 n 2 nSince f t � f t , f s � f s , t � t, and t � s as n � �, we haven n iŽn. jŽn.
Ž Ž . Ž .. Ž . � �d f t , f s 
 Lip F � t � s . Now, if a 
 t � b and s � b, the argument

Ž . 2 n Ž . Ž .above applies with j n � 2n, i.e., s � t . Thus, Lip f 
 Lip F .jŽn.

Ž . Ž . Ž . Ž . Ž . Ž .b , c , and d . Suppose that F satisfies conditions b , c , or d .
Ž . Ž � �. � �Then F is continuous, and so the function � t � V F, a, t , t � a, b , is

continuous as well. By virtue of Theorems C and E, we have the decompo-
� � Ž .sition F � G�� on a, b , where � is in addition continuous, � � -ab-

solutely continuous, or of bounded Riessz �-variation such that
Ž � �. Ž � �. Ž . Ž . Ž .V �, a, b � V F, a, b in accordance with b , c , or d , and G:� �

˙� �0, ll � X is a Lipschitzian compact-valued set-valued mapping for which
Ž � �. Ž . Ž . Ž . Ž .ll � V F, a, b � � b and Lip G 
 1. If � � � t , then x � G � ,0 0 0 0

Ž . �0, ll �and so, by Theorem 3 a , there exists a Lipschitzian mapping g � X
Ž . Ž . � � Ž . Ž . Ž .such that g � � G � for all � � 0, ll , g � � x and Lip g 
 Lip G0 0


 1.

We claim that the composite mapping f � g �� is the desired continu-
� �ous selection of F on a, b : in fact,

� �f t � g � t � G � t � F t for all t � a, bŽ . Ž . Ž . Ž .Ž . Ž .

Ž . Ž Ž .. Ž . Ž .and f t � g � t � g � � x . Moreover, since Lip g 
 1, applying0 0 0 0
Ž .Theorems C and E one more time we have: in case b , f is of bounded

variation and

� � � � � �V f , a, b � V g , 0, ll 
 ll � Lip g 
 ll � V F , a, b ; 11Ž . Ž .Ž . Ž .Ž .

Ž . Ž . Ž .in case c , f is � � -absolutely continuous for which 11 holds as well; and
Ž . Ž .in case d , f is of bounded Riesz �-variation for which 11 holds and

such that

� � � � � � � �V f , a, b � V g �� , a, b 
 V � , a, b � V F , a, b .Ž . Ž . Ž . Ž .� � � �

This completes the proof of Theorem 3.

Finally, making use of the idea in the proof of Corollary 2 one can
� �replace the closed interval a, b in Theorem 3 by an arbitrary open,

half-closed, bounded, or unbounded interval I � �.
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