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Abstract

■ Humans can adapt their behavior by learning from the con-
sequences of their own actions or by observing others. Gradual
active learning of action–outcome contingencies is accompanied
by a shift from feedback- to response-based performance moni-
toring. This shift is reflected by complementary learning-related
changes of two ACC-driven ERP components, the feedback-
related negativity (FRN) and the error-related negativity (ERN),
which have both been suggested to signal events “worse than
expected,” that is, a negative prediction error. Although recent
research has identified comparable components for observed
behavior and outcomes (observational ERN and FRN), it is as
yet unknown, whether these components are similarly modu-
lated by prediction errors and thus also reflect behavioral adap-

tation. In this study, two groups of 15 participants learned
action–outcome contingencies either actively or by observation.
In active learners, FRN amplitude for negative feedback decreased
and ERN amplitude in response to erroneous actions increased
with learning, whereas observational ERN and FRN in observational
learners did not exhibit learning-related changes. Learning per-
formance, assessed in test trials without feedback, was comparable
between groups, as was the ERN following actively performed
errors during test trials. In summary, the results show that
action–outcome associations can be learned similarly well actively
and by observation. The mechanisms involved appear to differ,
with the FRN in active learning reflecting the integration of infor-
mation about own actions and the accompanying outcomes. ■

INTRODUCTION

Successful adaptation to the environment requires the
continuous monitoring of behavior. The dopamine (DA)
system plays a key role in evaluating the consequences
of actions. DA neurons code a reward prediction error
with activation increases signaling better-than-expected
events and firing decreases indicating worse-than-expected
behavioral outcomes (Zaghloul et al., 2009; Schultz &
Dickinson, 2000). DA signals are projected to the striatum
and themedial pFC (Haber & Fudge, 1997; Berger, Gaspar,
& Verney, 1991). In humans, the important role of the
striatum and ACC in the processing of performance feed-
back have been demonstrated in fMRI studies showing
that activity in both structures is modulated by feedback
valence and/or expectancy not only during feedback
processing but also in the period of feedback expectation
(Rolls, McCabe, & Redoute, 2008; Knutson & Cooper,
2005; OʼDoherty et al., 2004; Delgado, Locke, Stenger, &
Fiez, 2003; Breiter, Aharon, Kahneman, Dale, & Shizgal,
2001). ERP research has identified a feedback-locked com-
ponent, the “feedback-related negativity” (FRN; Miltner,
Braun, & Coles, 1997), which emerges between 200 and
300 msec after feedback presentation, is generated in
ACC (Gehring & Willoughby, 2002), and has been sug-

gested to indirectly reflect DA neuron activity in response
to unfavorable events and thus a negative prediction error
(Holroyd & Coles, 2002). In fact, many recent studies
have found more pronounced FRN amplitudes the more
a negative event deviated from what was expected, partic-
ularly in situations in which action–outcome contingencies
could be learned (Holroyd, Krigolson, Baker, Lee, &
Gibson, 2009; Bellebaum & Daum, 2008; Hajcak, Moser,
Holroyd, & Simons, 2007). In their influential reinforce-
ment learning theory, Holroyd and Coles (2002) suggested
a close functional link between the FRN and the response-
locked error negativity (Ne; Falkenstein, Hohnsbein,
Hoormann, & Blanke, 1991) or error-related negativity
(ERN; Gehring, Goss, Coles, Meyer, & Donchin, 1993),
which is seen for error compared with correct responses
within 100 msec after the response, also with a source
in ACC (Dehaene, Posner, & Tucker, 1994). They con-
sider these potentials as expressions of the same neural
system, as both code events that are worse than expected
and show complementary learning-related changes in
the acquisition of stimulus–response–outcome associa-
tions. Initially, when contingencies are unknown, per-
formance monitoring is feedback-guided and a strong
FRN is observed for negative feedback. In later stages of
learning, behavior can be evaluated based on the re-
sponse alone and an ERN is elicited by errors whereas
the FRN amplitude for negative feedback decreases
(Eppinger, Kray, Mock, & Mecklinger, 2008; Pietschmann,
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Simon, Endrass, & Kathmann, 2008; Holroyd & Coles,
2002).

Behavioral adaptation may also follow the observation
of behavior and outcomes in others (Canessa, Motterlini,
Alemanno, Perani, & Cappa, 2011; Kobza, Thoma, Daum,
& Bellebaum, 2011; Bellebaum, Kobza, Thiele, & Daum,
2010). Via observational learning, the same stimulus–
action–outcome associations can be learned as with
active learning, but the observed outcome is not given to
the observer and does not refer to his or her own actions.
Studying differences between active and observational
learning is of theoretical interest, because it can provide
insights into the mechanisms involved in linking own
actions and the accompanying outcomes.

On the one hand, many studies suggest that the moni-
toring of oneʼs own and otherʼs behavior is mediated by
similar brain structures. For example, the ventral striatum
codes outcome prediction errors for active and obser-
vational learning (Burke, Tobler, Baddeley, & Schultz,
2010). Single neurons in the monkey medial frontal cortex
respond to own and observed errors as well as to negative
feedback for own or observed behavior (Yoshida, Saito,
Iriki, & Isoda, 2012; Matsumoto, Matsumoto, Abe, &
Tanaka, 2007). Both ERN- (De Bruijn & von Rhein, 2012;
van Schie, Mars, Coles, & Bekkering, 2004) and FRN-like
components (Koban, Pourtois, Bediou, & Vuilleumier,
2012; Bellebaum et al., 2010; Yu & Zhou, 2006) were
described for the observation of othersʼ errors or error
feedback. These components are referred to as observa-
tional ERN and FRN (oERN and oFRN), respectively, and
are, at least partially, also generated in ACC (Koban et al.,
2012; van Schie et al., 2004). On the other hand, a closer
look at these findings also reveals critical differences to
the monitoring of own behavior. Burke et al. (2010) found
that correlations between ventral striatal activity and out-
come prediction errors were reversed in observational
learning. In contrast to active feedback learning, strongest
striatal activations were seen for worse-than-predicted
outcomes in observational learning. Single neurons in
the monkey medial frontal cortex coding for own and
observed errors are anatomically segregated (Yoshida
et al., 2012). FRN amplitudes for observed outcomes are
typically smaller than for active experience (Bellebaum
et al., 2010; Yu & Zhou, 2006), mediated by social con-
text (Koban et al., 2012). This has led to the question
whether the oFRN is mediated by expectancy at all, as
has been shown for the FRN (e.g., Ferdinand, Mecklinger,
Kray, & Gehring, 2012; Bellebaum & Daum, 2008). In
a purely observational learning study, Kobza and col-
leagues (2011) showed that the oFRN was modulated by
outcome probability. A larger negative feedback FRN
compared with positive feedback was only seen for a very
low outcome probability. According to the authors, this
finding suggested reduced negative prediction error cod-
ing in observational learning. The results also corroborate
other recent findings by our group and others showing
reduced striatal and DA system involvement in outcome

processing in observational learning (Bellebaum, Jokisch,
Gizewski, Forsting, & Daum, 2012; Kobza et al., 2012)
and a prominent role of DA in value-based action selection
(Guitart-Masip et al., 2012; Shiner et al., 2012; Smittenaar
et al., 2012).
As outlined above, FRN prediction error coding in

active learning is also reflected in amplitude changes
during a learning task. FRN amplitude typically becomes
smaller once action outcome contingencies have been
learned and performance can be judged based on the re-
sponse alone (Eppinger et al., 2008; Pietschmann et al.,
2008; Holroyd & Coles, 2002). In this study, we hypothe-
sized that—because of the reduced sensitivity to negative
deviations from expectations—the oFRN in observa-
tional learners, assessed as the amplitude difference
between negative and positive feedback, would show
less evidence of dynamic amplitude changes throughout
the learning process compared with the FRN in active
learners. More specifically, only the FRN amplitude in ac-
tive learners and not the oFRN in observational learners
was expected to reflect the learning-induced prediction
error reduction for negative feedback after erroneous
responses. For the analysis of the FRN/oFRN, we thus ex-
pected to see an interaction between the factors Group
(active vs. observational learners) and Learning (before
and after participants had gained insight into stimulus–
response–reward contingencies), which was further
hypothesized to interact with feedback contingency,
because amplitude changes were only expected for con-
tingent feedback in active learners. Similarly, we hypothe-
sized that the development of the ERN and oERN would
differ during the learning process. As in previous studies
(e.g., Eppinger et al., 2008), the ERN was expected to
complement the development of the FRN in the sense
that it increased for errors after learning for the con-
tingent feedback condition. As a consequence of the
reduced amplitude changes expected for the oFRN with
learning, the oERN was hypothesized to also show no or
only small changes with learning.
Most studies on observational learning have shown

that participants can learn similarly well from own and
observed responses and the accompanying outcomes
(Kobza et al., 2011, 2012; Bellebaum et al., 2010). Thus,
we did not expect differences in outcome-based learning
and, consequently, the strength of the resulting stimulus–
action contingencies between active and observational
learning. The ERN following performance errors has a
larger amplitude for more contingent action–outcome
associations (Eppinger et al., 2008; Holroyd & Coles,
2002) and has therefore been considered as a marker
for the internal representation of an incorrect response
(Eppinger et al., 2008). To compare the strength of this
representation in active and observational learners, we
had participants of both groups engage in test trials in
which they responded actively without receiving feed-
back. The ERN in response to own errors in these test
trials was hypothesized to be similarly pronounced in
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active and observational learners. In addition to the oFRN
and oERN, we also analyzed the feedback-locked P300,
which has been linked to expectancy in the context of
feedback processing (Wu & Zhou, 2009; Hajcak et al.,
2007), and the response-locked Pe (Falkenstein et al.,
1991), an indicator of error awareness (Endrass, Reuter, &
Kathmann, 2007; OʼConnell et al., 2007; Nieuwenhuis,
Ridderinkhof, Blom, Band, & Kok, 2001).

METHODS

Participants

Two groups of subjects participated in the experiment,
one learning actively and one by observation. The active
learning group consisted of 20 participants (eight women)
with a mean age ofM=24.2 years (SD=2.7 years). Twenty
participants (eight women,M= 25.3 years, SD= 2.5 years)
learned by observation. Exclusion criteria for study par-
ticipation were a history of neurological or psychiatric
disorders or drug abuse and regular medication affect-
ing the CNS. As the main aim of the study was to explore
learning-related changes in reward and error processing,
only participants who showed some evidence of learning
entered the analysis. Fifteen participants in the active (five
women, M = 23.5 years, SD = 2.3 years) and 15 partici-
pants in the observational learning group (five women,
M = 24.7 years, SD = 2.2 years) fulfilled the learning
criteria, reaching an accuracy level of at least 75%, and
entered analysis (see below for details). All procedures
carried out were in accordance with the declaration
of Helsinki. The study was approved by the ethics com-
mittee of the Faculty of Psychology at the Ruhr University
Bochum, Germany.

Learning Tasks

A variant of a previously described learning task (Eppinger
et al., 2008; Holroyd & Coles, 2002) was used and modified
to yield two comparable versions, one requiring learning
from feedback for own choices and one requiring learning
via observed outcomes given for the actions of another
person. In both versions, participants were asked to learn
stimulus–response–outcome associations to adjust their
own behavior.

In each trial of the active learning task, following a
fixation cross, an Asian symbol appeared as imperative
stimulus on the screen together with two red rectangles
representing the response buttons. Participants were asked
to press the left or right CTRL keys of a computer keyboard
as response buttons to receive monetary feedback for
their choice. As soon as they had pressed the left or right
button, the corresponding rectangle on the screen turned
green, indicating that a response had been made. The im-
perative stimulus remained on the screen for 500 msec;
maximum RT was 1000 msec (i.e., participants could
also respond after the stimulus had disappeared). After
another 500 msec, in which the screen was black, the
monetary feedback stimulus was shown for 500 msec
(see Figure 1 for the sequence and timing of events in
a single trial). “Correct” responses were rewarded with
20 cents, whereas “incorrect” choices were followed by a
monetary punishment (−10 cents). The FRN is sensitive
to both the utilitarian and performance aspect of feed-
back, depending on what information is emphasized in
the instruction (Nieuwenhuis, Yeung, Holroyd, Schurger,
& Cohen, 2004). In the instruction to our learning tasks,
we stressed that response accuracy would be indicated
by monetary feedback, so that both types of information

Figure 1. Sequence of
events on a particular trial
on the active learning task,
the observational learning
task, and test trials without
feedback, which were used
to assess learning in both
learning tasks.
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were in accordance with each other. Importantly, the
validity of feedback was varied in three different condi-
tions. For two of a total of six imperative stimuli (Stimuli
A and B, 100% validity condition), feedback was entirely
consistent with reward being associated with one of the
two buttons (left for Stimulus A and right for Stimulus B)
and punishment with the other in 100% of the trials. For
Stimuli C (left button correct) and D (right button cor-
rect), outcome feedback was consistent in only 80%, that
is, on 20% of the trials a “correct” response led to punish-
ment and an incorrect response to reward (80% validity
condition). Finally, monetary outcome feedback was ran-
dom for two further stimuli (E and F) with either button
press being associated with reward and punishment in
50% of trials, respectively (50% validity condition). The
fast sequence of stimuli urged participants to respond
quickly, so that erroneous responses could still occur after
participants had learned the contingencies. Each block
involved 60 trials, with trial types involving Stimuli A–F
being randomly distributed in each block.

The observational learning task involved the same stim-
uli and feedback validity conditions as the active learning
task. As in real-life observation conditions, the difference
was that participants did not choose to press a response
button themselves but observed the choices of another
person and that the outcomes referred to this other per-
son and not the observational learner. Participants were
instructed that they would see the response pattern of
another participant who had previously performed the
task actively. They were further told that the other person
was trying to earn money by responding via button press
to particular stimuli. The observerʼs task would be to try
to find out, which responses were rewarding and which
were not, because they would be asked to respond them-
selves in subsequent test trials. Each observer indeed
observed the recorded performance pattern and accom-
panying outcomes of one particular actively learning par-
ticipant. As in the active version, each trial started with a
fixation cross, followed by the presentation of an im-
perative stimulus together with two red rectangles (the
response buttons). After a delay equaling the RT of the
observed participant in that particular trial, a picture of a
hand was shown on the left or right side of the screen
indicating a left or right button press of the observed per-
son, respectively. At the same time, the corresponding
rectangle turned green. Then a black screen and the out-
come stimulus followed (see Figure 1). To ascertain that
observers paid attention to what they saw on the computer
screen, they were asked to indicate the response made
by the observed participant on the preceding trial on ran-
domly interspersed “attention trials,” which occurred on
average after every tenth trial. As outlined above, only
participants who showed evidence of learning stimulus–
response–outcome contingencies were included in the
analysis. Therefore, only learners among the actively learn-
ing participants were chosen as model for observational
learners. As five participants from the active condition

did not learn, five active learners served as model for two
observers each. For the 15 participants who succeeded in
learning by observation, 13 different active learners served
as models (i.e., two pairs of observational learners learned
from the responses and outcomes of same active learner,
respectively).
To assess whether observers actually learned, each

learning phase was followed by a test phase with test trials
requiring active responding. These trials involved the
same stimuli and response buttons as the trials in the
learning phase. They did, however, not involve feedback
to prevent learning from active choices. The active learning
task entailed identical test phases to provide a comparable
measure of learning in active and observational learners.
In the test trials, as in the active learnerʼs learning trials,
each correct response was rewarded with 20 cents and
each error was penalized by subtracting 10 cents for both
active and observational learners. Participants were in-
structed to try to gain as much money as possible also in
the test phases and were told that they could keep the
money of the most successful block of trials (in active
learners, these entailed both the learning and test phases).
However, they did not receive feedback on their earnings
in the test trials. Timing of stimulus presentation and RTs
on test trials were identical to those on active trials (see
Figure 1).

Procedure

When participants came into the laboratory, they first
filled out an informed consent form. Then a short demo-
graphic questionnaire was administered, which also asked
for a history of neurological or psychiatric diseases and for
regular medication affecting the CNS. After the electrodes
had been attached and impedances had been checked,
participants were instructed for the (active or observa-
tional) learning task, followed by a short practice ses-
sion of eight (active or observational) learning trials and
eight test trials. Each learning phase consisted of 60 trials,
20 per validity condition (10 per stimulus). Also the test
phases consisted of 60 trials (10 per stimulus) each. Each
learning phase was followed by one test phase. In total,
both tasks comprised 18 learning and 18 test phases, that
is, 1080 learning and 1080 test trials. In contrast to the
procedure in previous studies (e.g., Eppinger et al., 2008),
the same six stimuli were used throughout the whole task
in all participants. Pilot testing had shown that the pre-
learning phase was long enough to have enough trials in
all validity conditions. At the same time, a long postlearning
period was necessary to have participants commit enough
errors after learning.

EEG Recording

EEG was recorded from 64 scalp sites (international 10–
10 system), and EOG was recorded from electrodes at
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the outer canthi of both eyes and above and below the
left eye with silver/silver chloride electrodes using two
standard Brainamp amplifiers and the Vision Recorder
software (Brainproducts, Munich, Germany). Recordings
were performed with a sampling rate of 500 Hz while
participants engaged in either the active or observational
learning task. Electrodes were attached to an elastic cap
(Easycap). The EEG signal was referenced to linked
mastoids during recording. Impedances were kept below
10 kΩ.

Analysis of Behavioral and ERP Data

To compare learning performance between active and
observational learners, response accuracy in the 18 test
phases was analyzed. For the 100% validity condition, cor-
rect responses were always rewarded. In the 80% validity
condition, those responses usually accompanied by reward
were scored as correct, irrespective of the actual outcome
in a particular trial. Finally, in the 50% validity condition,
the left and right buttons were scored as “correct” for
Stimuli E and F, respectively, although there were no
stimulus–response–outcome contingencies for these
trials. For the active learning task, participantsʼ responses
in the 18 learning phases were also analyzed and qualita-
tively compared with performance in the test phases.
Response accuracy data obtained in the test phases

were also used to determine when each individual partic-
ipant gained insight into stimulus–response–outcome
associations. On this basis, the experiment was divided
into a pre- and a postlearning phase for each participant
and for each validity condition. As learning was possible
only in the 100% and 80% validity conditions, a learning
criterion was applied only for these conditions. Partici-
pants were considered to have learned the contingencies
for one of the two conditions, when they reached a re-
sponse accuracy level of 75% and managed to keep this
level until the end of the experiment. A further criterion
to be classified as “learner” was that participants did not
show a clear preference for one of the two stimuli of
the 50% validity condition. Although learning was not pos-
sible, the experiment was also divided into a pre- and
a postlearning phase in this condition to control for se-
quence effects on the ERPs. This was done on an indi-
vidual participant basis, taking the average block number
in which participants had reached the learning criterion
for the learnable conditions (100% and 80% validity) to
provide comparable pre- and postlearning phases for all
conditions. If, for example, one participant had reached
the learning criterion for the 100% and 80% validity con-
ditions in Blocks 3 and 5, respectively, the postlearning
phase was considered to start after Block 4 in the 50%
validity condition.
Preliminary analyses did not reveal significant differences

in response- or feedback-locked ERPs in the 100% and 80%
validity conditions. Therefore, ERPs from these conditions
were pooled in the final analysis, yielding a “contingent

feedback” condition, contrasting the “noncontingent
feedback” trials of the 50% validity condition.

EEG data were analyzed offline using the Brain Vision
Analyser software (Brainproducts, Munich, Germany)
and Matlab (Mathworks, Natick, MA). An independent
component analysis (ICA) was performed on the single-
subject raw data (Lee, Girolami, & Sejnowski, 1999). ICA
decomposes multichannel scalp EEG recordings into a
sum of temporally independent and spatially fixed com-
ponents. In each individual participant of this study, the
64 components (equaling the number of channels) were
screened to find one or two components with a sym-
metric frontally positive topography, which likely repre-
sented vertical eye movement and blink artifacts. After
removal of the component(s) from the raw data by
means of an ICA back transformation, the resulting EEG
curves were visually checked for a significant reduction of
blink artifacts. Back-transformed data were then filtered
with a 0.5-Hz high-pass and a 40-Hz low-pass filter.

First, feedback-locked ERPs were considered in both ac-
tive and observational learners. Segments from 200 msec
before up to 600 msec after feedback presentation were
created, separately for monetary reward and punishment
in the contingent and noncontingent feedback conditions
in the pre- and postlearning phases. Baseline correction
was performed relative to the average amplitude in the
200 msec before the feedback stimulus. Trials with artifacts
(i.e., with an amplitude difference of more than 150 μV
between the highest and lowest data point) were excluded.
Finally, the segments were averaged. Importantly, only
the valid trials of the 80% validity condition were con-
sidered for feedback-locked potentials in the contingent
feedback condition, that is, trials in which positive or
negative feedback followed a correct or incorrect re-
sponse, respectively. This was done, because only in valid
trials feedback was in accordance with the expectations
of the participants after learning and thus learning-related
reductions of FRN amplitude could only be expected for
these trials (see Eppinger et al., 2008). Similarly, for the
noncontingent feedback condition, only positive and nega-
tive feedback trials following “correct” and “incorrect”
choices, respectively, entered analysis (note that in this
condition participants could not learn and response but-
tons were arbitrarily considered as “correct” or “incorrect”
for a given stimulus, see above). As mentioned, data from
the 80% and 100% validity conditions were pooled. Two
active and three observational learners did, however, not
learn stimulus–response–outcome associations in either
the 100% or the 80% validity condition. Thus, the post-
learning phase in these participants only contained trials
of the one validity condition which was actually learned.

To analyze the temporal back-shift from feedback- to
response-based performance monitoring during the learn-
ing phases, the ERN in active and the oERN in observational
learners were analyzed separately, because the ERN and
oERN are qualitatively different components, time-locked
to an internal event the first and to an external event the
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second, and they differ in latency (see De Bruijn &
von Rhein, 2012; Koban, Pourtois, Vocat, & Vuilleumier,
2010; van Schie et al., 2004). In both groups, ERPs were
segmented separately for (observed) erroneous and cor-
rect responses in contingent and noncontingent feed-
back conditions in the pre- and postlearning phases from
200 msec before to 600 msec after the (observed) re-
sponse. For active learners, baseline correction was per-
formed relative to the time window from −200 to −100
before the response (see above), because ERN onset is
often seen before movement execution. The oERN could
not start before an action was observed, so the 200 msec
before the observed response were used as baseline.
Again, the average ERP for every condition in each group
was calculated after the removal of segments with artifacts
(see above).

Finally, ERPs time-locked to own responses in the test
phases were analyzed in active and observational learners.
As for the analyses described above, separate segments
were created for correct and error trials for the two con-
tingency conditions before and after learning. Segments
again comprised the period from 200 msec before to
600 msec after the response, the average signal in the first
100 msec of the segments (−200 to −100 msec relative
to the response) was considered as baseline. Following
artifact rejection (see above), the average response-locked
ERPs were created.

All analyses were carried out on difference waves
(punishment–reward or error–correct) at electrode site
FCz in a first step. For feedback-locked potentials, the
FRN was defined as the maximum negative peak ampli-
tude of the difference wave in the time window from 180
to 350 msec after feedback presentation. For the analyses
of ERPs time-locked to own responses (learning and test
trials in active learners, test trials in observational learners),
the ERN was scored as the maximum negative peak of
the difference wave from 50 msec before to 100 msec
after the response. As outlined above, the oERN is a quali-
tatively different component, time-locked to an external
event, and with a less pronounced peak than the ERN
(e.g., van Schie et al., 2004). In accordance with previous
studies (De Bruijn & von Rhein, 2012; Koban et al., 2010;
van Schie et al., 2004), the oERN was thus assessed with a
mean amplitude measure, applied to the difference wave
(observed error–observed correct response). We chose
the time window from 180 to 280 msec after the re-
sponse, because the largest difference between observed
errors and observed correct responses has been described
to occur around 250 msec after the observed response
(van Schie et al., 2004).

In a second step, data from the original ERPs were
analyzed to find out if modulations of the difference wave
amplitude were caused by modulations of positive or
negative feedback ERPs or by potentials following error
or correct trials, respectively. For feedback-locked ERPs,
the maximum negative peak amplitude between 180 and
350 msec after positive and negative feedback entered

analysis. In the case of ERPs time-locked to own re-
sponses, the negative peak amplitude between −50 and
100 msec relative to the response was analyzed. For
observed responses, the mean amplitude between 180
and 280 msec was taken, as for the difference wave (see
above). Finally, the P300 for feedback-locked ERPs and the
Pe for response-locked ERPs (only for active responses
of both groups in the test phase) were analyzed, also at
electrode FCz, where they were most pronounced. Here,
the peak amplitude between 300 and 500 msec after
the feedback and the mean amplitude between 200 and
600 msec were used for analysis, respectively.

Statistical Analysis

Behavioral data were analyzed with a repeated-measures
ANOVA including the factors Block (1–18) and Contingency
(contingent vs. noncontingent) and the between-subject
factor Group (active vs. observational learners). Both the
oFRN in learning trials and the ERN in test trials were
analyzed by means of a repeated-measures ANOVA with
the factors Learning (pre vs. post), Contingency, and
Group. For analysis of the original ERPs, the factor
Valence (positive vs. negative) or Accuracy (error vs. cor-
rect) was added. As outlined above, ERPs following active
and observed error responses during the learning phase
had to be analyzed separately. Thus, separate ANOVAswere
calculated for the ERN in active and the oERN in observa-
tional learners with the within-subject factors mentioned
above. For all analyses, significant interactions were
resolved by means of post hoc t tests (one-tailed).

RESULTS

Behavioral Data

Figure 2 shows the learning curves for the different valid-
ity conditions in the 15 active and observational learners
(nonlearners excluded). Data are derived from test trials
without feedback. In active learners, performance in
learning trials is also shown for comparison. On average,
both active and observational learners quickly gained
insight into stimulus–response–outcome contingencies
for the 100% and 80% validity conditions, whereas perfor-
mance remained on chance level for the noncontingent
feedback condition (50% validity). Accordingly, statistical
analysis revealed significant main effects of Block (linear
trend: F(1, 28) = 34.894, p < .001) and Contingency,
F(1, 28) = 124.963, p < .001, with performance accuracy
being higher for the 100% than for the 80%, t(29) = 3.531,
p < .01, and for the 80% relative to the 50% validity con-
dition, t(29) = 10.245, p < .001. Additionally, a signifi-
cant Block × Contingency interaction emerged (linear
trend: F(1, 28) = 19.028, p < .001). Significant perfor-
mance increases were seen for the 100% (linear trend:
F(1, 29) = 25.763, p < .001) and 80% validity conditions
(linear trend: F(1, 29) = 45.552, p < .001), but not for
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noncontingent feedback ( p= .098 for the linear trend). All
other effects including the main Group effect did not reach
or approach significance (all ps > .320).
To exclude that observers just imitated the choices of

active learners without paying attention to the outcomes,
we compared each observerʼs learning success with the
performance he or she observed. More specifically, the
number of blocks to reach the learning criterion in ac-
tive learnersʼ learning trials was correlated with the blocks,
in which observers reached the criterion. These correla-
tions did not reach or approach significance for the
100% and 80% validity conditions (r = −.187 for 100% and
r = .107 for 80%, both p > .500; Figure 3 shows exam-
ples of observersʼ learning curves together with the per-
formance they observed). This shows that the observers
did not just pay attention to observed choices and imi-

tated them but took the outcomes into account in the
adaptation of their own behavior.

ERP Data

Feedback-locked Potentials

In Figure 4, feedback-locked potentials for monetary reward
and punishment in the contingent and non-contingent
feedback conditions in the pre- and postlearning phase
are shown, separately for active and observational learners.
The mean numbers of trials entering analysis are given in
Table 1. Analyses are based on the punishment–reward
difference waves, which are also depicted (see Figure 8
for topographical maps of difference wave amplitudes in
two representative conditions). Because of interindividual
differences in FRN and oFRN latencies, a clear negative

Figure 3. Individual learning
curves of four observational
learners and the corresponding
observed performance. The first
example (upper row on the left)
is taken from the 100% validity
condition, the remaining three
from the 80% validity condition.

Figure 2. Learning curves in
active and observational
learners.
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difference wave peak is not visible in all conditions. To
illustrate the groupʼs peak amplitudes, difference waves
were synchronized according to each individual partici-
pantʼs peakʼs latency (Bellebaum, Kobza, Thiele, & Daum,
2011). Figure 5 shows the grand average of the synchro-
nized difference waves. Analysis revealed that FRN ampli-
tude was significantly larger before than after learning, F(1,
28) = 33.982, p < .001, for the noncontingent feedback
compared with the contingent feedback condition, F(1,
28) = 9.622, p < .01, and for active compared with obser-
vational learners, F(1, 28) = 4.500, p < .05. An interaction
between the factors Learning and Group, F(1, 28) =
5.840, p< .05, indicated that the amplitude reduction from
before to after learning was more pronounced in active,
t(14) = 6.561, p < .001, than observational learners,
t(14) = 2.194, p < .05. Crucially, a significant three-way

interaction between Group, Learning, and Contingency,
F(1, 28) = 5.098, p < .05, suggested between-group differ-
ences in the learning-based alteration of feedback pro-
cessing. A follow-up ANOVA only in active learners indeed
revealed an interaction between the factors Learning
and Contingency, F(1, 14) = 5.980, p < .05, with a signifi-
cantly larger FRN amplitude for noncontingent than con-
tingent feedback after, t(14) = 5.857, p < .001, but not
before learning ( p = .311). For observational learners, the
interaction was not significant ( p = .512).
To explore if and to what extent significant “FRN ef-

fects,” that is, larger amplitudes for negative than positive
feedback, were seen in the different experimental condi-
tions, peak amplitudes of the positive and negative feed-
back ERPs (see Methods section) entered an ANOVA with
the factors Learning, Contingency, and Group and the

Figure 4. Feedback-locked
ERPs from electrode site FCz
in active and observational
learnersʼ learning trials for
contingent and noncontingent
feedback conditions in the
pre- and postlearning phases.
Bars in the upper right-hand
corner of each graph show
group means and SEs of
the negative peaks in
each condition and for
the difference wave.
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additional factor Valence (positive vs. negative). In this
analysis, FRN amplitudes were generally more negative
in the negative feedback condition, F(1, 28) = 9.834,
p < .01. Significant interactions between Learning and
Valence, F(1, 28) = 12.707, p < .01, and between Learn-
ing, Valence, and Group, F(1, 28) = 6.506, p < .05, in-
dicated that the amplitude difference between negative
and positive feedback decreased from pre- to postlearning
and that this reduction was more pronounced in active
than observational learners. No general group difference
in negative peak amplitudes was found ( p = .150).
For the four-way interaction between all factors, which

corresponds to the three-way interaction in the difference
wave analysis, a trend toward significance was found ( p =
.082). The comparison of the values between reward and
punishment separately for each condition and in active
and observational learners yielded significantly more nega-
tive amplitudes for punishment in both the contingent,
t(14) = 2.934, p < .01, and noncontingent feedback con-

dition before learning in active learners, t(14) = 2.499,
p < .05. After learning, this effect was only seen for non-
contingent, t(14) = 2.086, p < .05, but not for contingent
feedback ( p = .216). In observational learners, the am-
plitude difference was significant for contingent feedback
both prelearning, t(14) = 2.895, p< .01, and postlearning,
t(14) = 2.010, p < .05, whereas no significant differences
were seen for noncontingent feedback ( p = .181 and
p = .298 for pre- and postlearning, respectively).

The P300 was also analyzed as a further indicator of
feedback processing. Figure 8 shows the topographies of
active and observational learnersʼ P300 peak amplitudes
for positive feedback before learning. Because of the fron-
tally pronounced topography, the P300 in this study can
be considered as P3a component (Squires, Squires, &
Hillyard, 1975). Analysis revealed larger amplitudes before
than after learning, F(1, 28) = 39.078, p < .001, for
noncontingent than contingent feedback, F(1, 28) =
22.526, p< .001, and in active than observational learners,

Figure 5. Grand average of
participantsʼ difference waves,
temporally synchronized
according to the individual FRN
or oFRN peak in the respective
condition.

Table 1. Mean Number of Trials Entering Analysis of Feedback-locked Potentials in the Two Groups and the Different Conditions
(SE in Brackets)

Group Condition Contingent Feedback Noncontingent Feedback

Active learners Before learning Punishment 59 (10) 34 (7)

Reward 78 (12) 31 (6)

After learning Punishment 68 (5) 81 (4)

Reward 392 (20) 73 (5)

Observational learners Before learning Punishment 47 (7) 37 (7)

Reward 104 (20) 31 (6)

After learning Punishment 85 (8) 83 (5)

Reward 391 (15) 71 (7)
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F(1, 28) = 7.732, p < .05. Moreover, a significant inter-
action between Group and Contingency, F(1, 28) = 5.949,
p < .05, indicated that there was a significant effect
of feedback contingency only in active learners, t(14) =
5.130, p< .001 ( p= .064 for observers). A significant inter-
action between Learning and Valence, F(1, 28) = 6.826,
p < .05, was further specified by a three-way interaction
involving the factor Group in addition, F(1, 28) = 4.525,
p < .05. This effect revealed that the amplitude reduction
from pre- to postlearning was comparably strong for posi-
tive and negative feedback in observational learning,

t(14) = 3.164, p < .01 and t(14) = 2.596, p < .05, re-
spectively, whereas the reduction was more pronounced
for positive, t(14) = 6.532, p < .001, than negative feed-
back, t(14) = 3.833, p < .01, in active learners.

Response-locked Potentials during the Learning Phase

Figure 6 shows ERPs following actively performed or ob-
served errors and correct responses and the corresponding
difference waves in active and observational learners,
respectively (see Table 2 for the mean numbers of trials

Figure 6. ERPs for actively
performed and observed errors
during learning trials in active
and observational learners,
respectively, from electrode
site FCz. Data are shown for
contingent and noncontingent
feedback conditions in the
pre- and postlearning phases.
Bars in the upper right-hand
corner of each graph show
group means and SEs of
the negative peaks in each
condition and for the
difference wave.
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entering analysis). As was explained in the Methods sec-
tion, the potentials for the two groups of participants had
to be analyzed separately. In active learners, main effects
of Learning, F(1, 14) = 5.964, p < .05, and Contingency,
F(1, 14) = 30.821, p < .001, were found, indicating larger
ERN amplitudes after than before learning and for the con-
tingent than the noncontingent feedback condition. As
for the FRN, an interaction between the factors emerged,
F(1, 14) = 8.245, p < .05. Complementing the FRN find-
ings in active learners, ERN amplitude was larger for the
contingent compared with the noncontingent feedback
condition after, t(14) = 6.006, p < .001, but not before
learning ( p= .210). As revealed by analysis of the negative
peak amplitudes in the original waveforms, for which a sig-
nificant interaction between Learning, Contingency and
the additional factor Accuracy (error vs. correct) emerged,
F(1, 14) = 9.716, p< .01, amplitudes for error and correct
trials did not differ before learning (both p > .125 for
contingent and noncontingent response–feedback asso-
ciations). After learning, amplitudes were enhanced for
error relative to correct trials only in the contingent feed-
back condition, t(14) = 7.439, p < .001 ( p = .101 for the
noncontingent feedback condition).
Analysis of oERN amplitudes only revealed generally lar-

ger amplitudes for the contingent feedback condition, F(1,
14) = 11.860, p < .01. Neither the main effect of Learning
nor the Learning by Contingency interaction reached sig-
nificance (both p > .220). Accordingly, analysis of the ori-
ginal waveformsʼ mean amplitudes yielded an interaction
between Contingency and Accuracy. Observed errors eli-
cited a less positive amplitude than observed correct re-
sponses for contingent response feedback associations,
t(14) = 2.673, p < .01, whereas there was no significant
difference for the noncontingent condition ( p = .055).

Response-locked Potentials during the Test Phase

For response-locked potentials during the test phases of
the experiment (see Figure 7, Table 3 lists the numbers
of trials entering analysis, Figure 8 shows topographical

maps of error–correct difference waves in two postlearn-
ing conditions), a significant main effect of Contingency,
F(1, 28) = 49.129, p < .001, and a Learning by Contin-
gency interaction were found, F(1, 28) = 66.953, p <
.001. Overall, ERN amplitudes were larger for the con-
tingent feedback condition. The resolution of the interac-
tion further revealed that ERN amplitude was significantly
larger for those stimuli associated with contingent than
noncontingent feedback (during the learning phase) only
after learning, t(29) = 11.619, p < .001 (for the difference
of ERN amplitudes before learning p = .470). All other
main effects or interactions did not reach significance
(all ps > .050).

As for the feedback-locked potentials, ANOVA on
the original ERPs aimed to identify whether modulations
of the difference wave amplitude were caused by error or
correct response ERPs. In accordance with the inter-
action between Learning and Contingency for differ-
ence wave amplitudes, a three-way interaction between
Learning, Contingency, and Accuracy (error vs. correct)
was found, F(1, 28) = 41.485, p < .001. Across groups,
negative peaks were larger for errors than for correct
responses for the contingent feedback condition both
before, t(29) = 4.054, p < .001, and after learning,
t(29) = 12.383, p < .001, with the effect being much
stronger after learning. For the noncontingent feedback
condition, negative response-locked peaks did not differ
in amplitude between erroneous and correct responses
(both p > .210). The only effect involving the factor
Group was an interaction between Group and Contin-
gency, F(1, 28) = 4.446, p < .05, which was caused by
generally more negative amplitudes for the noncontin-
gent than the contingent feedback condition in active,
t(14) = 2.478, p < .05, but not observational learners
( p = .151).

To examine a further neural correlate of error pro-
cessing, the Pe was analyzed (see Methods section). Main
effects of Learning, F(1, 28) = 9.848, p< .01, Contingency,
F(1, 28) = 4.964, p < .05, and Accuracy, F(1, 28) = 5.716,
p< .05, indicated generally larger Pe amplitudes for errors

Table 2. Mean Number of Trials Entering Analysis of ERPs Locked to Responses or Observed Responses during Learning Trials in
the Two Groups and the Different Conditions (SE in Brackets)

Group Condition Contingent Feedback Noncontingent Feedback

Active learners Before learning Errors 64 (10) 46 (7)

Correct 84 (12) 42 (6)

After learning Errors 81 (5) 130 (7)

Correct 432 (22) 117 (7)

Observational learners Before learning Errors 51 (7) 47 (7)

Correct 114 (21) 42 (6)

After learning Errors 92 (9) 129 (6)

Correct 410 (17) 115 (6)
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in the contingent feedback condition after learning. These
three factors also interacted, F(1, 28) = 7.625, p < .05:
A significant difference between error and correct trial Pe
amplitudes only emerged for the contingent feedback
condition after learning, t(29) = 5.000, p < .001 (all ps >
.080 for the other comparisons between error and correct
trials). The main effect of Group was not significant ( p =
.723), but an interaction between Contingency and Group
emerged, F(1, 28) = 8.959, p < .01. The resolution
revealed that there was a generally larger amplitude for
responses in the contingent than noncontingent feedback
condition in observers, t(29) = 3.405, p < .01, but not in
active learners ( p = 281).

DISCUSSION

In this study, we compared electrophysiological corre-
lates of performance monitoring and behavioral adapta-
tion in active and observational learning. Two groups of
participants acquired stimulus–response–outcome asso-
ciations, one learning actively by their own actions and
outcomes and one by observing actions and outcomes
of another person. In active learners, the ERP pattern
was characterized by learning-related increases in ERN
and decreases in FRN amplitudes following erroneous
choices and the accompanying negative feedback, re-
spectively, as had been reported previously (Eppinger

Figure 7. Response-locked
ERPs from electrode site FCz
in active and observational
learnersʼ test trials in the
pre- and postlearning phases.
Data are shown for stimuli
that were associated with
contingent and noncontingent
feedback during learning. Bars
in the upper right-hand corner
of each graph show group
means and SEs of the negative
peaks in each condition and
for the difference wave.
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et al., 2008; Pietschmann et al., 2008; Holroyd & Coles,
2002). When learning was not possible because of in-
consistent action–outcome relationships, FRN amplitude
remained high until the end of the experiment. Despite

comparable learning performance in observational learners,
the oFRN was generally reduced relative to the FRN in
active learners and, as the oERN, not modulated by learn-
ing. Errors in test trials without feedback did, however,
elicit strong ERN and Pe components of comparable
amplitude in active and observational learners.

A reduction of oFRN amplitude in observational com-
pared with active learning in terms of a reduced differ-
ence between ERPs for negative and positive feedback
has been reported by most previous studies examining
neural correlates of observational reward processing
(Koban et al., 2012; Bellebaum et al., 2010; Yu & Zhou,
2006). The performance monitoring differences found in
this study go, however, clearly beyond a mere reduction
of the oFRN. To the best of our knowledge, this study is
the first to compare the relationship between feedback-
and error processing and potential learning-related changes
in the relative contribution of these processes to perfor-
mance monitoring in active and observational learners. As
suggested by the reinforcement learning theory (Holroyd
& Coles, 2002), the FRN amplitude difference between
negative and positive feedback has been shown to reflect
a negative rewardprediction error in active learning (Hajcak
et al., 2007), especially when feedback can be used for
the optimization of response selection (Holroyd et al.,
2009; Bellebaum & Daum, 2008). Accordingly, the FRN in
active learners was absent in this study, with no signifi-
cant difference between amplitudes for negative and posi-
tive feedback, when the outcome did not provide useful
information about performance accuracy, that is, when
negative feedback was perfectly predicted and thus not
associated with a negative reward prediction error. After
learning, a pronounced ERN signaled performance errors
already at the time of responding. In observational learn-
ing, neither oFRN nor oERN amplitude changed as learn-
ing progressed. For the oFRN, this result suggests that it
does not code prediction errors in the same way as the
FRN. However, both oFRN and oERN showed effects of
Contingency, with generally more negative amplitudes for
negative events (performed errors or error feedback) in

Figure 8. Topographical maps of the feedback-locked FRN or oFRN
and P300 during learning trials and the ERN during test trials in active
and observational learners at peak latencies in representative conditions
(latencies are given to the left of each map). For the oFRN and P300,
the topographies associated with difference wave and positive feedback
potentials before learning in the 50% validity condition are shown,
respectively. For the ERN, the maps represent potentials after learning
for contingent feedback (error–correct difference wave).

Table 3. Mean Number of Trials Entering Analysis of ERPs Locked to Own Responses in Test Trials without Feedback in the Two
Groups and the Different Conditions (SE in Brackets)

Group Condition Contingent Feedback Noncontingent Feedback

Active learners Before learning Errors 55 (9) 37 (5)

Correct 78 (11) 37 (4)

After learning Errors 58 (5) 129 (10)

Correct 436 (31) 113 (10)

Observational learners Before learning Errors 65 (11) 50 (10)

Correct 101 (15) 39 (5)

After learning Errors 46 (3) 128 (11)

Correct 459 (24) 118 (11)
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the contingent, but not the noncontingent feedback con-
dition, irrespective of learning phase (pre- or postlearning).
Importantly, the error and feedback processing differ-
ences between active and observational learning were not
accompanied by differences in behavioral adaptation. Both
groups showed comparable learning performance as well
as comparable learning-related modulations of ERN and
Pe amplitudes elicited by own errors in trials without feed-
back. Both types of learning thus led to similarly strong
internal representations of erroneous responses.

Given the comparable learning performance, the
reduced oFRN appears to suggest that the role of ACC
differs in active and observational feedback learning. It is,
however, not entirely clear, what this difference means.
Observational feedback learning, as it was implemented
in this study, differs from active feedback learning in two
ways. First, the presented outcome is not given to the
observer and may thus be considered less relevant for
the observer than for an active learner. Second, outcome
feedback does not refer to the observerʼs behavior and
thus no direct link between (own) behavior and outcome
is established. The feedback processing differences be-
tween active and observational learners may thus in prin-
ciple be caused by reduced feedback relevance or by the
lacking integration of action and outcome information
or both.

As will be outlined in the following, it appears likely,
however, that ACC is critically involved in the integration
of action and outcome information, suggesting that this
process is mainly responsible for the observed differences
between active and observational learning. In this study,
ACC-driven mediofrontal negative ERP components (ERN
and FRN) signal the detection of “worse than expected”
events only in active learning, corroborating the view that
the dorsal ACC mediates active response selection based
on prediction errors, assigning reward value to specific
motor actions (Holroyd & Coles, 2008; Yeung, Holroyd,
& Cohen, 2005). Functional imaging studies have revealed
that the dorsal ACC is activated when participants make
choices based on action values (Glascher, Hampton, &
OʼDoherty, 2009; Wunderlich, Rangel, & OʼDoherty,
2009), and lesions to ACC have recently been reported
to impair the learning of action but not stimulus values
(Camille, Tsuchida, & Fellows, 2011). ERN and FRN are
thought to indirectly reflect changes in DA activity asso-
ciated with negative events (Beste, Saft, Andrich, Gold,
& Falkenstein, 2006; Frank, Woroch, & Curran, 2005;
Holroyd & Coles, 2002; Falkenstein et al., 2001). Higher
FRN amplitudes in active learning compared with oFRN
amplitudes in observational learning thus support a key
role of the DA system in linking own actions and out-
comes as opposed to a more abstract coding of associa-
tions between stimuli and/or responses on the one hand
and outcomes on the other hand. In further support of
this view, modulations of the DA level as in medicated
and unmedicated Parkinsonʼs disease patients do not only
influence learning from positive and negative feedback,

respectively (Frank, Seeberger, & OʼReilly, 2004), but affect
response selection based on action values (Shiner et al.,
2012; Smittenaar et al., 2012). Pharmacological enhance-
ment of the DA level specifically strengthens the neural
representation of rewarding actions (Guitart-Masip et al.,
2012). Also in other parts of the so-called “reward sys-
tem,” which receive dopaminergic projections, neural
responses to outcome stimuli depend on associations with
own actions. Both for instrumental versus classical con-
ditioning (OʼDoherty et al., 2004) and for active versus
observational reward learning (Bellebaum et al., 2012),
stronger prediction error responses were found in the
anterior caudate nucleus.
As mentioned, the reduced personal relevance of the

feedback may also play a role in the reduction of the
oFRN relative to the FRN (Koban et al., 2012; Bellebaum
et al., 2010). With respect to differences between active
experience and observation, however, Koban and col-
leagues (2012) also found a reduction in oFRN amplitude
in conditions in which active performer and observer
shared a reward. The mere fact that the observers of this
study did not receive the observed reward can thus not ac-
count for the reduction in oFRN amplitude. Furthermore,
the oFRN amplitude reduction in the present as well as in
the Koban et al. (2012) study was seen in the difference
in neural responses between punishment and reward. It
has to be noted, however, that Koban et al. (2012) used
a go/no-go task, in which feedback could not be used for
learning. Moreover, they varied the social context, having
participants observe cooperators or competitors, with
oFRN amplitudes being reduced for the latter condition.
Thus, the present results and the results of the Koban
et al. (2012) study cannot be compared directly. In this
study, the analysis of the original ERP amplitudes did
not reveal a general group difference in the negative
peak amplitudes in the oFRN time window, suggesting
that the strength of the neural responses to reward and
punishment as such were comparable in active and ob-
servational learners. Finally, the fact that both groups of
participants learned equally well suggests similar rele-
vance of feedback for active and observational learners.
In summary, the outcome processing differences be-
tween active and observational learning in this study
specifically affected the amplitude difference between
punishment and reward, which has been linked to ACC
(e.g., Bellebaum & Daum, 2008). Together with the
above-mentioned evidence, this finding indicates that
ACC is more strongly involved in the processing of nega-
tive feedback for own than observed actions, because it
links own actions and (negative) outcomes. Potentially
reduced personal relevance of the feedback for obser-
vational learners, if at all, presumably plays a minor role.
Interestingly, Koban et al. (2012) reported that oFRN

amplitude reflects a reward prediction error (Koban
et al., 2012), which appears to contradict the findings
of this study. In that study, participants took turns with
partners in active responding and observing responses
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in a go/no-go task, whereas in this study active and
observed choices were clearly separated in different
groups of participants. It is conceivable that own action
representations in observing others influence feedback
processing more strongly, when active responding is
required on the next trial. In a previous purely observa-
tional learning study, we found evidence of reduced
prediction error coding in observers. Larger amplitude
oFRNs for negative than positive feedback were only
seen for outcomes with a very low probability of 20%,
but not for outcomes with probabilities between 30%
and 80% (Kobza et al., 2011).
With respect to the ERPs in the observer condition

(oERN and oFRN), we found a relative negativity for
observed errors or error feedback, which was present
in both the pre- and postlearning phase for the con-
tingent feedback conditions and thus not modulated by
observational learning. A potential explanation could be
the difference in learning pace between observers and
the participants they learned from. After learning, erro-
neous actions, that is, specific button presses for a par-
ticular stimulus, and the resulting negative outcomes
were on average much less frequently observed than
correct actions. For some observers this was already the
case in the prelearning phase, because the person they
observed had learned earlier than the observer himself/
herself and thus responded correctly more often than
incorrectly. In the prelearning phase, observers did not
yet know which responses were wrong, but they might
have noticed that the person they observed pressed a
particular button and received the respective feedback,
more often than the other in a particular context. Thus,
the oERN and oFRN might in fact have coded unexpected
actions and outcomes. As suggested by Alexander and
Brown (2011), ACC acts as a general action outcome
predictor and should thus be modulated by any type of
expectation violation, positive or negative. In accordance
with this view, Ferdinand et al. (2012) reported similar
FRN amplitudes following unexpected positive or negative
feedback for active responses. We also found evidence
for this notion in a recent study, in which a mediofrontal
negative ERP component coded unexpected rather than
“wrong” actions in observing anotherʼs choices (Kobza &
Bellebaum, 2013). It has to be noted, though, that explora-
tory correlation analyses we performed did not reveal a
relationship between the strength of the oERN and oFRN
Contingency effects and the difference in learning speed
between observer and observed person. The questions
in how far differences in outcome expectation lead to
differences in outcome processing between active and
observational learning and to what extent the performance
of the observed person plays a role in observational learn-
ing are interesting topics for future research.
Taken together, this study shows that behavioral

adaptation based on feedback leads to equivalent action–
outcome associations in active and observational learning,
as revealed by comparable ERN and Pe amplitudes fol-

lowing own errors in participants learning actively or by
observation. At the same time, the neural signatures of
performance evaluation clearly differ between the two
types of learning, with learning-related changes being pro-
nounced in active and absent in observational error
and feedback processing, showing that prediction errors
modulate ACC activity much more in active learning. The
fact that similar mediofrontal ERP components associated
with performance monitoring are seen in active and ob-
servational learning does, however, suggest that the under-
lying processes also overlap to some extent and that the
components as such and the punishment–reward am-
plitude difference may reflect different neural processes.
Future research will have to further explore the specific
mechanisms of observational learning.
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