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Abstract. In this paper we consider asymptotic expansions for a class
of sequences of symmetric functions of many variables. Applications to
classical and free probability theory are discussed.

1. Introduction

Most limit theorems such as the central limit theorem in finite dimensional and
abstract spaces and the functional limit theorems admit refinements in terms
of asymptotic expansions in powers of n−1/2, where n denotes the number of
observations. Results on asymptotic expansions of this type are summarized in
many monographs, see for example [2].

These expansions are obtained by very different techniques such as expanding
the characteristic function of the particular statistic, or in discrete cases starting
even from a combinatorial formula for its distribution function. Alternatively
one might use an expansion for an underlying empirical process and evaluate
it on a domain defined by a functional or statistic of this process. In those
cases one would need to make approximations by Gaussian processes in suitable
function spaces.

The aim of this paper is to show that for most of these expansions one could
safely ignore the underlying probability model and its ingredients (like e.g. proof
of existence of limiting processes and its properties). In fact one can obtain ex-
pansions in a very similar way based on a simple general scheme reflecting the
common nature of these models that is a universal collective behavior caused
by many independent asymptotically negligible variables influencing the distri-
bution of a functional.

The results of this paper may be considered as the extension of the results
given by F. Götze in [5] where the following scheme of sequences of symmetric
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functions is studied. Let hn(ε, ..., εn), n ≥ 1 denote a sequence of real functions
defined on Rn and suppose that the following conditions hold:

hn+1(ε1, ..., εj , 0, εj+1, ..., εn) = hn(ε1, ..., εj , εj+1, ..., εn);(1.1)

∂

∂εj
hn(ε1, ..., εj , ..., εn)

∣∣∣∣
εj=0

= 0 for all j = 1, ..., n;(1.2)

hn(επ(1), ..., επ(n)) = hn(ε1, ..., εn) for all π ∈ Sn,(1.3)

where by Sn denotes the symmetric group.

This symmetry property follows e.g. from the independence and identical dis-
tribution of an underlying vector of random elements Xj (in an arbitrary space)
with common distribution P , if hn = EF (ε1(δX1 − P ) + . . . + εn(δXn − P )) is
the expected value of a functional F of a weighted process (based on the Dirac-
measures in X1, . . . , Xn). Here hn may be regarded as function of ”influences”
of the various random components Xj . In [5] we considered limits and expan-

sions for functions hn of equal weights εj = n−1/2, 1 ≤ j ≤ n. In the following
this scheme will be extended to the case of non identical weights εj , which oc-
curs e.g. for expectations of functionals of weighted i.i.d. random Xj elements
in Probability Theory.

Denote by ε the n-vector εj , 1 ≤ j ≤ n and by εd :=
∑n

j=1 ε
d
j , d ≥ 1 the

d-th power sum. In the following we shall show that (1.1)-(1.3) ensures the
existence of a ”limit” function h∞(ε2, λ1, . . . , λs) as a first order approximation
of hn together with ”Edgeworth-type” asymptotic expansions. These are given
in terms of polynomials of power sums εd, d ≥ 3. The coefficients of these
”Edgeworth”-Polynomials, defined in (2.8) below, are given by derivatives of
the limit function h∞ at λ1 = 0, . . . , λs = 0.

Remark (Algebraic Representations). In case that hn is a multivariate polyno-
mial of ε itself, satisfying (1.1)–(1.3), we may express it as polynomial in the
algebraic base, εd, d ≥ 1, of symmetric power sums of ε with constant coeffi-
cients. Note that

∂

∂εj
εd
∣∣∣
εj=0

= δd,1,

where δd,1 = 1, if d = 1 and zero otherwise. Hence, (1.2) entails that hn does
not polynomially depend on ε1. Now we may write

hn(ε) = Pε2(ε3, . . . , εn),

where Pε2 denotes a polynomial with coefficients in the polynomial ring C[ε2]
of the variable ε2. Restricting ourselves to the sphere ε2 = 1 for convenience,
Pε2 is the desired ”Edgeworth” expansion, provided we introduce the following
grading of monomials in the variables εd, d ≥ 3 via deg(εd) = d− 2 and expand
the polynomial in monomials of increasing grade.

1.1. Notations. Throughout the paper we will use the following notations.
We denote εd :=

∑n
i=1 ε

d
i and |ε|d :=

∑n
i=1 |εi|d. We also introduce additional

notation and denote by (ε)d and |ε|d the d-th root of εd and |ε|d respectively,
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i.e. (ε)d := (εd)1/d and |ε|d := (|ε|d)1/d. By c with induces or without we
denote absolute constants, they can be different in different places. Let Dα,
where α a nonnegative integral vector, denote partial derivatives ∂α1

∂ε
α1
1

... ∂
αm

∂εαmm
,

and α =
∑m

j=1 αj .

2. Results

We denote by

(2.1) h∞(λ1, ..., λs, λ) := lim
k→∞

hk+s

(
λ1, ..., λs,

λ√
k
, ...,

λ√
k

)
.

The following theorem is an analogue of the Berry-Esseen type inequality for
sums of non identically distributed independent random variables in probability
theory.

Theorem 2.1. Assume hn(·), n ≥ 1, satisfies conditions (1.1), (1.2) and (1.3)
together with

|Dαhn(ε1, ..., εn)| ≤ B,(2.2)

for all ε1, ..., εn, where B denotes some positive constant, α = (α1, ..., αr), r ≤ 3,
and

αj ≥ 2, j = 1, ..., r,

r∑
j=1

(αj − 2) ≤ 1.

Then there exists function h∞(|ε|2) defined by (2.1) and

|hn(ε1, ..., εn)− h∞(|ε|2)| ≤ c ·B ·max(|ε|2, |ε|32)|ε|3,

where c is an absolute constant.

In case that ε depends on n, this theorem shows that if

(2.3) lim
n→∞

|ε|3 = 0

then hn(ε1, ..., εn) converges to the limiting function h∞(|ε|2), which doesn’t
depend on ε1, ..., εn but on the l2-norm |ε|2. This means that the sequence of
symmetric functions (invariant with respect to Sn) may be approximated by a
rotationally invariant function (invariant with respect to the orthogonal group
On).

Note though that if (2.3) holds, Theorem 2.1 doesn’t provide an explicit formula
for the function h∞(|ε|2), but guarantees its existence.

Remark. It was shown in [10, Lemma 4.1] that (2.3) holds with high probability.

Proof of Theorem 2.1. We divide the proof into three steps. In the first step
we substitute each argument εj by a block of the length k of equal variables
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εj/
√
k. This procedure doesn’t change the l2-norm |ε|2. After n steps we we

arrive at a function which depend on n× k arguments

(2.4) hnk

(
ε1√
k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)
.

We show that

(2.5)

∣∣∣∣hn(ε1, ..., εn)− hnk
(
ε1√
k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)∣∣∣∣ ≤ c ·B · |ε|3.
This step corresponds to Lindeberg’s scheme of replacing arbitrary by Gaussian
random variables in the central limit theorem in probability theory. In the sec-
ond step, still fixing n, we determine the limit of the sequence of functions (2.4),
as k goes to infinity. We will show that in this case the limit depends ε1, ..., εn,
through the l2-norm |ε|2 only. It will be shown that∣∣∣∣hnk ( ε1√

k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)
− hk

(
|ε|2√
k
, ...,
|ε|2√
k

)∣∣∣∣
≤ c ·B · k−1/2.(2.6)

Finally, we may apply the result of [5][Proposition 2.1]. For the reader’s conve-
nience we repeat the proof of this proposition here in the third step. We show
that

(2.7)

∣∣∣∣hk ( |ε|2√k , ..., |ε|2√k
)
− h∞(|ε|2)

∣∣∣∣ ≤ c ·B · k−1/2.
From (2.5)– (2.7) it follows that

|hn(ε1, ..., εn)− h∞(|ε|2)| ≤ C ·B · (|ε|3 + k−1/2).

Taking the limit with respect to k we conclude the statement of Theorem.

In the following we give the details for the steps outlined above.

Proof of the first step. We denote hk(δ1, ..., δk) := hn+k−1(δ1, ..., δk, ε2, ..., εn).
Set

δk := (δ1, ..., δk) :=

(
ε1√
k
, ...,

ε1√
k

)
δ0k := (δ01 , ..., δ

0
k) := (ε1, 0, ..., 0).

Expanding by Taylor’s formula we may write

hk(δk)− hk(δ0k) =

k∑
j=1

∂hk(δ
0
k)

∂δj
(δj − δ0j )

+
1

2

k∑
j,l=1

∂2hk(δ
0
k)

∂δj∂δl
(δj − δ0j )(δl − δ0l ) +R31,

where R31 is the remainder term which will be considered later. In what fol-
lows we shall denote by R3i, for some i ∈ N, the remainder terms in Taylor’s
expansion. By (1.1) all summands in the first sum equals zero except for j = 1.
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Consider the second sum. If j 6= l and j, l 6= 1 then the corresponding summand
equals zero. Condition (1.2) yields

∂

∂δj

∂

∂δl
hk(δ

0
k) = 0

provided that j 6= l, j, l 6= 1 and

∂

∂δ1

∂

∂δl
hk(δ

0
k) = R32.

for all l = 2, ..., k. Since

∂

∂δ1
hk(δ

0
k) =

∂2

∂δ21
hk(δ

0
k)
∣∣
δ01=0

δ01 +R33,

∂2

∂δ2j
hk(δ

0
k) =

∂2

∂δ21
hk(δ

0
k)
∣∣
δ01=0

+R34,

and applying condition (1.3) we may sum the coefficients in front of the second
derivatives of hk and get

ε1

(
ε1√
k
− ε1

)
+

1

2

(
ε1√
k
− ε1

)2

+
k − 1

2

(
ε1√
k

)2

= 0.

We now investigate the terms R3l, l = 1, ..., 4, and show that |R3l| ≤ c ·B · |ε1|3.
Let us consider R31. First we note that R31 is the sum of the third derivatives

of hk at some middle point δ̂
0

k:

k∑
j,l,m=1

∂3

∂δj∂δl∂δm
hk(δ̂

0

k)(δj − δ̂0j )(δl − δ̂0l )(δm − δ̂0m).

If the partial derivative with respect to δj (or δl, δm) is of order one then we
have to expand further with respect to this variable at zero using (1.2). Finally
we come to the bound

k∑
j,l,m=1

∂3

∂δj∂δl∂δm
hk(δ̂

0

k)(δj − δ̂0j )(δl − δ̂0l )(δm − δ̂0m)

≤ C ·B · (|ε1|3 + |ε1|4 + |ε1|6).
The other terms R3l, l = 2, 3, 4, may be studied in the similar way.

Repeating this procedure k − 1 times we come to the function (2.4) and the
bound (2.5).

Proof of the second step is similar to the previous step. In this case n is fixed
and we may write down all bound with respect to k.

Proof of the third step. We consider the difference between hm at the point

εm = (|ε|2m−1/2, ..., |ε|2m−1/2)
and hk+r at the point

εm+r = (|ε|2(m+ r)−1/2, ..., |ε|2(m+ r)−1/2)
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and show, similar to the previous steps or the proof of [5][Proposition 2.1], that

hm(εm)− hm+r(εm+r) = O(d3(h,m))
m+r−1∑
p=m

p−3/2.

Therefore, hm(εm) is a Cauchy sequence in m with a limit, say h∞(|ε|2). Taking
m = k we finish the proof of Theorem. �

To formulate the asymptotic expansion of the function hn(·), n ≥ 1, we have to
introduce further notations. We introduce the following differential operators by
means of formal power series identities. Define cumulant differential operators
κp(D) by means of

∞∑
p=2

p!−1εpκp(D) = ln

1 +
∞∑
p=2

p!−1εpDp


in the formal variable ε. One may easily compute the first cumulants. For
example, κ2 = D2, κ3 = D3, κ4 = D4 − 3D2D2. Define Edgeworth polynomials
by means of the following formal series in κr, τr and the formal variable ε

∞∑
r=0

εrPr(τ∗κ∗) = exp

( ∞∑
r=3

r!−1εr−2κrτr

)
which yields

Pr(τ∗κ∗) =

r∑
m=1

m!−1
∑

j1,...,jm

(j1 + 2)!−1τj1+2κj1+2(2.8)

× (j2 + 2)!−1τj2+2κj2+2...(jm + 2)!−1τjm+2κjm+2,

where the sum
∑

j1,...,jm
extends over all m-tuples of positive integers (j1, ..., jm)

satisfying
∑m

q=1 jq = r and κ∗ = (κ3, ..., κr+2), τ∗ = (τ3, ..., τr+2). For example,

P1(τ∗κ∗) =
1

6
τ33κ3 =

1

6
τ33D

3,

P2(τ∗κ∗) =
1

24
τ4κ4 +

1

72
τ23κ3κ3 =

1

24
τ4(D

4 − 3D2D2) +
1

72
τ23D

3D3.(2.9)

In the following theorem we will assume that ε is a vector on the unit sphere,
i.e. |ε|2 = 1. It is also possible to consider the general case |ε|2 = r, r > 1, but
then the remainder terms will have more difficult structure. In what follows we
shall omit the argument |ε|2 from the notations of h∞.

Theorem 2.2. Assume hn(ε1, ..., εn), n ≥ 1, satisfies conditions (1.1), (1.2)
and (1.3) together with |ε|2 = 1. Suppose that

|Dαhn(ε1, ..., εn)| ≤ B,(2.10)
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for all ε1, ..., εn, where B denotes some positive constant, α = (α1, ..., αr), r ≤ s,
and

αj ≥ 2, j = 1, ..., r,

r∑
j=1

(αj − 2) ≤ s− 2.

Then

hn(ε1, ..., εn) = h∞ +
s−3∑
l=1

Pl(ε
∗κ∗)h∞(λ1, ..., λs)

∣∣
λ1=...=λs=0

+Rs,

where
|Rs| ≤ cs ·B · |ε|s.

where cs is an absolute constant.

As an example consider the case s = 5. Then by (2.9)

hn(ε1, ..., εn) = h∞ +
ε3

6

∂3

∂λ3
h∞(λ)

∣∣
λ=0

(2.11)

+

[
ε4

24

(
∂4

∂λ41
− 3

∂2

∂λ21

∂2

∂λ22

)
+
ε6

72

∂3

∂λ31

∂3

∂λ32

]
h∞(λ1, λ2)

∣∣
λ1=0,λ2=0

+O(|ε|5).

Before we start to prove Theorem 2.2 we have to introduce one more notation.
For any sequence τp, p ≥ 1, of formal variables define P̃ (τ∗κ∗) as a polynomial
in the cumulant operators κp multiplied by τp by the following formal power
series in µ:

(2.12)
∞∑
j=0

P̃j(τ∗κ∗)µ
j := exp

 ∞∑
j=2

j!−1τjκj(D)µj

 .

For example, P̃0 = 1, P̃1 = 0, P̃2 = 1
2τ2D

2, P̃3 = 1
6τ3D

3, and

P̃4 =
1

24
τ4(D

4 − 3D2D2) +
1

8
τ22D

2D2.

If τp = τp, p ≥ 1 then

(2.13) P̃j = j!−1τjD
j .

One may also see that

(2.14)
∑
j+l=r

P̃j(τ∗κ∗)P̃j(τ
′
∗κ∗) = P̃r((τ∗ + τ ′∗)κ∗).

There is a relation between Edgeworth polynomial Pr(·) and P̃r(·) which is
given by the following formula

(2.15)

∞∑
r=1

[Pr(τ∗κ∗)]l =
l∑

r=1

P̃r(τ∗κ∗),

where [·]l means the sum of all monomials τp11 · · · τ
pr+2
r+2 in Pr(τ∗κ∗) such that

p1+2p2+...+(r+2)pr+2 ≤ l. We will use (2.15) in the proof of Theorem 2.2. The
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following Lemma gives the possibility to rewrite the derivatives of hn(ε1, ..., εn)

via derivatives in the additional variables using definition of P̃r.

Lemma 2.3. Suppose that the conditions (1.1), (1.2) and (1.3) hold. Then
m∑
j=2

1

j!

∂

∂εj
hn(ε, ε2, ..., εn)

∣∣
ε=0

(ηj − εj)

=

m∑
r=2

P̃r((η
∗ − ε∗)κ∗(D))hn+m(λ1, .., λk, ε, ε2, ..., εn)

∣∣
λ1=...=λm=0

+O (εm) .

Proof. The following simple calculations prove the statement of Lemma
m∑
r=1

P̃r((η
∗ − ε∗)κ∗(D))hm+n(0, ..., 0︸ ︷︷ ︸

m

, ε, ε2, ..., εn)

(2.13)
=

m∑
j=1

∑
l+r=j
r≥1

P̃r((η
∗ − ε∗)κ∗(D))P̃r(ε

∗κ∗(D))

× hm+n(0, ..., 0︸ ︷︷ ︸
m+ 1

, ε2, ..., εn) +O (εm) .

(2.14)
=

m∑
j=1

(P̃r(η
∗κ∗(D))− P̃r(ε∗κ∗(D))hm+k(0, ..., 0︸ ︷︷ ︸

m+ 1

, ε2, ..., εn) +O (εm) .

(2.13)
=

m∑
j=2

1

j!

∂

∂εj
hn(ε, ε2, ..., εn)

∣∣
ε=0

(ηj − εj) +O (εm) .

�

Proof of Theorem 2.2. We prove this theorem by the induction on the length
of the expansion. We consider the difference

hn(ε1, ..., εn)− hnk
(
ε1√
k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)
and similarly to the idea of the previous Theorem 2.1 divide it into the sum
of n terms, each time changing εj by (k−1/2εj , ..., k

−1/2εj). We start from the
case j = 1 and denote hk(δ1, ..., δk) := hn+k−1(δ1, ..., δk, ε2, ..., εn). Set

δk := (δ1, ..., δk) :=

(
ε1√
k
, ...,

ε1√
k

)
δ0k := (δ01 , ..., δ

0
k) := (ε1, 0, ..., 0).

Expanding by Taylor’s formula we get

hk(δk)− hk(δ0k) =
∑

0<|α|<s

α!−1Dαhk(δ
0
k)((δk − δ0k)α +R1,s,

where R1,s is the remainder term and |R1,s| ≤ cs · B · |ε1|s. To simplify our
notations we introduce the following agreement. We shall denote by Rl, l ≥ 1 a
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remainder term which has the order O(|ε|l) and omit the explicit dependence
on B. By R1,l, l ≥ 1 we shall denote a remainder term which has the order

O(|ε1|l).

In order to use the condition (1.2) we expand each derivative Dαhk(δ
0
k), where

α = (αj1 , ..., αjp), 1 ≤ j1 ≤ ... ≤ jp ≤ k, around δjr = 0, r = 1, ..., p. This yields

Dαhk(δ
0
k) =

∑
0<|α|+|β|<s

β!−1Dα+βhk(δ
0
k)(δ

0
k)
β +R1,s,(2.16)

Using the binom formula one may see that∑
j+k=r,j≥1

1

j! · k!
(ε− η)jηk =

1

r!
(εr − ηr),

and applying it to (2.16) we get

hk(δk)− hk(δ0k) =
∑

0<|γ|<s

γ!−1Dγhk(0, ..., 0)
k∏
i=1

[δγii − (δ0i )
γi ] +R1,s.

To use an induction assumption which will be formulated later we have to
return to the function hk(δk) taking derivatives in the additional variables at
zero. Applying Lemma 2.3 we get

hk(δk)− hk(δ0k)(2.17)

=
∑

P̃r1(∆∗j1κ∗) · · · P̃rm(∆∗jmκ∗)hk+s(δk, 0, ..., 0) +R1,s,

here the sum extends over all combination of r1, ..., rm ≥ 2,m = 1, 2, ..., such
that r1 + ...+ rm < s and all ordered m - tuples of positive induces 1 ≤ jr ≤ m
without repetition. Assume that is has been already proved for l = 3, ..., s− 1
that

Dαh(ε1, ..., εn) =

l−3∑
j=0

Pj(ε
∗κ∗)h∞ +R1,l.(2.18)

For example, the case l = 3 follows from Theorem 2.1. Applying the induction
assumption (2.18) to (2.17) we get

hk(δk)− hk(δ0k) =
∑

P̃r1(∆∗j1κ∗) · · · P̃rk(∆∗jkκ∗)Pr0(ε∗κ∗)h∞ +R1,s,

where the sum extends over all induces r1, ..., rm ≥ 1, r0 ≥ 0, such that r0 +
r1 + ...+ rm ≤ s. We will rewrite this in the following way

hk(δk)− hk(δ0k)

=
s−4∑
r0=0

Pr0(ε∗κ∗)
∑
j

s−r0∏
l=1

 s∑
vl=1

P̃vl(∆
∗
jl
κ∗)


s−r0

h∞ +R1,s.

The last may be rewritten as

s−4∑
r0=0

Pr0(ε∗κ∗)

exp

 ∞∑
p=2

 k∑
j=1

∆p
j

 p!−1κp

− 1


s−r0

h∞ +R1,s(2.19)
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It is easy to see that

k∑
j=1

∆2
j = ε21

[(
1

k
− 1

)
+
k − 1

k

]
= 0

and

(2.20)
k∑
j=1

∆p
j = εp1

[(
1

kp/2
− 1

)
+
k − 1

kp/2

]
= −εp1 +O

(
|ε1|p

kp/2

)
, p > 2.

Using (2.15) we get

Pr0(ε∗κ∗)

exp

 ∞∑
p=2

 k∑
j=1

∆p
j

 p!−1κp

− 1


s−r0

h∞

= Pr0(ε∗κ∗)

s−r0−1∑
i=3

P̃i

 k∑
j=1

∆∗j

κ∗

h∞

= Pr0(ε∗κ∗)
∞∑
i=1

Pi
 k∑

j=1

∆∗j

κ∗


s−r0−1

h∞(2.21)

and

Pr0(ε∗κ∗)Pr

 k∑
j=1

∆∗jκ∗

h∞

= Pr0(ε∗κ∗)

Pr
 k∑
j=1

∆∗jκ∗


s−r0−1

h∞ +R1,s(2.22)

By (2.21)–(2.22) we may rewrite (2.19) in the following way

hk(δk)− hk(δ0k) =

s−4∑
r0=0

Pr0(ε∗κ∗)

s−3−r0∑
r=1

Pr

 k∑
j=1

∆∗jκ∗

h∞ +R1,s.

Since ∑
r+q=k

Pr(τ∗κ∗)Pq(τ
′
∗κ∗) = Pk((τ∗ + τ ′∗)κ∗), q, r, k ≥ 0.

we will have

hk(δk)− hk(δ0k)

=

s−3∑
r=1

[Pr((ε
∗ − ε∗1)κ∗)− Pr(ε∗κ∗)]h∞(λ1, ..., λs)

∣∣
λ1=...=λs=0

+R1,s,

where we have used (2.20).

Now we may change εj by (k−1/2εj , ..., k
−1/2εj) for j ≥ 2. It is easy to see

that if one replace the function h(ε1, ..., εn) by hk(δk) than (2.18) will be true
replacing ε by ε[2:n], where ε[2:n] := (ε2, ..., εn). But the function h∞ will be the
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same since it depends only on the |ε|2 and |δk|2 + |ε[2:n]|2 = |ε|2. The same is
true for all j > 2. Repeating this procedure n− 1 times we will arrive at

hnk

(
ε1√
k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)
− hk(ε1, ..., εn)

=

n∑
j=1

s−3∑
r=1

[
Pr((ε

∗
[j:n] − ε

∗
j )κ∗)− Pr(ε∗[j:n]κ∗)

]
h∞(λ1, ..., λs)

∣∣
λ1=...=λs=0

+Rs,

where ε[j:n] := (εj , ..., εn).

To finish the proof we need to show that for fixed r we get
n∑
j=1

[
Pr((ε

∗
[j:n] − ε

∗
j )κ∗)− Pr(ε∗[j:n]κ∗)

]
= −Pr(ε∗κ∗)(2.23)

Validity of (2.23) follows from the following simple observation. Let m ≥ 1
be a fixed integer and (j1, ..., jm) be a vector of positive numbers such that
j1 + ...+ jm = r. Then

n∑
i=1

(εj1+2
[i:n] − ε

j1+2
i ) · · · (ε[i:n]jm+2 − εjm+2

i )−
n∑
i=1

εj1+2
[i:n] · · · ε[i:n]

jm+2

= −εj1+2 · · · εjm+2.

The proof of it is trivial, it is enough to see that for all i ≥ 1

(εj1+2
[i:n] − ε

j1+2
i ) · · · (ε[i:n]jm+2 − εjm+2

i ) = ε[i+1:n]
j1+2 · · · ε[i+1:n]

jm+2.

Applying (2.23) we arrive at

hn(ε1, ..., εn)− hnk
(
ε1√
k
, ...,

ε1√
k
, ...,

εn√
k
, ...,

εn√
k

)
=

s−3∑
r=1

Pr(ε
∗κ∗)h∞(λ1, ..., λs)

∣∣
λ1=...=λs=0

+Rs.

Now we may repeat the last two steps in the proof of the previous Theorem 2.1
and taking the limit with respect to k →∞ we get

hn(ε1, ..., εn)− h∞ =
s−3∑
r=1

Pr(ε
∗κ∗)h∞(λ1, ..., λs)

∣∣
λ1=...=λs=0

+Rs.

This proves (2.18) for l = s and α = 0. Hence, the induction is completed and
the Theorem is proved. �

3. Application of Theorem 2.2

In this section we illustrate on different examples how one may apply Theo-
rem 2.2 to derive an asymptotic expansion of different functions in probability
theory.
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3.1. Expansion in the Central Limit Theorem. As the first example let
us consider the sequence of independent random variables X,Xj , j ∈ N, tak-
ing values in R with a common distribution function F . Suppose the EX =
0,EX2 = 1. Consider the sum Sε = ε1X1 + ...+ εnXn. As hn we may take the
characteristic function of Sε, i.e.,

hn(ε1, ..., εn) = E eit(ε1X1+...+εnXn).

From Theorem (2.1) we know that h∞(|ε|2) exists provided that the condi-
tion (2.2) holds. In our setting this condition means that E |X|3 < ∞ . It is
well known that

h∞(|ε|2) = E eitG,
where G ∼ N(0, |ε|2). The speed of convergence is given by |ε|33. In what follows

we shall assume that |ε|2 = 1. If ε is well spread, for example, εj = n−1/2 for
all 1 ≤ j ≤ n then

(3.1) |hn(ε1, ..., εn)− h∞(|ε|2)| ≤ C ·
E|X|3

n1/2
.

This doesn’t hold for all ε on the sphere. Consider a simple counter example.
LetX ∼ Uniform([−

√
3,
√

3]) and ε = e1. Then Sε = X1 ∼ Uniform([−
√

3,
√

3]),
which is not Gaussian as n→∞.

It is interesting to mention here the following result of Klartag and Sodin [10]
who showed that with high probability the right hand side of (3.1) has the order
O(1/n) for the uniform distribution σn−1 on Sn−1.

Let us construct an asymptotic expansion applying Theorem 2.2. We have

h∞(λ1, ..., λs) = E eit(λ1X1+...+λsXs+G).

We may take derivatives with respect to λ1, ..., λs at zero and get

∂3

∂λ31
h∞(λ1)

∣∣∣∣
λ1=0

= (it)3e−t
2/2β3,

∂4

∂λ41
h∞(λ1)

∣∣∣∣
λ1=0

= (it)4e−t
2/2β4,

∂4

∂λ21∂λ
2
2

h∞(λ1, λ2)

∣∣∣∣
λ1=0,λ2=0

= (it)4e−t
2/2β22 ,

∂6

∂λ31∂λ
3
2

h∞(λ1, λ2)

∣∣∣∣
λ1=0,λ2=0

= (it)6e−t
2/2β23 ,

where EX2 = β2 = 1,EX3 = β3 and EX4 = β4. Substituting these equations
to (2.11) we get

hn(ε1, ..., εn) = E eitG +
ε3

6
(it)3e−t

2/2β3

+
ε4

24
[β4 − 3](it)4e−t

2/2 +
(β3ε

3)2

72
(it)6e−t

2/2 +R5.
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This expansion coincides with the well known Edgeworth expansion for sums
of random variables, see Petrov [12][Chapter 6, Paragraph 1].

Let us concentrate now on the so-called short asymptotic expansion

hn(ε1, ..., εn) = E eitG +
ε3

6
(it)3e−t

2/2β3 +R4,(3.2)

where

R4 ≤ B · |t|4 ·
n∑
k=1

ε4k.

Suppose that the following two conditions from [10] hold:∣∣∣∣ n∑
k=1

ε3k

∣∣∣∣ ≤ C

n
and

n∑
k=1

ε4k ≤
C

n
,(3.3)

where C is some constant independent of n. It follows from [10, Lemma 4.1] that
these bound hold with high probability. Then it follows from (3.2) and (3.3)
that

|hn(ε1, ..., εn)− E eitG| = O
(

1

n

)
Since conditions (3.3) hold with high probability with respect to the uniform
distribution σn−1 on Sn−1 the previous estimate is valid for most choices of
ε1, ..., εn. This property may be generalized for arbitrary function hn(ε1, ..., εn)
which satisfies the conditions of Theorem 2.2.

It also possible to apply our result for asymptotic expansion in the central
limit theorem for quadratic forms in sums of random elements with values in a
Hilbert space including infinite dimensional case, see, e.g. [2], [7], [15], [14], [13]
and [9].

3.2. Expansion in Free Central Limit theorem. It has been shown in the
recent paper [8] that one may apply the results of Theorem 2.2 in the setting
of Free Probability theory.

Denote byM the family of all Borel probability measures defined on the real line
R. Let X1, X2, . . . be free self-adjoint identically distributed random variables
with distribution µ ∈ M. We always assume that µ has zero mean and unit
variance. Let µn be the distribution of the normalized sum Sn := 1√

n

∑n
j=1Xj .

In free probability a sequence of measures µn converges to the semicircle law
ω. Moreover, µn is absolutely continuous with respect to the Lebesgue measure
for sufficiently large n. We denote by pµn the density of µn. Define the Cauchy
transform of a measure µ:

Gµ(z) =

∫
R

µ(dx)

z − x
, z ∈ C+,

where C+ denotes the upper half plane.
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In [3] Chistyakov and Götze obtained a formal power expansion for the Cauchy
transform of µn and the Edgeworth type expansions for µn and pµn . In [8] the
general scheme from [5] was applied to derive a similar result.

3.3. Expansion of quadratic von Mises Statistics. Let X,X,X1, ..., Xn

be independent identically distributed random elements taking values in an
arbitrary measurable space (X ,B). Assume that g : X → R and h : X ×
X → R be real-valued measurable functions. We additionally assume that h is
symmetric. We consider the quadratic functional

wn(ε1, ..., εn) =
n∑
k=1

εjg(Xj) +
n∑

j,k=1

εjεkh(Xj , Xk),

assuming that

E g(X) = 0, E(h(X,X)|X) = 0.

We derive an asymptotic expansion of hn(ε1, ..., εn) := E exp(itwn(ε1, ..., εn)).

Consider the measurable space (X ,B, µ) with measure µ := L(X). Let L2 :=
L2(X ,B, µ) denote the real Hilbert space of square integrable real functions.
The Hilbert-Schmidt operator Q : L2 → L2 is defined via

Qf(x) =

∫
X
h(x, y)f(y)µ(dy) = Eh(x,X)f(X), f ∈ L2.

Let {ej , j ≥ 1 denote an orthonormal complete system of eigenfunctions of Q
ordered by decreasing absolute values of the corresponding eigenvalues q1, q2, ...,
that is, |q1| ≥ |q2| ≥ .... Then

Eh2(X,X) =
∞∑
j=1

q2j <∞, h(x, y) =
∞∑
j=1

qjej(x)ej(y)

If the closed span 〈{ej , j ≥ 1}〉 ⊂ L2 is a proper subset, it might be necessary
to choose functions e−1, e0 such that {ej , j = −1, 0, 1, ...} is an orthonormal
system and

g(x) =
∞∑
k=0

gkek(x), h(x, x) =
∞∑

k=−1
hkek(x).

It is easy to see that E ej(X) = 0 for all j. Therefore {ej(X), j = −1, 0, 1, ...}
is an orthonormal system of mean zero random variables.

We derive an expression for the the derivatives of h∞(λ1, ..., λr). Since for

every fixed k the sum n−1/2(ek(X1) + ... + ek(Xn)) weakly converges to the

standard normal random variable we get that wn+r(λ1, ..., λr, n
−1/2, ..., n−1/2)
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weakly converges to the random variable

w∞(λ1, ..., λr) := wr(λ1, ..., λr) +
∞∑
k=0

gkYk +
∞∑
k=1

q2k(Y
2
k − 1)

+ Eh(X,X) + 2
∞∑
k=1

qk

(
r∑
l=1

λlek(Xl)

)
Yk,

where Yk, k ≥ 0 are independent standard normal random variables. For every
fixed T by complex integration we get

E exp
[
itqk(Y

2
k − 1) + 2itTYk

]
=

1√
1− 2itqk

exp(−itqk) exp

[
− 2t2T 2

√
1− 2itqk

]
.

This yields that

h∞(λ1, ..., λr) = ϕ(t)E exp[itwr(λ1, ..., λr)(3.4)

+ (it)2
∞∑
k=1

qkTk(λ)(2qkTk(λ) + gk)(1− 2itqk)
−1],

where Tk(λ) =
∑r

l=1 λlek(Xl) and

ϕ(t) =

[ ∞∏
k=1

1√
1− 2itqk

exp(−itqk)

]

· exp

[
itEh(X1, X1)− t2

∞∑
k=0

g2k(1− 2itqk)
−1/2

]
.

Let us introduce the following functions of X and X:

ht(X,X) := h(X,X) + 2it
∞∑
k=1

q2kek(X)ek(X)(1− 2itqk)
−1,

gt(X) := g(X) + itEht(X,X)g(X)|X).

Applying these notations we may rewrite (3.4) in the following way

h∞(λ1, ..., λr) = ϕ(t)E exp

it n∑
j,k=1

ht(Xj , Xk)λjλk + it

r∑
j=1

λjgt(Xj)

 .
Taking the derivatives of h∞ with respect with λ1, ..., λr at zero we get

hn(ε1, ..., εn) = ϕ(t)
s−3∑
r=0

ar(t, h, g) +Rs,

where

ar(t, h, g) :=

Pr(ε
∗κ∗)E exp

it n∑
j,k=1

ht(Xj , Xk)λjλk + it
r∑
j=1

λjgt(Xj)

 ∣∣∣∣
λ1=...=λr=0

.
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One may also consider the higher order U statistics by similar arguments. See,
for example, the result of [6] and [1].

3.4. Expansion for weighted one sided Kolmogorov-Smirnov statistic.
Let X1, ...Xn be an independent identically distributed random variables with
uniform distribution in [0, 1]. Consider the following statistic D+(ε1, ..., εn, t) =∑n

j=1 εj(I(Xj ≤ t) − t). For example, if εj = n−1/2, j = 1, ..., n then we have

D+(t) = n1/2(Fn(t)− t), where Fn(t) is a classical empirical distribution func-
tion of X1, ..., Xn. We are interested in the asymptotic expansion of

P( sup
0≤t≤1

D+(ε1, ..., εn, t) > a), a > 0.

It is well known that h∞(0) = exp[−2a2] and

h∞(λ) =

∫ 1

0
P(x(t) + λ(I(s < t)− t) > a, 0 ≤ t ≤ 1) ds =∫ 1

0
E fa(s, x(s), λ)fa(1− s, x(s),−λ) ds,

where fa(s, x, λ) = P(x(t) > a + λt, 0 ≤ t ≤ s|x(s) = x) = exp(−2a(a + λs −
x)/s) and x(t), 0 ≤ t ≤ 1 is a Brownian bridge. See [5] for details. Then it
follows from Theorem 2.2 that

P( sup
0≤t≤1

D+(ε1, ..., εn, t) > a) =

[
1 +

1

6
ε3
∂

∂a
+O(|ε|44)

]
exp(−2a2).

Such expansions for equal weights were derived, for example, in [11], [4].
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