Available online at www.sciencedirect.com

ScienceDirect

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

il

S vnelies
ELSEVIER European Journal of Operational Research 189 (2008) 775-788

www.elsevier.com/locate/ejor

Tolerance-based Branch and Bound algorithms for the ATSP

Marcel Turkensteen ®*, Diptesh Ghosh °, Boris Goldengorin *°, Gerard Sierksma *

& Faculty of Economics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
Y P&OM Area, Indian Institute of Management, Ahmedabad, India
¢ Department of Applied Mathematics, Khmelnitsky National University, vul. Institutska 11, Khmelnitsky, 29016 Ukraine

Received 23 December 2005; accepted 6 October 2006
Available online 1 February 2007

Abstract

The selection of entries to be included/excluded in Branch and Bound algorithms is usually done on the basis of cost
values. We consider the class of Depth First Search algorithms, and we propose to use upper tolerances to guide the search
for optimal solutions. In spite of the fact that it needs time to calculate tolerances, our computational experiments for
Asymmetric Traveling Salesman Problems show that in most situations tolerance-based algorithms outperform cost-based
algorithms. The solution time reductions are mainly caused by the fact that the branching process becomes much more
effective, so that optimal solutions are found in an earlier stage of the branching process. The use of tolerances also reveals
why the widely used choice for branching on a smallest cycle in assignment solutions is on average the most effective one.
Moreover, it turns out that tolerance-based DFS algorithms are better in solving difficult instances than the Best First
Search algorithm from Carpaneto et al. [Carpaneto, G., Dell’Amico, M., Toth, P., 1995. Exact solution of large-scale
asymmetric traveling salesman problems. ACM Transactions on Mathematical Software 21 (4), 394-409].
© 2006 Elsevier B.V. All rights reserved.

Keywords: Tolerances; NP-hard problems; Branch and Bound

problem means, roughly spoken, that solving
instances with a large number of cities is very diffi-

1. Introduction

The Traveling Salesman Problem (TSP) is the
problem of finding a shortest tour through a given
number of locations such that every location is vis-
ited exactly once. The cost of traveling from loca-
tion i/ to location j is denoted by c(i,j). These
costs are called symmetric if c(i, j) = ¢(j, i) for each
pair of cities i and j, and asymmetric otherwise. The
fact that the TSP is a typical NP-hard optimization

* Corresponding author.
E-mail address: mturkensteen@hotmail.com (M. Turkens-
teen).

cult if not impossible. Recent developments in poly-
hedral theory and heuristics have significantly
increased the size of instances which can be solved
to optimality. The best known exact algorithms
are based on either the Branch and Bound (BnB)
method for the Asymmetric TSP (ATSP) (Fischetti
et al., 2002) or the Branch and Cut method for the
Symmetric TSP (STSP) using the double index for-
mulation of the problem (see Naddef, 2002).
Currently, most algorithms for the TSP delete
high cost arcs or edges and save the low cost ones.
A drawback of this strategy is that costs of arcs

0377-2217/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.10.062

mailto:mturkensteen@hotmail.com

776 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

and edges are no accurate indicators whether those
arcs or edges are saved in an optimal TSP solution.
In this paper, it is shown that tolerances are better
indicators. A tolerance value of an edge/arc is the
cost of excluding or including that edge/arc from
the solution at hand; see Section 2. Although the
concept of tolerances has been applied for decades
(in sensitivity analysis; see for example Libura
et al.,, 1998; Lin and Wen, 2003), only Helsgaun’s
version of the Lin—Kernighan heuristic for the STSP
applies tolerances; see Helsgaun (2000).

We apply upper tolerances in BnB algorithms for
the ATSP. A BnB algorithm initially solves a relax-
ation of the original hard problem. In case of the
ATSP, the Assignment Problem (AP) is a common
choice. The AP is the problem of assigning n people
to n jobs against minimum cost; an optimal solution
of the AP is called a minimum cycle cover. If the
minimum cycle cover at hand is a complete tour,
then the ATSP instance is solved; otherwise, the
problem is partitioned into new subproblems by
including and excluding arcs. In the course of the
process, a search tree is generated in which all solved
subproblems are listed. BnB algorithms comprise
two major steps: branching and bounding.

The objective of branching is to find a good, or
even optimal, ATSP solution in an effective way.
If the current AP solution is infeasible, then there
may exist a subset of elements of this solution, the
so-called survival set, which also appears in an opti-
mal TSP solution eventually obtained by the BnB
algorithm. An effective BnB algorithm cherishes
arcs in survival sets and disposes of the other ones,
the extinction arcs. Obviously, survival sets are not
known beforehand. Predictions of what arcs belong
to the survival set are usually based on the arc costs.
We claim that the predictions are much more accu-
rate if upper tolerance values of arcs are used
instead; see Section 4.

The objective of bounding is to fathom as many
nodes in the search tree as possible. A subproblem
is fathomed if its lower bound exceeds the value of
the best solution found so far in the process. An
AP solution is infeasible for the ATSP, if it consists
of two or more subcycles; we call such subcycles
offenders. To obtain a complete tour, at least one
offender must be “broken”, meaning that its arcs
are successively prohibited in the next stage of the
process. Since the cost of removing an arc is its
upper tolerance value, upper tolerance values pro-
vide us with the cost of breaking an offender, and
hence, they can be used to tighten the lower bounds.

The higher the lower bound, the larger the set of
subproblems that are fathomed; see Section 5.

Compared to their cost-based counterparts, tol-
erance-based BnB algorithms have one big draw-
back: whereas cost values need to be looked up,
tolerance values must be calculated. So the question
is whether the reduction in the size of the search tree
is on average sufficiently large to compensate for the
additional tolerance computation times. Computa-
tional experiments, performed in Section 7, show
that it is so for random, sparse, and various ATSP-
LIB instances. The conclusions and future research
directions appear in Section 8.

2. Branch and Bound algorithms for the Asymmetric
Traveling Salesman Problem

ATSP instances are often solved to optimality
with BnB algorithms that take the Assignment
Problem as a relaxation (Fischetti et al., 2002).
Instead of a single tour through all cities, an optimal
solution of the AP usually consists of more than one
tour, the so-called subcycles. BnB algorithms are
built up from the following four basic ingredients;
see for example Miller and Pekny (1991).

The branching rule prescribes how the current
problem should be partitioned into subproblems.
An effective branching rule for the ATSP with the
AP relaxation is introduced in Carpaneto and
Toth (1980).

The search strategy prescribes which subprob-
lems should be expanded next. Two widely used
strategies are Depth First Search (DFS) which
solves the most recently generated subproblem
first, and Best First Search (BFS) which solves
the most promising subproblem first, usually
the subproblem with the lowest value of the AP
bound.

The upper bounding strategy prescribes how tours
should be constructed in the BnB process. A
method to construct feasible ATSP tours from
AP solutions is the patching procedure by Karp
and Steele (1990).

The lower bounding strategy determines how a
lower bound of the solution value of any sub-
problem should be constructed. The value of
the AP solution of the subproblem is usually
taken as a lower bound.

State-of-the-art BnB algorithms for the ATSP
can be found in Miller and Pekny (1991) and Carpa-

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788 71

neto et al. (1995). These algorithms apply patching
to obtain upper bounds, use AP lower bounds,
and branch on a smallest cycle in the current AP
solution, i.e., a cycle of smallest cardinality. The
search strategy of both algorithms is BFS. This
means that for many ATSP instances, solutions
are obtained in very short solution times. On the
other hand, a list of subproblems should be main-
tained in order to determine the most promising
one. As a consequence, BFS BnB algorithms tend
to run out of memory when the search trees grow
large. For example, Miller and Pekny (1991) report
that their BnB algorithm cannot solve symmetric
instances of size as small as 30! The DFS strategy
has two advantages over BFS algorithms: less mem-
ory overhead is required to the store data on the
search tree, and the relaxation solution of the parent
node in the search tree can be used to obtain a relax-
ation solution at the current node more quickly. As
a consequence, it can be expected that DFS algo-
rithms are better applicable to difficult instances.
For this reason, we consider DFS algorithms in this
paper, and compare the performance of our DFS
algorithms to the algorithm by Carpaneto et al.
(1995).

3. Upper tolerances of the assignment problem

In this section, we introduce the tolerance values
of the Assignment Problem (AP). Recall that the AP
is the problem of assigning n employees to n jobs
against minimum costs, given a cost matrix C. Each
employee is only allowed to perform one job. The
assignment of employee i to job j is denoted by
the arc (i, j) and has cost ¢(i, /). An instance of the
AP is defined by its cost matrix C. Let .« denote
the set of feasible solutions of the AP instance C,
and let /" be the set of optimal solutions of C.
We denote the cost of the assignment 4 € .o/ of
instance C by fc(A4). The cost is obtained by adding
the costs of all arcs e € 4, so fc(4) =, ,c(e). The
solution of the AP can be represented as a set of
cycles, and the AP solution is also called a minimum
cycle cover.

Consider the AP instance with the following cost
matrix C, borrowed from Balas and Toth (1985).

The (unique) optimal AP solution A" consists of
the three cycles K; ={(1,2),(2,3),(3,1)}, K> =
{(4,5),(5,6),(6,4)}, and K; ={(7,8),(8,7)}. The
cost value of this solution is 17.

Take any 4* € /%, while 4" need not be unique.
The upper tolerance value of any arc e is the maxi-

City 1 2 3 4

9]
(@)}
-
o]

1 00 2 11 10 8 7 6 5
2 6 o0 1 8 8 4 6 7
3 5 12 oo 11 & 12 3 11
4 11 9 10 oo 1 9 8§ 10
5 11 11 9 4 oo 2 10 9
6 12 8 5 2 11 oo 11 9
7 10 11 12 10 9 12 oo 3
8 10 10 10 10 6 3 1 o

mum increase in the cost ¢(e) such that A" remains
optimal. More formally, let f-(4") denote the cost
of any assignment solution 4* of the instance C,
and let C,. denote the instance in which the cost
value of arc e is increased with o in comparison with
the instance C, and the costs of all other arcs remain
unchanged. The upper tolerance value of arc e with
respect to A* is denoted by and defined as (Gold-
engorin et al., 2004):

uy-(e) = max{o > 0: 4" € argmin{fc, (4)
tA € 7YY

Upper tolerances are defined with respect to a fixed
optimal solution A", because 4™ need not be unique.
Consider an AP instance with two optimal solutions
A7 and 43, and let arc e € 4] \ 45. Then, by defini-
tion, u4: (e) = 0, whereas uy; (e) = oo.

Goldengorin et al. (2004) show that the upper
tolerance value of the arc e corresponds to the value
of the cheapest solution without e; the proof is
based on Libura (1991). More formally, let C,,
be the instance from which e is excluded, let
o/ (e) be the set of optimal solutions of C,. ., and
let A" (e) € /" (e). The cost of the optimal solution
A’ (e) of the new instance is fc[4” (e)]. The upper
tolerance of e satisfies uy-(e) = fc[d” (e)] — fc[47].
In order to compute one upper tolerance value,
the additional AP instance C.,, needs to be solved.

Consider the AP example above. The upper tol-
erance of the arc (7,8) is obtained by setting the
entry ¢(7,8) to oo and solving the newly obtained
instance. The optimal solution of the new instance
contains the arcs (1,8) and (7,1) instead of (7,8)
and (1,2). The cost of this solution fc[4" (7,8)] =
28. So the wupper tolerance value satisfies:
uy[(7,8)] = feld*(7,8)] — fe(A4") =28 — 17 = 11.

Although solving an AP from scratch takes O(n*)
time, it is well known (see, e.g., Balas and Toth,
1985) that for finding an optimal solution 4" (e)
based on the given AP solution 4%, only one label-

778 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

ling procedure in the Hungarian method needs to be
performed, which can be done in O(n?) time.

4. Survival sets

This section explores the branching step of BnB
algorithms. The goal of branching is to find a good
or even optimal solution in the fastest possible way.
BnB methods generate sequences of steps in which
parts of the solution at hand are included and
excluded, until an optimal solution of the original
problem is found. If a BnB algorithm predicts cor-
rectly which element to delete or to insert, then its
search tree will be small. So it is important to pre-
dict survival sets accurately. Most algorithms base
the predictions on cost values, but the question is:
do predictions improve if they are based on upper
tolerance values, and: how many survival arcs are
there on average?

We have selected instances from the ATSPLIB
(see Reinelt, 1991) of size n =34 to 171. In our
experiments we consider instances with varying
degree of symmetry and degree of sparsity. The
degree of symmetry is defined as the fraction of
off-diagonal entries of the cost matrix {c;} that sat-
isfy ¢;; = c¢;;; the degree of sparsity is the percentage
of arcs that is missing in an instance. The random
instances have degree of symmetry 0, 0.33, 0.66,
and 1. The sparse random instances have degree
of sparsity of 50%, 75%, and 90%. All randomly
generated instances have size 60, 70, and 80. Finally,
the instances by Buriol et al. (2004) are derived from
symmetric TSPLIB instances. The almost symmetric
Buriol instances are derived from symmetric
instances from the TSPLIB as follows; see Buriol
et al. (2004). Let ¢ be the average of all distances
of the STSPLIB instance, and let k' be a user-
defined number. Each intercity distance on the
lower diagonal of the cost matrix C of the original
symmetric instance is increased by a factor ko,
where k is randomly drawn from the uniform distri-
bution supported on {0, ...,k'}. So the value of k" is
a measure of the deviation of the instances from full
symmetry.

Table 1 shows that the average percentage of
common arcs in corresponding AP and ATSP solu-
tions varies between 40% and 80%. Similar investi-
gations show that the Minimum 1-Trees and
optimal STSP tours have between 70% and 80% of
the edges in common (Helsgaun, 2000).

Let ## denote the set of all feasible tours of an
ATSP instance, and define /" as the set of optimal

Table 1
Fraction of survival arcs in optimal AP and ATSP solutions

Instance type Fraction of survival arcs (%)

ATSPLIB 53.52
Degree of symmetry 0.33 69.29
Degree of symmetry 0.66 51.10
Full symmetry 43.44
Asymmetric random 80.49
Degree of sparsity 50% 86.27
Degree of sparsity 75% 84.23
Degree of sparsity 90% 83.46
Buriol, ¥ =5 46.72
Buriol, ¥’ = 50 72.95

tours. Note that # C .o/. Assume that we start with
a fixed AP solution 4" € .o/*, and that H* € #" is a
fixed shortest complete tour of the same instance.
We explore whether there are relationships between
the cost values and the upper tolerance values of
arcs and their appearance in H". These relationships
are measured with the adjusted Rand index, which
measures the relationship between two partitions;
see Hubert and Arabie (1985), and with logistic
regression (Gessner et al., 1988). The costs and the
upper tolerances are continuous variables, and are
both compared with the partition of 4" into survival
and extinction arcs.

In the adjusted Rand index analysis (Hubert and
Arabie, 1985), we create partitions based on upper
tolerances and costs. First, the arcs in a fixed opti-
mal AP solution 4™ are partitioned into two subsets:
IN,| contains the survival arcs, and the subset IN,
contains the extinction arcs. Call this partition
IN = {INy,IN,}. We try to replicate IN with parti-
tions W and U based on the costs and tolerance val-
ues of the arcs, respectively. Define W := {W,, W},
where Wo={ec A" :cle) = c*}, Wi ={ecd":
c(e) < ¢*}, and determine ¢* in such a way that
|Wo| = |INo|. Arcs are partitioned into a set of low
cost arcs W and a class of high cost arcs W) If it
is true that all high cost arcs are not in the given
shortest tour, then the sets /Ny and W, and the sets
IN, and W coincide and cost values lead to a per-
fect prediction. Similarly, define U = {U,,U,},
where Ug:={ec A" :up(e) <u'}, Uy :={ecd :
uy(e) = u}, and determine »* in such a way that
| Uo |[=[INo |.

The adjusted Rand index measures how similar
the each of both partitions U and W are in compar-
ison with the ideal partition into survival and extinc-
tion arcs IN. The more similar two partitions are,
the higher the adjusted Rand index between both
partitions is. An adjusted Rand index of 1 indicates

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788 779

that for each non-empty class 4; of partition A4,
there exists a class B; of partition B such that
A; = B;. The expected adjusted Rand index is 0, if
both partitions assign objects to classes randomly
having the original number of objects in each class
(Hubert and Arabie, 1985).

The adjusted Rand indices between IN and W
and between /N and U are shown in Table 2. They
are larger for the tolerance-based partitions U than
for the cost-based partitions W, which indicates that
predictions are better if they are based on upper tol-
erance values.

The adjusted Rand index analysis makes splits in
the data based on the cost and the upper tolerance
values. It does not include the distances in cost or
tolerance value of an arc from the split value. The
following problem arises. Suppose that an arc with
a very high upper tolerance value is not in any
shortest ATSP tour. Such an arc is very likely to
be excluded already in an early stage of a toler-
ance-based branching process. If this event occurs,
the predictions of upper tolerances should get a
bad rating for this instance. The same holds for arcs
with low cost values which are not in a shortest
ATSP tour. We define the binary variable /N, rang-
ing over all arcs e € 4*, as follows: IN(e) =1 if
e € H" and IN(e) = 0 otherwise.

An appropriate method for estimating the rela-
tionship between a dependent binary variable and
independent continuous variables is logistic regres-
sion (Hair et al., 1998). Logistic regression is usually
applied to explain or predict choices in choice mod-
eling, for example the choice between buying and
not buying a product (Hosmer and Lemeshow,

Table 2
Quality of the predictions using upper tolerances and costs

Adjusted Rand
indices

Instance type R? of logit model

Tolerance Cost Tolerance Cost

ATSPLIB 0.113 —0.003 0.112 0.035

Degree of 0.152 0.007 0.169 0.017
symmetry 0.33

Degree of 0.188 0.028 0.132 0.015
symmetry 0.66

Full symmetry 0.158 0.013 0.007 0.011

Asymmetric 0.287 0.039 0.299 0.023
random

Sparsity 50% 0.361 0.017 0.407 0.015

Sparsity 75% 0.252 0.033 0.382 0.013

Sparsity 90% 0.219 0.032 0.342 0.017

Buriol, /' =5 —0.019 —0.023 0.010 0.006

Buriol, &' = 50 0.217 0.0303 0.172 0.028

1989). Based on the values of the independent vari-
ables, probabilities n(e) are estimated of the event
that the independent variable attains the value 1
for the observation e. The fit of a model is good if
these probabilities n(e) are close to the actual
observed values of the dependent variable.

A general measure to determine the fit of a logis-
tic regression model, also called logit model, is the
R* for a logit model RlzOgil (Gessner et al., 1988),
which compares the predictive power of a logit
model to the predictive power of a model without
independent variables. If Rﬁ)’gil =1, then all the var-
iance in the independent variable is explained and
predictions are perfect. On the other hand, if
Rfogit =0, the independent variables in the model
offer no information about the dependent variable.
Rlzogit is similar to R* in linear regression.

In order to analyze survival sets, we construct for
each instance two separate logit models. In the cost-
based model the dependent variable IN is explained
by the cost values of the arcs in an assignment
solution; the independent variable in the tolerance-
based model is formed by the upper tolerance
values. The values of Rlzogn of both models are pre-
sented in Table 2.

The values of Ry are higher for the tolerance-
based models, except for fully symmetric instances.
These results confirm that predictions based on
upper tolerance values are clearly better than pre-

dictions based on costs.
5. Tolerance-based lower bounds for the ATSP

In this section, we use the upper tolerances of an
optimal AP solution to construct tight lower bounds
for the corresponding ATSP. These lower bounds
are introduced in Goldengorin et al. (2004). Recall
that, if the lower bound of a subproblem is
increased, then this subproblem is more likely to
be fathomed during the execution of the BnB
algorithm.

In BnB algorithms, lower bounds can be
obtained by removing sources of infeasibility with
respect to the original problem from the current
solution. We call such sources of infeasibility offend-
ers. In case of the ATSP and its AP relaxation,
offenders are subcycles. Let 4™ consist of k (>1)
cycles, say, 4" = U*_ K,;. We define €(4") as the set
of all cycles in A%, so €(4") = {K;,...,Ki}.

In order to “break” a subcycle K (meaning that
this cycle does not appear in subsequent AP solu-
tions), at least one arc must be removed. Recall that

780 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

the cost of removing an arc is equal to its upper tol-
erance value. Hence, the minimum cost of breaking
a subcycle is equal to the lowest upper tolerance
value in that cycle. We denote and define for each
K € €(4") this value by uf. := min{u,(e) : e € K}.
Theorem 1 shows that the cost of breaking a cycle
by deleting a minimum tolerance arc can be used
to increase the lower bound.

Theorem 1. Let A™ and H* be optimal solutions to
AP and ATSP instances, respectively, with the same
cost matrix C. Assume that A* consists of at least two
cycles. Then for each K € €(4*), the following
inequalities hold:

Jed?) < feld) +uye < fe(H).

The first inequality is obvious, since uy-(e) = 0 for
every e € 4. Now we show that fc(4")+uf. <
fc(H"). Take any K € %(4"), and take any
ec€ K\ H". Let o/_(e) be the set of all AP solutions
without e, so {4 € ./ :e¢gA}. Moreover, let
A (e) € argmin{fc(4) : A € o/_(e)}. From Gold-
engorin et al. (2004), we have that uy(e) =
felA™ (e)] — fc(4"). Since H* € o/ (e) fe(d™)+
up () = fold ()] < fo(H'). Hence fu(d')+
. < feld') + e (e) = feld” (€)] < felH").

Based on Theorem 1, we may ask the question
which subcycle in 4™ should be “broken”. The most
effective choice is the cycle K in which «/. is maxi-
mal, since it causes the largest increase in the lower
bound f¢(4") + uf.. However, all tolerance values in
all cycles must be computed to guarantee that we
obtain an arc with maximal value of .. This is usu-
ally a time-consuming matter. Hence, it may be
worthwhile to restrict the tolerance calculations to
a ‘not too large’ subset of €(4"). Let O C €(4").
Denote and define the bottleneck tolerance with
respect to O C €(4") by buy(O) := max{ut. :
K € 0}, and the corresponding bottleneck bound
by 1bs(0) = fc(4™) + buy-(0). The choice for the
set of offenders O determines the values of the
bottleneck tolerances and bounds. For example, if
€(4") = {K,Kp}, uf1=1, and uf2 =35, then
buy-(6(A4)) = buy({K,}) =5, whereas buy({K>})
=1 and buy (0) = 0.

We consider special sets of offenders in %(4):

The Entire Cycle Set (ECS). Define Og := €(4").
So the bottleneck tolerance value in the entire set
of subcycles of A" is taken. Note that
buy(Og) = buy(0) for every O C %4(4") and

for every A". This lower bound corresponds with
the Exact Bottleneck Bound from Goldengorin
et al. (2004).

The Smallest Cycle Set (SCS). Define
Os := {K*}, where K" is a cycle of 4™ with the
smallest cardinality, ie., K* € argmin{|K]:
K € 4(4")}. This lower bound corresponds to
the Approximate Bottleneck Bound from Gold-
engorin et al. (2004).

The concept of bottleneck tolerances uses the
structure of an assignment solution to increase the
lower bound. For instance, suppose that an assign-
ment solution of a randomly generated instance
consists of many small cycles. We may expect a high
bottleneck tolerance value, since the maximum is
taken from a large set of numbers. Note also that
if an assignment consists of a large number of
cycles, then, on average, the gap between the AP
and the ATSP solution values is wide. So there is
a relationship between the size of the gap and the
value of the bottleneck tolerance.

The ECS choice leads to the tightest upper toler-
ance-based lower bounds. The SCS choice is taken
into account, because it gives a good approximation
for the ECS bound in a short time. We claim that, in
many situations, the value of bu,(Og) is attained on
a smallest cycle, and hence, buy-(Os) is a good
approximation of it. The intuition behind this claim
is the following. Suppose upper tolerance values are
randomly dispersed over the arcs of a minimum
cycle cover. The minimum tolerance value of a small
cardinality cycle is then relatively large; therefore, it
is likely that bu,-(Og) is attained on a smallest cycle
of A*. Goldengorin et al. (2004) show that the frac-
tion of subproblems in a BnB search tree for which
this event occurs, is about 45%.

The next natural question is: what is the differ-
ence in quality between /b, (Oc) and /b4 (Os)? To
measure the quality of a lower bound, we introduce
the reductions r(O) of the gap between fc(4") and
fc(H*) achieved by the lower bound /b4 (O). Define
r(0) = L 100%. Table 3 compares 7(Og)
and r(05)Tﬁe results show that, for (quasi-)sym-
metric and ATSPLIB instances, the ECS choice
clearly constructs better lower bounds than the
SCS choice. However, the SCS choice gives a satis-
factory approximation for asymmetric random and
sparse instances, while it is generally much faster to
compute.

In BnB settings, lower bounds can be computed
at every node of the search tree. A high quality

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788 781

Table 3

Reductions by ECS and SCS lower bounds

Instance r(Og) (%) (Os) (%)
ATSPLIB 19.97 6.39
Degree of symmetry 0.33 34.62 17.07
Degree of symmetry 0.66 26.66 12.27
Full symmetry 21.64 14.61
Asymmetric random 50.47 43.31
Degree of sparsity 50% 56.50 48.99
Degree of sparsity 75% 45.78 40.45
Degree of sparsity 90% 49.86 35.45
Buriol, /' =5 28.89 16.03
Buriol, £/ = 50 39.17 19.15

bound, such as /b, (Og) allows the BnB algorithm
to discard a large number of nodes, but it requires
long computing times at each node considered. In
order to find the balance between bound quality
and computing times, computational experiments
are performed in Section 7.

The approaches are clarified with the ATSP
example from Section 3. Recall that the unique
AP solution 4™ consists of the three cycles K| =
{(17 2)’ (2’ 3)’ (37 1)}» K, = {(4a S)a (Sa 6)7 (6»4)}»
and K; =1{(7,8),(8,7)}. Moreover, fc(4")=17
and fc(H*) = 26. Fig. 1 depicts 4™ and the upper
tolerance values of the arcs.

In this example, X' = 4, X2 = 8, and u®> = 4. So
buy-(Og) = 8 is attained on the arcs (5,6) and (5, 6)
in cycle K, and buy-(Os) =4 on arc (8,7) in the
smallest cycle K3. Therefore, /b (Os) =21 and
le* (OE) = 25. Since fc(H*) = 26, }”(OE) = ﬁ X
100% = 88.8%, r(Os) = 515 x 100% = 44.4%. For
this instance, /b, (Og) = 25 is tighter than all other
bounds discussed in Balas and Toth (1985).

Applying the concept of bottleneck tolerances
not only increases lower bounds, but it also

11
O
4

Fig. 1. Minimum cycle cover with arc upper tolerances.

Ordering of AP solutions

2 40+ - H*

0 T T T T T T T T T T T T
o1 2 3 4 5 6 7 8 9 10 11 12 13
AP Solutions

Fig. 2. Enumeration of AP solutions.

strengthens the branching. The previous section
shows that it is worthwhile to branch on an arc with
a small upper tolerance value. But which one should
we choose? Fig. 2 depicts an enumeration of feasible
solutions of an AP instance in a non-decreasing
order of cost values. A careful branching strategy,
which branches on a smallest upper tolerance arc,
obtains all AP solutions with cost smaller than

fc(H*). However, if an algorithm branches on a

bottleneck tolerance arc, then it traverses the enu-
meration with larger steps, and it is likely to arrive
at H” in fewer branching steps. That is, of course,
if it does not exclude survival arcs. Table 3 indicates
that the exclusion of an ECS bottleneck arc from an
asymmetric, randomly generated instance brings the
solution value of the next subproblem on average
about 50% closer to fc(H*). We propose branching
rules based on bottleneck tolerances arcs obtained
by the ECS and the SCS choices. We call these the
ECS and SCS branching rules, respectively.

6. The algorithms

In the previous sections, have discussed tolerance-
based branching rules and lower bounds for the
ATSP. In Goldengorin et al. (2004), it is shown that
search tree reductions of tolerance-based DFS algo-
rithms are the largest when the branching rule and
the lower bound act in conjunction. We explain this
in the next section with the so-called synergy effect.
Two tolerance-based algorithms are considered in
the experiments: BnB(ECS) uses the ECS branching
rule and lower bound, whereas BnB(SCS) uses the
SCS branching rule and lower bound. After comput-
ing an assignment solution, the upper tolerance val-
ues of arcs in the specified cycle set are determined
for the lower bound. When the subproblem cannot
be discarded, these upper tolerance values are used
for branching. The cost-based benchmark

782 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

BnB(Cost) is a DFS algorithm which branches on the
longest arc in a smallest cycle of the current AP solu-
tion. The algorithms apply the subtour elimination
scheme from Carpaneto and Toth (1980), and the
reduction procedure from Carpaneto et al. (1995)
is used at the top node of the search tree to determine
which arcs will never appear in an optimal solution.
These arcs are then removed from the arc set. More-
over, the algorithms apply the solver from Jonker
and Volgenant (1986) to solve the APs and to com-
pute the upper tolerance values. This solver has

Subproblem P*. Remove P* from

proved to be competitive in the AP solver compari-
son by Dell’Amico and Toth (2000).

The flowchart in Fig. 3 provides a schematic view
of a tolerance-based BnB algorithm. In each sub-
problem of BnB(ECS), n upper tolerances are com-
puted where n is the dimension of the current
subproblem. BnB(SCS) uses the SCS branching rule
and lower bound. Hence, the complexities are O(n?)
and O(|K*|n?), respectively. The ECS branching rule
selects a subcycle in which the largest minimum
upper tolerance value is achieved. Subsequently, it

4| Goto next subproblem
according to search strategy.

> P- N Initialization:
- : ub = o
Assignment| Problem | P := ATSP;
r . N Bestsol := &,
Determine optimal AP solution
A* with cost value fc(A*); Ib:=
fc(A*).
|—-——-—-J--—-—-—-, No
! Is A* acomplete 1
! tour? :
R Lower bounding
¥ A
ub:= fe(A*); Determine and select set of offenders
Bestsol := A%, {subcycles) 0y,..,0,.
A 4
| | Calculate tolerances for all arcs e EUO‘
=1
Determine most expensive offender and
corresponding bottleneck tolerance arc egr
with upper tolerance bu(O).
| Ib:= fc(A*) +bu(O) |
_______ h ——
-
—He ! Ib< ub? !
Upper bounding S o R 2
Sol h } L
olve patching N e 7 No
problem; obtain H Patch? [
andfe(H). | [TTTTTTIIIIIIIIT !
¥ Branching
If fe(H) < ubthen ub Generate subproblems Pjo, Pj;
1= fe(H) and Bestsol as follows:
=H. Pjo: exclude bottleneck
v tolerance arc egy
______________ | le : include egr.
j = | Add P Pjy o P.
e P
¢ NQ {
VRN, SR 5
| P =27 P Yes | Output
! ~i Returnoptimal ATSP
+ No solution Bestsol with cost
ub.

Fig. 3. Flowchart of a tolerance-based BnB algorithm.

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788 783

Table 4
BnB algorithms

Algorithm Description

CDT BFS algorithm by Carpaneto et al. (1995)

BnB(Cost) Cost-based DFS algorithm

BnB(ECS) Algorithm with ECS lower bound and branching
rule

BnB(SCS) Algorithm with SCS lower bound and branching
rule

branches on the arcs in this cycle in non-decreasing
order of tolerances.

The performance of our DFS methods is com-
pared to the performance of the CDT algorithm
by Carpaneto et al. (1995). In Fischetti et al.
(2002), the CDT code is not able to solve the ATSP-
LIB instances ft53, ftv170, kro124p, p43, and ry48p
within the specified time limit of 1000 seconds. Fis-
chetti et al. (2002) also note that the CDT approach
“either solve the problems within CPU 1000 sec-
onds, or the final gap is too large to hope in a con-
vergence within 10,000 seconds”. By setting the
maximum computing time to 10,000 seconds, the
search trees are kept reasonably small. Our Pentium
4 computer is approximately twice as fast as the
Alpha 500 MHz used for the experiments in Fisch-
etti et al. (2002); see the machine speed comparison
from Johnson (2006). The BnB algorithms are listed
in Table 4.

7. Computational experiments with ATSP instances

In this section, computational experiments are
conducted on the algorithms listed in Table 4. The
central questions are: do tolerance-based algorithms
have smaller search trees, and if this is true, are the
reductions sufficient to compensate for the time
invested in tolerance computations?

The BnB search trees with tolerance-based lower
bounds, with tolerances based branching rules, and
with a combination of both are compared in Gold-
engorin et al. (2004). They show that BnB algorithms
with only new lower bounds have smaller search
trees than the conventional algorithm, BnB(Cost).
The SCS branching rules also achieves reductions
for most instances, but the ECS branching rule only
reduces the search trees for random instances. The
reductions of the joint use of tolerance-based lower
bounds and branching rules are often larger than
the reductions when they are used separately.

For many instances, branching on an SCS arc
turns out to be more effective than branching on

an ECS arc. This is counterintuitive, but the discus-
sion in Section 4 may explain this phenomenon. It
was observed there that small upper tolerance arcs
are more likely to be in an optimal ATSP solution
than large upper tolerance arcs. Since the upper tol-
erance value of an ECS arc is generally higher than
the upper tolerance value of an SCS arc, the ECS
branching rule is more likely to delete survival arcs
than the SCS branching rule. It may also explain
why the ECS branching rule leads to larger search
trees than the cost-based branching rule in Fig. 4.

The search trees of ATSPLIB and random
instances are depicted in Fig. 4. The first column
shows the average search tree of BnB(Cost), the sec-
ond column the trees with tolerance-based branch-
ing rules, the third the trees with tolerance-based
lower bounds, and the fourth the values of
BnB(ECS) and BnB(SCS). If the reductions of toler-
ance-based lower bounds and branching rules
would have been independent, then the actual sizes
of the search tree of BnB(ECS) and BnB(SCS) would
be equal to their expected sizes, formed by the
reduction of the branching rule times the reduction
of the lower bound. These values are represented in
the column “Both without synergy” in Figs. 4 and
5. However, the actual trees of BnB(ECS) and
BnB(SCS) are lower than the expected search trees,
indicating that the joint use of tolerance-based
lower bounds and branching rules leads to addi-
tional search tree reductions. We call this remark-
able phenomenon the synergy effect. The
algorithms BnB(ECS) and BnB(SCS) benefit from
the synergy effect.

The question we ask now is whether the search
tree reductions of BnB(ECS) and BnB(SCS) are
sufficient to compensate for the time invested in
the tolerance calculations. The cost-based DFS
benchmark is BnB(Cost). In order to compare the
quality of our DFS methods to BFS methods, we

ATSPLIB instances

900000

800000 ~ mECS
700000 -

@ 600000 WSCS
‘@ 500000 ~
& 400000
= 300000
200000 ~
100000
0+

Not Inbranching Inlower In both In both, no

rule bound synergy

Tolerances applied

Fig. 4. Synergy effects for ATSPLIB instances.

784 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

report the solution times of the CDT algorithm on
the same computer as well.

We have selected the set of practical ATSPLIB
instances from Reinelt (1991). Moreover, we have
selected the so-called Buriol instances; a description
is given in Section 4. We solve these practical prob-
lems in increasing order of size until the instances
encountered cannot be solved within our time limit
of 3600 seconds. The random instances have degree
of symmetry 0, 0.33, 0.66, and 1, with instance size
60, 70, and 80. The sparse random instances have
degree of sparsity of 50%, 75%, and 90%, and their
sizes are 100, 200, and 400. For each randomly gen-
erated problem set and for all instance sizes, 10
instances have been generated. The experiments
are conducted on a Pentium 4 computer with
256 MB RAM memory and 2 GHz speed. For the
ATSLIB and the Buriol instances, we include three
statistics to summarize the results: the number of
unsolved instances, the average solution time and
the median solution time. The median solution time
is included, because the solution times of relatively
hard instances are overrepresented and easy
instances are underrepresented in the average solu-
tion times. The time limit for all algorithms, also
for CDT, is 3600 seconds; when no solution is
found, we report ‘Not’ in the table and the instance
is considered unsolved. The average and median
solution times and search tree sizes contain only
the instances that are solved by all tested BnB
algorithms.

Firstly, we compare our DFS algorithms with the
CDT benchmark in Tables 5-9. Although the med-
ian solution times of CDT are generally the shortest
for the ATSPLIB and the Buriol instances, CDT
solves the smallest number of instances. CDT solves
randomly generated and small ATSPLIB instances
in very short solution times compared to our DFS
algorithms, but it has more difficulties with the
harder and larger ATSPLIB instances, and with

Random instanc es
70000

600004 mECS
o 50000+ WSCS
= 40000
§ 30000 4
200004
10000 4 ’—.
0
\n branchlng In lower In both In both, no
rule bound synergy

Tolerances applied

Fig. 5. Synergy effects for random instances.

symmetric and Buriol instances. The poor perfor-
mance of the CDT algorithm for difficult problem
instances can be explained as follows. Our DFS
algorithms use the AP solution of the parent sub-
problem to speed up the solution of the current sub-
problem. A BnB algorithm with BFS strategy, on
the other hand, proceeds more or less randomly
through the search tree, so that it is too memory-
intensive to use the AP solution of the parent sub-
problem. Carpaneto et al. (1995) try to overcome
this problem by using the AP solution of the top
node of the search tree as a starting solution. The
AP solutions in the beginning of the BnB process
are computed quickly, in O(n?) time, since these
APs are similar to the initial AP at the root node
of the search tree. However, when a large number
of subproblems is expanded, the differences between
the current AP and the AP at the top node grow.
The solution time needed to solve these APs
approach O(n?).

If we compare our results to the other algorithms
in Fischetti et al. (2002), the FT-add method is
slightly faster for many instances. This algorithm
also applies relaxations different from the AP. As
a consequence, it is able to keep search trees small
for most instances, and keep the computational
overhead within reasonable limits. Unfortunately,
a direct comparison on the same computer cannot
be made, since, to the best of our knowledge, no
online source code is available. The Concorde solver
and the FT Branch and Cut solver in Fischetti et al.
(2002) both run under C-Plex. Both algorithms
appear to be slower than our algorithms for ran-
domly generated instances, but faster for the
instances from the TSP library.

Next, we compare the cost-based and tolerance
based DFS algorithms. Tables 5-7 show that
BnB(SCS) obtains the smallest solution times for
many ATSPLIB instances, sparse instances, and
instances with degree of symmetry 0.33 and 0.66,
but the solution times of BnB(Cost) are slightly bet-
ter for fully symmetric instances. For sparse
instances, the solution times of BnB(SCS) are also
shorter, but the advantage reduces as sparsity
increases. BnB(ECS), using the ECS lower bound
and branching rule, generally requires too much tol-
erance calculation time to be competitive, in spite of
its small search trees. In Tables 8 and 9, BnB(SCS)
displays the fastest solution times, even though the
instances with k' = 5% are almost symmetric.

Finally, we analyze the source of the search tree
reductions of BnB(ECS) and BnB(SCS). A BnB

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

785

Table 5
Search tree sizes and solution times of ATSPLIB instances
Instance n CDT BnB(Cost) BnB(ECS) BnB(SCS)
Time Tree Time Tree Time Tree Time
brl7 17 3 3674829 24.67 86585 4.18 1034255 22.64
ftv33 34 0 7065 0.22 2195 0.82 1362 0.11
ftv3s 36 0 6945 0.22 2307 0.99 1965 0.27
ftv38 39 0 6195 0.22 1381 0.82 2091 0.44
p43 43 Not Not Not Not Not Not Not
ftvd4 45 0 619 0.05 453 0.44 171 0.05
ftvd7 48 0 29025 1.37 7752 7.20 7692 1.48
ry48p 48 Not 9178227 459.84 183511 262.03 601713 105.88
ft53 53 Not 20111 2.53 336586 448.13 19200 6.15
ftvs5 56 1 92447 4.56 17490 24.12 23034 9.12
ftv64 65 1 43441 3.24 9491 20.88 15509 10.77
ft70 70 1 25831 4.01 4123 11.70 4756 1.87
ftv70 71 2 253873 24.07 34838 112.36 17694 8.57
ftv90 91 1 7059 1.54 643 6.15 4023 1.87
kro124p 100 Not Not Not Not Not Not Not
ftv100 101 13 371385 92.20 1643 21.87 54688 30.93
ftv110 111 3 583133 160.44 6313 112.03 79045 89.56
ftv120 121 31 3892497 1088.57 13721 305.71 137563 327.31
ftv130 131 32 256855 95.71 715 19.01 11269 28.52
ftv140 141 8 78951 42.25 1683 55.82 12667 13.30
ftv150 151 114 15437 9.18 625 26.37 3635 4.67
ftv160 161 72 Not Not Not Not 330458 496.92
ftv170 171 2321 1796149 1299.34 Not Not 412059 656.59
rbg323 323 0 3 0.00 1 0.49 1 0.05
rbg358 358 0 3 0.05 1 0.55 1 0.00
rbgd03 403 0 3 0.05 1 0.82 1 0.05
rbgd43 443 0 3 0.11 3 3.02 2 0.05
Unsolved 4 3 4 2
Average 10.00 445028 73.94 9141 35.02 67211 26.27
Median 1.00 25831 3.24 1683 7.20 4756 1.87
Table 6
Average search tree sizes and solution times of asymmetric random instances
n CDT BnB(Cost) BnB(ECS) BnB(SCS)
Time Tree Time Tree Time Tree Time
60 0.00 380.8 0.03 323 0.12 22.1 0.02
70 0.00 452.8 0.04 31.2 0.18 24.7 0.03
80 0.10 901.4 0.13 21.7 0.24 25.6 0.07
100 0.10 900.2 0.19 17.4 0.26 13.5 0.05
200 0.10 3639.0 3.30 85.8 7.30 79.6 0.84
300 0.30 17849.8 48.10 93.6 28.70 150.6 5.34
400 0.20 28499.4 141.00 74.2 54.10 121.6 11.38
500 0.40 43457.6 368.70 187.8 268.40 225.3 35.98
1000 1.50 92289.0 3951.60 142.1 1556.90 373.9 157.23

algorithm first finds an optimal solution and then
proves the optimality of that solution, i.e., all
remaining subproblems are discarded. Table 10
shows that BnB(Cost) spends a relatively large
amount of time on finding an optimal solution com-
pared to BnB(ECS) and BnB(SCS), particularly for
non-symmetric random instances. This result indi-

cates that the improved branching of tolerance-
based algorithms is the predominant source of the
search tree reductions. Table 10 also indicates that
fast algorithms often spend the smallest fraction of
time on finding an optimal solution. The value of
an optimal solution is the tightest possible upper
bound and can be used to fathom a large number

786

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

Table 7
Average search tree sizes and solution times of symmetric and sparse instances
Instance n CDT BnB(Cost) BnB(ECS) BnB(SCS)
Time Tree Time Tree Time Tree Time
Degree of sparsity 50% 100400 0.6 12291 44.7 90 39.1 60 2.33
Degree of sparsity 75% 100-400 0.7 12882 48.9 109 41.57 81 3.90
Degree of sparsity 90% 100400 0.7 14109 55.63 116 63.63 84 4.70
Degree of symmetry 0.33 60-80 0.1 1963 0.27 195 0.86 139 0.10
Degree of symmetry 0.66 60-80 0.5 6763 1.08 2193 9.63 1097 0.62
Full symmetry 60-80 1* 446335 58.63 30347 116.73 379412 121.03
% Four instances of size 60 and all of size 70 and 80 unsolved.
Table 8
Search tree sizes and solution times of Buriol instances, k' = 5
Instance n CDT BnB(Cost) BnB(ECS) BnB(SCS)
Time Tree Time Tree Time Tree Time
ulyssesl6 16 1 10165 0.11 4773 0.27 2337 0.05
ulysses22 22 45 857027 10.27 209765 24.56 189735 7.36
gr24 24 0 1329 0.05 401 0.16 371 0.05
fri26 26 0 12725 0.22 697 0.27 1943 0.11
bayg29 29 Not 6555 0.16 29939 49.34 5317 0.33
bays29 29 0 13931 0.33 2037 0.66 4346 0.33
grd8 48 0 3331593 171.21 155 0.00 196635 25.38
att48 48 1252 63782833 2815.93 439781 543.19 120297 16.92
eil51 51 1 1193015 66.54 95403 138.63 10167 1.37
pr76 76 Not Not Not Not Not Not Not
eil76 76 Not 8772639 1058.55 9013 48.41 652530 210.93
2r96 96 Not Not Not Not Not Not Not
Unsolved 4 2 2 2
Average 162.38 8650327 383.08 94127 88.47 65729 6.45
Median 0.5 435479 5.30 3405 0.47 7257 0.85

of subproblems. We conclude that accurate branch-
ing is the key to good performance of Depth First
Search BnB algorithms. Moreover, since tolerance-
based algorithms find optimal solutions faster, the
results in case of premature termination are likely
to be better than for cost-based algorithms. This
property may be very useful in case of solving large
problems within limited times; see Zhang (1993).

There seems to exist the following paradox. The
use of tolerance-based lower bounds cause the largest
search tree reductions according to Goldengorin
et al. (2004), and hence, one may expect that these
algorithms need less time to prove the optimality
of the solution at hand. However, Table 10 points
out that tolerance-based BnB algorithms need rela-
tively less time to find an optimal solution. An
explanation is that the new lower bounds cut off a
large number of subproblems before an optimal
solution is found.

8. Summary and future research directions

We presented an experimental analysis of toler-
ance-based BnB type algorithms for the ATSP,
and compared it with cost-based BnB algorithms.
Tolerance-based algorithms reduce the search tree
sizes substantially. For random instances, including
both instances with degree of symmetry 0.33 and
0.66, and sparse instances, the computation times
are substantially shorter.

The better performance of tolerance-based BnB
algorithms is mainly caused by improved branching:
a better choice of entries to be included and
excluded. Upper tolerances provide better predic-
tions of which arcs in a relaxation solution should
be preserved, the survival set, and which arcs should
be deleted, the extinction set.

We apply the concept of offenders: sources of
infeasibility which must be removed from a relaxa-

M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788 787

Table 9
Search tree sizes and solution times of Buriol instances, £’ = 50
Instance n CDT BnB(Cost) BnB(ECS) BnB(SCS)

Time Tree Time Tree Time Tree Time
ulysses16 16 0 2481 0.00 135 0.00 181 0.00
ulysses22 22 0 35577 0.38 4270 0.71 4845 0.22
att48 48 0 147201 6.65 19 0.50 37 0.00
bayg29 29 0 177 0.00 7 0.00 7 0.00
bays29 29 0 323 0.00 153 0.50 23 0.00
eil51 51 1 16869 0.93 9 0.50 13 0.00
fTi26 26 0 2481 0.00 1014 0.33 33 0.00
gr24 24 0 49 0.00 9 0.00 19 0.00
ar48 48 0 4503 0.27 43 0.50 265 0.50
pr76 76 0 1643 0.27 424 3.80 91 0.50
eil76 76 0 243 0.00 9 0.50 13 0.00
2r96 96 0 851473 218.19 59613 763.90 403 0.44
kroA100 100 0 21282 38.19 95 1.32 82 0.05
kroD100 100 0 21294 0.11 201 2.36 98 0.05
rd100 100 1 7910 38.02 25 0.33 434 0.22
eill01 101 0 629 0.05 3 0.05 21 0.00
lin105 105 0 14379 42.47 17 0.27 15 0.00
ch130 130 Not Not Not 38221 969.73 Not Not
ch150 150 Not Not Not Not Not Not Not
Unsolved 2 2 1 2
Average 0.12 66383 20.33 3885 45.62 387 0.12
Median 0.00 4503 0.27 43 0.50 37 0.00
Table 10 which only uses a smallest cycle in the set of offend-

Percentage of subproblems solved before an optimal solution is
found

Instance BnB(Cost) BnB(ECS) BnB(SCS)
(0 ()) (0 ()) (0 ())
ATSPLIB 30.48 64.48 39.63
Degree of symmetry 0.33 92.60 62.59 70.42
Degree of symmetry 0.66 85.12 49.14 61.65
Full symmetry 35.70 31.71 32.08
Asymmetric random 90.02 77.27 75.76
Degree of sparsity 50% 95.15 82.49 76.88
Degree of sparsity 75% 96.56 80.77 77.65
Degree of sparsity 90% 95.83 72.30 82.35
Buriol, ¥ =5 82.57 62.25 66.16
Buriol, &' = 50 97.27 52.47 41.93

tion solution in order to obtain a feasible solution
for the original hard problem. The minimal cost of
removing such an offender can be determined using
tolerance values. This idea is used to construct new
lower bounds, but it also enables the BnB algorithm
to make branching steps with large increases in solu-
tion value without “jumping” across an optimal
ATSP solution. The largest increase in lower bound
is obtained if we consider all offenders, the Entire
Cycle Set, which has of course the drawback of very
long tolerance calculation times. It is shown that a
good approximation is the Smallest Cycle Set,

ers, so that only a few tolerances need to be calcu-
lated. Branching on the smallest cycle is a good
choice, not only because a small number of new sub-
problems is generated, but also because it is very
likely that a large branching step towards an opti-
mal ATSP solution is made.

Tolerance-based BnB algorithms have one major
drawback: they have to compute tolerances at every
node of the search tree. In spite of this drawback, it
turns out that the BnB algorithm with the Smallest
Cycle Set bound and branching rule usually require
shorter solution times than cost-based BnB algo-
rithms. This algorithm is faster for difficult instances
than the state-of-the-art BnB algorithm from Car-
paneto et al. (1995).

The idea of branching on tolerances can be seen
as similar to the idea of strong branching in Integer
Programming; see Achterberg et al. (2004). Strong
branching first explores the additional cost of set-
ting a fractional variable at an integer value, and
then decides on which variable to branch. Similar
to tolerance-based branching, it first computes the
additional cost of removing infeasibilities, the frac-
tional value of a variable, before it takes the branch-
ing step. In Achterberg et al. (2004), it is found that
strong branching should be done only at specific

788 M. Turkensteen et al. | European Journal of Operational Research 189 (2008) 775-788

nodes of the search tree. Similar strategies can be
developed for tolerance-based algorithms.

An interesting direction of research is to develop
book-keeping techniques that accelerate tolerances
computations, and lead to solution time reductions
for ATSP instances. Another direction of research
is to construct tolerance-based algorithms for other
COPs. Preliminary experiments with these algo-
rithms are very promising as well.

References

Achterberg, T., Koch, T., Martin, A., 2004. Branching rules
revisited. Operations Research Letters 33 (1), 42-54.

Balas, E., Toth, P., 1985. Branch and Bound Methods. In:
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys,
D.B. (Eds.), The Traveling Salesman Problem. John Wiley &
Sons, Chichester, pp. 361-401 (Chapter 10).

Buriol, L.M., Franga, P.M., Moscato, P., 2004. A new memetic
algorithm for the asymmetric traveling salesman problem.
Journal of Heuristics 10, 483-506.

Carpaneto, G., Toth, P., 1980. Some new branching and
bounding criteria for the asymmetric traveling salesman
problem. Management Science 21, 736-743.

Carpaneto, G., Dell’Amico, M., Toth, P., 1995. Exact solution of
large-scale asymmetric traveling salesman problems. ACM
Transactions on Mathematical Software 21 (4), 394-409.

Dell’Amico, M., Toth, P., 2000. Algorithms and codes for dense
assignment problems: the state of the art. Discrete Applied
Mathematics 100, 17-48.

Fischetti, M., Lodi, A., Toth, P., 2002. Exact Methods for the
Asymmetric Traveling Salesman Problem. In: Gutin, G.,
Punnen, A.P. (Eds.), The Traveling Salesman Problem and its
Variations. Kluwer, Dordrecht, pp. 169-194 (Chapter 9).

Gessner, G., Malhotra, N.K., Kamakura, W.A., Zmijevski,
M.E., 1988. Estimating models with binary dependent vari-
ables: some theoretical and empirical observations. Journal of
Business Research 16 (1), 49-65.

Goldengorin, B., Sierksma, G., Turkensteen, M., 2004. Tolerance
based algorithms for the ATSP. Lecture Notes in Computer
Science 3353 (June), 222-234.

Hair, J.F., Anderson, R.E., Tatham, R.L., Black, W.C., 1998.
Multivariate Data Analysis, fifth ed. Prentice-Hall.

Helsgaun, K., 2000. An effective implementation of the Lin-
Kernighan traveling salesman heuristic. European Journal of
Operational Research 12, 106-130.

Hosmer, D.W., Lemeshow, S., 1989. Applied Logistic Regres-
sion, first ed. John Wiley & Sons.

Hubert, L.J., Arabie, P., 1985. Comparing partitions. Journal of
Classification 2, 193-218.

Johnson, D.S., 2006 Machine comparison site. <http://pub-
lic.research.att.com/dsj/chtsp/speeds.html>.

Jonker, R., Volgenant, A., 1986. Improving the Hungarian
assignment algorithm. Operations Research Letters 5, 171—
175.

Karp, R.M., Steele, J.M., 1990. Probabilistic Analysis of Heu-
ristics. In: The Traveling Salesman Problem. Wiley, New
York, pp. 181-205 (Chapter 5).

Libura, M., 1991. Sensitivity analysis for minimum Hamiltonian
path and traveling salesman problems. Discrete Applied
Mathematics 30, 197-211.

Libura, M., Van der Poort, E.S., Sierksma, G., Van der Veen,
J.ALA., 1998. Stability aspects of the traveling salesman
problem based on k-best solutions. Discrete Applied Math-
ematics 87, 159-185.

Lin, C.-J., Wen, U.-P., 2003. Sensitivity analysis of the optimal
assignment. Discrete Optimization 149, 35-46.

Miller, D.L., Pekny, J.F., 1991. Exact solution of large asym-
metric traveling salesman problems. Science 251, 754-761.
Naddef, D., 2002. Polyhedral Theory and Branch-and-Cut
Algorithms for the Symmetric TSP. In: Gutin, G., Punnen,
A.P. (Eds.), The Traveling Salesman Problem and its Vari-

ations. Kluwer, Dordrecht, pp. 29-116 (Chapter 2).

Reinelt, G., 1991. TSPLIB - a traveling salesman problem
library. ORSA Journal on Computing 3, 376-384.

Zhang, W., 1993. Truncated branch-and-bound: a case study on
the asymmetric TSP. In AAAI-93 Spring Symposium on Al
and NP-Hard Problems, 160-166, Stanford.

http://public.research.att.com/dsj/chtsp/speeds.html
http://public.research.att.com/dsj/chtsp/speeds.html

	Tolerance-based Branch and Bound algorithms for the ATSP
	Introduction
	Branch and Bound algorithms for the Asymmetric Traveling Salesman Problem
	Upper tolerances of the assignment problem
	Survival sets
	Tolerance-based lower bounds for the ATSP
	The algorithms
	Computational experiments with ATSP instances
	Summary and future research directions
	References

