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1. Introduction

The discrete Hirota equation [11,28] is a difference equation for a function f in three discrete
variables:

f(n?l’.l)f(n_27l’.l)=f(n_1sl_1’.’)f(n_1vl+1a.l)
+72fm—1,i,j— D f(mn—1,i,j+1). (1.1)

The factor 72 can be absorbed into f by rescaling f(n, i, j) — t—/U*+D f(n, i, j). Eq. (1.1) is also known
as the octahedron recurrence as the variables n,i, j are natural coordinates for the vertices of an
octahedron, see e.g. [26].

In order to fix a particular solution to (1.1) we need to specify boundary conditions. An interesting
choice is the following. Let A = (a;j)1<i, j<n D€ an n x n matrix and set

f,i,)p=1,  fQA,ip=a 1<ij<n (1.2)

With these boundary conditions, the discrete Hirota equation defines the t2-deformation of the de-
terminant studied by Robbins and Rumsey [25]. In particular, the 72-determinant of A is defined
by

|Al2 = f(n,1,1). (1.3)

For T =i the t2-determinant reduces to the ordinary determinant which can be expanded as a sum
over permutation matrices. In their famous work [25], Robbins and Rumsey showed that solutions
to (1.1) with the boundary condition (1.2) can be written as a sum over alternating sign matrices
(ASMs), see also [2].

It is well known that ASMs are equinumerous to totally symmetric self-complementary plane parti-
tions (TSSCPPs). Surprisingly, generating functions of T2-enumerations of TSSCPPs and other symmetry
classes of plane partitions, as studied by Robbins [24], appear as normalisations for homogeneous so-
lutions of the g-deformed Knizhnik-Zamolodchikov (qKZ) equation recently obtained by Di Francesco
and Zinn-Justin [7,9]. This result will be generalised below, when we consider a class of punctured
cyclically symmetric transpose complement plane partitions (PCSTCPPs), whose weighted enumera-
tions also arise in the qKZ equation.

It was already observed by Robbins and Kuperberg [24,13] that the T2-enumerations of CSTCPPs
(without puncture) are closely related to 72 enumerations of vertically symmetric alternating-sign
matrices (VSASMs) and other symmetry classes of ASMs. A precise statement will be proved below.
Closing the circle, these enumerations comprise a particular solution of (1.1), albeit with a differ-
ent boundary condition than (1.2). We hope that this paper will be a further step in resolving the
Razumov-Stroganov conjectures and the discovery of a bijection between ASMs and TSSCPPs.
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Throughout the following we will use the notation [x]q for the usual g-number

The notation [x] will always refer to base g.
2. q-Deformed Knizhnik-Zamolodchikov equation

Definition 1. The Temperley-Lieb algebra of type A;, denoted by TLA(q), is the unital algebra defined

in terms of generators e;, i=1,...,L — 1, satisfying the relations
ei2=—[2]e,-, eiej=eje;, Vi, jili—jl>1,
eieijr1€ei = 6. (2.1)

Every representation of the Temperley-Lieb algebra defines a solvable lattice model through the
definition of so-called R-matrices. An R-matrix is a representation of the following Baxterised element
of the Temperley-Lieb algebra:

[1—u] —[ule;
Ri(u)y = ————, 2.2
i(w) 7l (2.2)

where u € C\ {—1} is the spectral parameter.

Definition 2. A Dyck path « = («g, o1, ..., o) is a sequence of integers «; (heights) such that o1 =
i1, a;>0and og=a; =0.

The Temperley-Lieb algebra has a known action on Dyck paths, which is well-documented in the
literature, see for example [16,5] and references therein. The span of Dyck paths forms a module
of TLA(q), and we will denote its basis elements by |«), where « runs over the set D; of Dyck paths
of length L. Let us now consider a linear combination |¥) of states |«) with coefficients v, taking

values in the ring of formal series in L variables ¢**,i=1,2,...,L:
W, x))= Y Y, x) ).
aeDy

The g-deformed Knizhnik-Zamolodchikov equation on a segment (with reflecting boundaries) is a
system of finite difference equations on the vector |¥). This equation reads (see [12,6])

Ri(xi —xi1)|¥) =m;|¥), Vi=1,...,L -1,
|¥) =mol¥),
W) =mL|¥), (2.3)

where R; are the Baxterised elements of the Temperley-Lieb algebra. The operators R;(x; — xj+1) act
on states |a), whereas the operators 77; permute or reflect arguments of the coefficient functions:

jTl'l//(X(""Xi7xi+1v “') = wot("‘7xi+1vxiv "')’
oY (X1, . ..) = Yo (—=X1,...), (2.4)

e Coe o X)) = Yo (oo —h — X1). (2.5)

The shift A € C is a parameter related to the level of the gKZ equation, see [10].

In [7] polynomial solutions of the qKZ equation were studied in the limit where x; — 0. Inter-
estingly, in this limit the coefficients v, turn out to be polynomials with positive coefficients in 72,
where 7 = —[2] = —q — g~ . Furthermore, based on observations on explicit solutions for small val-
ues of L, an intriguing connection between (generalised) sum rules and the enumeration of weighted
CSTCPPs was conjectured. This was subsequently proved using multi-integral formulae [9]. Here we

shall generalise this result.
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Table 1

Explicit solutions of the gKZ equation in the homogeneous limit.

L=4 o Ve T ECa1
PAVAN 1412 1

L=5 o Ve T*Ca2 rECat
YAVAVY 22+ 1?) 1

L=6 a Vi T2 Tt

PAVAVAN 14572 +414 +7° 1

A T@+2e% £ 7 o
/_\AA 7(14372 + 1% 7!
OO, ward G

3. Explicit solutions

In [7] explicit solutions of the qKZ equation in the limit x; — 0 were obtained for L < 8. In order
to illustrate our results we shall here list the first few solutions. We will write shorthand v, for the
limit x; — 0 of ¥ (x1,...,xr). The complete solution is determined up to an overall normalisation,
and we will choose

Yo = tL/2UL21=D/2

for the coefficient corresponding to the maximal Dyck path 2 € Dy : £2; = min{i,L + €} — i}, €, =
L mod 2. Together with the solution we list certain powers t»" whose meaning will become clear
below. (See Table 1.)

An immediate observation about these solutions was already noted in [7]:

Conjecture 1. The components ¥, (X1, ..., X;) of the polynomial solution of the qKZ equation of type A in the
limit x; — 0,i=1, ..., L, are, up to an overall factor which is a power of t, polynomials in T2 with positive
integer coefficients. Here T = —[2].

Polynomiality and integrality of the coefficients is proved in [9].

Based on these explicit solutions, and solutions obtained for L =9 and L = 10 in [5], we discovered
underlying discrete bilinear relations. In order to uncover these relations we have to introduce certain
partial sums over the components v, of the solution. Let us first define the paths £2(L, p) € D; whose
local minima lie at height p, where

p=[L-1/2]-p, p=0,....[L-1/2].
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Q(12,3)

L=12

Fig. 1. The path £2(12,3) € Dy2.3.

Q(12,4)

Fig. 2. Definition of the number ¢y p as the signed sum of boxes between the « and the path £2(12,4). In this figure L =12
and p=4andcy4=4-3+1=2.

Fig. 1 illustrates the path £2(12, 3). We further define the subset D , of Dyck paths of length L which
lie above £2(L, p), i.e. whose local minima lie on or above height p. Formally, this subset is described
as

Dpp={o €Dy |a; > 2i(L, p) =min(2;, p)},

where £2; are integer heights of the maximal Dyck path £ = (L, 0).
To each Dyck path we associate an integer cq,p. Let o = (g, o1, ..., 0) € D p be a Dyck path of
length L whose minima lie on or above height p. Then cy p is defined as the signed sum of boxes

between « and §2(L, p), where the boxes at height p + h are assigned (—1)"~! for h > 1. An example
is given in Fig. 2, and an explicit expression for cq,p is given by

P .
Cap=—— > (=D (; — 2i(L. p)). (31)
In the next section we will consider certain properties of the partial weighted sums

Se(Lp)= ) Ty (32)

aeDyp p

The partial sums corresponding to the solutions in Table 1 are given in Table 2.
4. Plane partitions and the discrete Hirota equation

It was observed in [21] that for T =1 (q = e2™i/3), the partial sums in Table 2 satisfy a dis-
crete bilinear relation called Pascal’s hexagon, or the discrete Boussinesq equation which, in turn, is
a two-dimensional reduction of the discrete Hirota equation (see [28] and references therein). Here
we generalise this result to arbitrary t, and show that the partial sums satisfy the discrete Hirota
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Table 2

Partial sums corresponding to the solutions in Table 1.

L=4 S_(4,00=T1 S,(4,00=T1
S_(4,1)=2+12 Si(4,1)=1+212

L=5 S_(5,0)=T1 S.(5,00=1
S_(5,1)=2(1+12% S.(5,1)=1+312
S_(5,2) =1 214572 +41* + 15 $.(5,2) =126+ 512)

L=6 S_(6,00=13 $.(6,0)=13
S_(6,1) =123 +27?) S.(6,1) =122 +372)
S_(6,2)=6+1372 +67% 416 $.(6,2)=1+8712+127% 4576

equation. Based on experimental data for solutions up to L = 10 [5], we were led to introduce the
following polynomials:*

2p
C+k—=1\/m+L—-2p—k\ »0om_

T(L,p,k)= det E: @m-=r) | 41

(. p.J) 1@%@( 0( r—¢ )( 2m—r )T ) @D

r=

We then have the following result for the functional form of the partial sums for arbitrary system
size L:

Proposition 1.

S+(L’p):TUL’pT(L7 D, |_L/2J _p)’ (42)
S_(L,py=t"»T(L,p,|L/2] —p+1), (4.3)

where
1
Vi,p= E(LL/ZJ(LL/ZJ —1)—p(p+1).

This proposition will be proved using multiple integral equations in Section 6.
4.1. Punctured symmetric plane partitions

Using the standard presentation of the determinant of p x p matrix A in terms of the minors
of p x 2p matrices B and C: A = BCY, the polynomials T(L, p, k) can alternatively be written as

+k—1
T(L,p.k) = det
-k 2 1<e,$n<p(( m — ¢ ))
p

1<ry<ry<--<r

x  det ((ﬁ +L=2p - k)tmg_rm)). (4.4)

1<e,m<p 20—y

By the use of Lindstrom-Gessel-Viennot formula [14] the last expression can be interpreted as the
generating function of two sets of paths with the same end-point, as in Fig. 3. One set of paths starts
at positions (£,£ +k—1) (£=1,...,p) and has diagonal NW-SE and vertical steps; the other set
starts at (( — L +2p +k,—¢ — L + 2p + k) with diagonal NE-SW and vertical steps. Each vertical
step below the horizontal line (green) is assigned a weight 2. (For interpretation of the references
to colour in this figure, the reader is referred to the web version of this article.) All other steps are
assigned weight 1. Up to an overall factor ~VP this is also the generating function of pairs of paths
where all vertical steps are assigned a weight t.

4 The idea to consider such type determinants comes from the observation that some of the polynomials given in Table 2
coincide with the conjectural generating functions of VSASMs and VHSASMs T (72, )| u=0,1 (see [24, Table 4.3]). The latter
functions are given by similar determinants.
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(=1 2 3 4

o = D W

Fig. 3. An example of two sets of paths with common endpoints enumerated by T(L, p,k) for L =13, p =4 and k = 3. (For
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

Consider stacking a large cube with smaller cubes, starting in a corner of the large cube, in such
a way that the smaller cubes can only be stacked on top or next to each other. Such stackings are
called plane partitions, which are well known to be equivalent to rhombus tilings of a hexagon. The
paths in Fig. 3 arise naturally when one considers cyclically symmetric transpose complement plane
partitions (CSTCPPs) and generalisations thereof, as was done by Ciucu and Krattenthaler [3]. CSTCPPs
correspond to rhombus tilings of a hexagon which are invariant under rotations over 27 /3 as well as
under reflections across a symmetry axis not passing through the hexagon corners. In [3] the more
general problem was considered of cyclically symmetric transpose complement tilings of a hexagon
with a triangular hole, as in Fig. 4. We will call such tilings punctured CSTCPPs, or PCSTCPPs, the
size of the triangular puncture being determined by the difference of the lengths of the sides of the
hexagon.

If we weight PCSTCPPs by assigning a weight 72 to each vertical step below the bisecting line
(green) in the South-East region of Fig. 4, the weighted enumeration of tilings of the fundamental
domain of PCSTCPPs is equivalent to the weighted enumeration of paths in Fig. 3. (For interpretation
of the references to colour in this figure, the reader is referred to the web version of this article.) We
have sketched the bijection in Fig. 4, full details may be found in [3] where the enumeration (7 = 1)
is considered, which is shown to factorise completely, see also (5.1). For general T but p restricted to
p=[(L—1)/2] PCSTCPPs were considered in the context of the gKZ equation by Di Francesco [7].

Interestingly, there is another way to interpret the paths in Fig. 3 in terms of punctured cyclically
symmetric plane partitions. When we remove a central cubic region from the large cube, and con-
sider special sixfold rotational symmetric rhombus tilings of the corresponding punctured hexagon by
defining a fundamental region as in the upper right corner of Fig. 5, we obtain a subset of punctured
cyclically symmetric self complement plane partitions (PCSSCPPs).

PCSSCPPs are enumerated by giving a special weight to the non-intersecting lattice paths in Fig. 3,
see [3]. Here we will not discuss this, but will only consider those PCSSCPPs as defined in Fig. 6. The
paths in this picture correspond to those in Fig. 3. In the East region of Fig. 6, diagonal steps below
the bisecting line (green) are assigned a weight 2. (For interpretation of the references to colour in
this figure, the reader is referred to the web version of this article.)

4.2. Discrete Hirota equation

We end this section with the following important observation for which we do not know a good
interpretation. The polynomials T(L, p, k) defined in (4.1) satisfy a discrete bilinear relation:
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Fig. 4. A punctured cyclically symmetric transpose complement plane partition (PCSTCPP) and its fundamental region. The
linear size of the puncture is given by the difference of the lengths of the sides of the hexagon. The position of the bisecting
line (green) determines a particular weighting of the PCSTCPP: vertical steps below this line are assigned a weight 72. (For
interpretation of the references to colour in this figure, the reader is referred to the web version of this article.)

k=2

Fig. 5. Fundamental region for a subclass of punctured cyclically symmetric self complement plane partitions (PCSSCPPs). The
position of the bisecting line (green) determines a particular weighting of a PCSSCPP. (For interpretation of the references to
colour in this figure, the reader is referred to the web version of this article.)

Proposition 2. The polynomials (4.1) satisfy the recurrence

T, p,K)T(L—2,p—2,k+2)=T(L—1,p—2,k+2)T(L —1,p,k)
+72T(L—=2,p—1,k)T(L,p—1,k+2). (4.5)

This proposition will be proved in Section 7.
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Fig. 6. A PCSSCPP of size L = 13 with a puncture of size L —2p = 5. PCSSCPPs are enumerated by non-intersecting lattice paths,
as indicated by the red lines. The paths in this picture define a natural subset of all PCSSCPPs, and correspond to those in
Fig. 3. In the East region, diagonal steps below the bisecting line (green) are assigned a weight 72. All other steps are assigned
weight 1. The value of k, k =3 in this figure, determines the position of the bisecting green line. (For interpretation of the
references to colour in this figure, the reader is referred to the web version of this article.)

The recurrence (4.5) is equivalent to the equation with which we began this paper: (4.5) becomes
the discrete Hirota equation (1.1) or octahedron recurrence, when we change variables ton=L—p —k,
i=2p+k—1L, j=p+k and T(L, p,k) = f(n,i, j):

f(nvls.])f(n_zvl?J):f(n_171_17.])f(n_1’l+1’.])
+12fn—1,i,j—Dfmn—1,i,j+1).

5. Fully packed loop diagrams and the Razumov-Stroganov conjecture

In this section we will discuss another combinatorial interpretation of the solutions of the gqKZ
equation. At T =1 the gKZ equation is equivalent to an eigenvalue equation for the transfer matrix
of the O(1) loop model. In this context a relation was conjectured in [19] (as a variant of a similar
conjecture by Razumov and Stroganov [22,1,23]) between the solutions in Section 3 for L even and
refined enumerations of vertically symmetric alternating-sign matrices (VSASMs). For L odd there is a
connection to related objects, see below. The gKZ equation is a generalisation of the O(1) eigenvalue
equation to T # 1, as found by Pasquier [18], and Di Francesco and Zinn-Justin [8].

The Razumov-Stroganov conjecture can be roughly described as follows. First a simple bijection of
VSASMs to fully packed loop diagrams is made, see e.g. [20]. To each such fully packed loop diagram
is associated a Dyck path; this will be described below. For a given Dyck path « there correspond
many FPL diagrams, and their number is precisely v, at T = 1. For general t there is as yet no
interpretation of i, as a weighted enumeration of FPL diagrams or VSASMs. However, as we will
show in Proposition 3 at the end of this section, there is such an interpretation for the total t-
normalisations S_(2n,n— 1) of the gKZ solution. We will see that Sy (2n,n—1) and S_(2n—1,n—1)
are also related to ASM generating functions.
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12

L /2=6

L=12

Fig. 7. An FPL diagram of size L =12 with L/2 — p =2 loop lines connecting loop terminals 1,2 with L, L — 1, respectively.

13

L-2p-1=4 | 2 oo —o—o 12

T B

(L-1)/2=6

B

L+1=14

Fig. 8. An FPL diagram of size L =13 with |[L/2] — p = 2 loop lines connecting external loop terminals 2,3 with L,L — 1,
respectively.

As shown in the previous section, the normalisation S_(2n,n — 1) is also equal to a generating
function of T2-weighted PCSTCPPs with a small puncture of size 2, establishing a connection between
such plane partitions and weighted VSASMs. A similar connection was considered in [7]. Other equal-
ities between generating functions of weighted cyclically symmetric plane partitions and generating
functions related to weighted enumerations of symmetric ASMs were conjectured by Robbins and
Kuperberg [24,13]. We will prove some of these in Section 8.

Finding the t-statistic on FPL diagrams that gives rise to an interpretation of v, for T # 1 should
provide clues for explicit bijections between (P)CSTCPPs and symmetry classes of ASMs, as well as for
an explicit bijection between TSSCPPs and unrestricted ASMs. In fact, in this section we will make
another small step towards such a bijection by elucidating the role played by the parameter p which
determines the size of the puncture in PCSTCPPs.

5.1. Fully packed loop diagrams

For L even, consider the set of vertices of a piece of square lattice of size L/2 x L. In the case
of L odd, take a piece of size (L —1)/2 x (L + 1). On this set of points, draw bonds such that each
internal vertex has exactly two drawn bonds. On the boundary we impose the condition that every
other ingoing bond on the left-hand side, bottom and right-hand side is drawn, starting at the top
left vertex.”> In this way, the drawn bonds form closed polygons or connect outgoing bonds to each
other, see for example Figs. 7 and 8. From Kuperberg’s work [13] it follows that FPL diagrams of even
size are equinumerous with VSASMs. Those of odd size are conjectured® to be equinumerous with
CSTCPPs [19].

> These boundary conditions and the shape of the lattice are of particular relevance in this paper, but more general FPL
diagrams can be considered, see e.g. [4].
6 To our knowledge no proof of this assertion exists.
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112131451819
617 10]11]12]13

Fig. 9. Standard Young tableau corresponding to the FPL diagram in Fig. 8.

Fig. 10. Dyck path corresponding to the FPL diagram in Fig. 8 and the standard Young tableau in Fig. 8.

We will label the outgoing bonds by successive integers, as in Figs. 7 and 8. As each outgoing
bond is connected to another outgoing bond, FPL diagrams can be naturally labelled by link patterns,
or equivalently, two-row Young tableaux or Dyck paths. For example, the diagram in Fig. 8 has link
pattern ((((()) (()))) which is shorthand for saying that 1 is connected to the top of the diagram,
2 is connected to 13, 3 to 12 etc. In general, to each link pattern correspond many FPL diagrams. This
information can also be coded in two-row standard Young tableaux. The entries of the first row of the
Young tableau correspond to the positions of opening parentheses '(’ in a link pattern, and the entries
of the second row to the positions of the closing parentheses ’)’. The FPL diagram of Fig. 8 carries as
a label the standard Young tableau given in Fig. 9.

Yet another way of coding the same information is by using Dyck paths. This will be useful when
making a connection to the results of Section 3. Each entry in the first row of the standard Young
tableau represents an up step, while those in the second row represent down steps. The Dyck path
corresponding to Fig. 9 is given in Fig. 10.

5.2. Subsets of FPL diagrams and punctured plane partitions

As discussed above, FPL diagrams of even size are equinumerous with VSASMs, and it follows from
the results of Section 4 that they are also equinumerous to PCSTCPPs with a small puncture of size 2.
Here we shall formulate a refined correspondence between subsets of FPL diagrams and PCSTCPPs.

Recall the subset D , of Dyck paths whose local minima lie on or above height p where p =
(L —1)/2] — p, see Section 3. Each path in Dy , is a label for FPL diagrams whose loop terminals
1,...,p (in the case of L even) are connected to terminals L — p + 1, ..., L, respectively, see Fig. 7.
In the case of L odd, the Dyck paths in D , label FPL diagrams with loop connections between
terminals 2,...,p+1and L —p+1,..., L, respectively, see Fig. 8.

Definition 3. A p-restricted FPL diagram is an FPL diagram whose corresponding Dyck path belongs

In other words, in a p-restricted FPL diagram of even size, the first L/2 — p loop terminals are
connected to the last L/2 — p loop terminals. This classification of FPL diagrams allows us to formulate
a refined correspondence between FPL diagrams and symmetric plane partitions:

Conjecture 2. The total number of p-restricted FPL diagrams of size L = 2n is equal to the total number
S+(2n, p)|r=1 of PCSTCPPs having sides of length 2(L — p) and 2(p + 1) with a triangular puncture of size
2(L —2p — 1), see Fig. 4.

As a side remark we note that S (L, p)|;=1 at T =1 factorises (this was proved in [15,3] in the
context of PCSTCPPs) and takes the form
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FL—-j+1) F(@RL+2j+3)/6)T((L —2j+3)/3)

21(1/2);T(L—2j+1) T'(2L— j+3)/6)T(2L— j+6)/6) (51)

p
S, plle=1=[]
j=0

This expression is equivalent to earlier conjectured expressions for the total number of p-restricted
FPL diagrams in the context of the O(1) loop model and the Razumov-Stroganov conjecture [17,21].

One may ask if a generalisation of Conjecture 2 holds for T # 1. As we have seen in Section 4.1, the
parameter 72 is a natural weight for (punctured) symmetric plane partitions. One can therefore ask
whether it also describes a natural statistic on ASMs or FPL diagrams. In the case of p = |(L — 1)/2]
(p = 0) this question can be answered in the affirmative. It was already observed by Robbins and
Kuperberg [24,13] that some T2-generating functions for ordinary CSTCPPs, i.e. without puncture, are
the same as certain polynomials arising in 72-enumerations of symmetric ASMs where each —1 is
assigned a weight 72. In the case of FPL diagram this amounts to giving a weight T to every two
consecutive vertical or horizontal steps (such consecutive steps correspond to either a +1 or —1
in ASM language). Our expressions for the partial sums in Table 2 can be directly compared with
Kuperberg’'s Table 4. Using the notations of [13], see also Section 8, we collect this observation with
two others in the following intriguing proposition:

Proposition 3.
T(2n,n—1,2)=S_(2n,n—1) = Ay(2n +1; 7%,
TQnn—1,1)=S,(2n,n—1) = AQ),(4n +2; 72),
TCn—1,n—1,1)=1t"1S_@2n—1,n—1) = A5} (4n; 72).

This proposition will be proved in Section 8.

It is an open problem to find a generalisation of Conjecture 2 to arbitrary weight 7, or a generali-
sation of Proposition 3 to arbitrary p, i.e. to find a correspondence between 72-weighted p-restricted
FPL diagrams and t2-enumerations of PCSTCPPs.

6. Proof of the determinant formula for partial sums

In this section we prove Proposition 1 using the formalism developed in [9,30] and which consists
of writing integral formulae for solutions of the gKZ equation. For the sake of simplicity, we shall
work out separately the two possible parities of the size L.

6.1. Even size

Assume L = 2n. The following set of integrals was introduced in [9]:

n
logq dye
Var.a = | ] [1+x,-—xj][1—xi—xj]f---le_[q_q_l;

1<i<j<L =1

y H1gg<m<n[}’£ —Ymll1 +ye — ymllye + yml nlgggmgn[l + Yo+ Yml
[Te=1 HiL=1 [ye +xi[Tit [ye — xi l_[iL:alH [1+ ye — xi]

where the contour integrals surround the poles at x; — 1. Here aq, ..., a, form a non-decreasing se-
quence of integers between 1 and L — 1.

The relation to the solution of the gKZ system (2.3) is as follows: up to normalisation by a sym-
metric factor of the parameters x;, the Vg, . q, are linear combinations of the components of the
solution:

(6.1)

.....

1,”a1 ..... an=ZCa1 ..... an;a‘ﬁa (6-2)
o
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with coefficients Cg, . 4,0 that are described explicitly in Appendix A of [30], and which we shall
define here by recurrence. First, Cy.y = 1. Next, for a pair (ay,...,an; @) of length L, consider any
local maximum i of the path «, and the new path o’ obtained by removing the two steps before and
after i. Call k the number of ¢ such that a, =i. If k=0, Cq, . an « =0. If k > 0, consider the new
sequence a),...,a;, , obtained from ajy,...,a, by removing one and replacing each remaining ay
with: itself if a, <i; i—1ifay =1i; a,—2 if ap > i. Then Cq,, . gy:0 = [k]Ca/] .... aQ e (and this definition
is independent of the choice of local maximum).

Since we are interested in the values of the v, at x; =0, let us set x; =0 in (6.1) and perform the
change of variables uy = [1+ yni1-¢]/[Yn+1-]. At this stage it is convenient to reindex the integers

asby=L—any1—¢, £=1,...,n, and to define 1//1,1 ,,,,, = Yay,....an, SO that
Cer
Va....an = Vby.... H [] -uwm
27“”13 1<e<m<n
X rl wm—u00+wum+uﬂmxr+ue+um}. (6.3)
1<l<m<n

Here the normalisation is chosen in such a way that ¥, = ¥ = "™ /2 (note that in this
case the integrals are trivial and can be performed by simply setting u, = 0 in the numerator of the
integrand).

We now consider specific &m b, Which will reproduce our sums S4(L, p). Fix a non-negative

.....

integer p, and let p =n — 1 — p. Consider sequences (b1, ..., by) of the form
b ¢, 1<e<p+1,
T l2e-p-1-€_pq, P+2<t<n,
where €1, ..., €, € {0, 1}. We have the following
Lemma 1.
Vb, ... =Vt plpt3—e M—p-1-€, = Z Va.

aeDy
Vo p g 1<0p_p o iff €0=1

Proof. We shall proceed by induction. Fix a sequence of integers by as in the lemma, that is in terms
of the mirror-symmetric sequence ay,

a_{u+ﬁ—1+@ﬂ4,1\€<n
Tlesn—n, pH1<t

Note that a; > p + 1. Let o be a Dyck path. Consider a local maximum i of . One can always assume
i < n. There are two cases:

1. i < p. In this case, o ¢ D ,. We find immediately that there are zero a, =1, so that the coeffi-
cient is zero.

2.p<i<n<L—p.Cll £=|@{—p+1)/2]. There are four cases depending on the parity of i
and the value of €py1—¢. If €y11—¢ =0 and i =2¢ + p # ay, there are no ay equal to i so that the
coefficient is zero. Since i is a local maximum, we have & _5_»p41—)—1=i—1 < ¥—p—2(p+1—£)=i Sat-
isfying the inequality in the summation of Lemma 1 (despite €, 1_¢ = 0). Similarly, 1f €p+1—¢ =1 and
i=2¢+p—1+#ay, there are no a, equal to i so that the coefficient is zero, and o;_5_5(p+1-¢)—1=i >
O _p_2(p+1—0)=i+1 Violating the inequality in the summation of Lemma 1 (despite €p1—¢ = 1). In the
other two cases, we have a; =i and the equivalence in the summation of Lemma 1 is valid. We can
then apply the definition by recurrence of the coefficient Cq, .. q,.«; the new sequence a},...,a, ,
is exactly the same type as ai, ..., ay, that is defined by the same ¢; with €,,1_¢ skipped. On the
other hand it is clear that the other conditions on « in the summation of Lemma 1 are equivalent to
the conditions on o’ (a with the local maximum removed) with the new sequence aj,...,a, ;. One
then uses the induction hypothesis to conclude. O
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Example 1. Consider the two sequences with L =6, p=1 (p =1). We find
Vi24=Y 4
/_( f i 1

V123=1Y ; .

In size L=8, with p=2(p=1),

= 2t2(1 + 12),

=13

U1246=" ¢ 4 o =6T>4217°+1877 +517°,

ol
V1,245=1V +v % =574+ 7715 4+ 378,
2

L

=374 +871% + 378,

V1,236=V
/\5 j z 2
1
V1235=1V ,
f ; >_; >_\1

The edges in red are those whose labels (counted from right to left) appear in the sequence of integers
iff the edge is a down step (in fact the first and last p + 1 edges are fixed by the fact that the paths
are in Dy ). (For interpretation of the references to colour in this figure, the reader is referred to the
web version of this article.)

=372 +377.

Note that taken together, the various sequences for a given L and p reproduce the full set of paths
of Dy p. Furthermore, by direct computation using formula (3.1) (grouping together pairs o) _5_5; 4
and o) _5_; in the sum and using o) _5_ — & _5_»j_1 = 2€; — 1), it is easy to check that all ¥, that
contribute to a given ¥q 541 5+3—¢;....2n—p—1—¢, Nave the same integer co,p = Zf; €.

We thus define

p -
S(L, plt) = Z t2iz iy P+1.p+3—€1...2n—p—1—¢p (6.4)

and claim that S4.(L, p) = S(L, p|t*").
Using (6.3), we now obtain the following integral representation for S(L, p|t):

p+1 n
duy du, (1 + tuy)
stro-f (11 2)( B 2 11 v
e=1 T )\ Zpp 2miU; 1<e<m<n
X ]_[ (Um —ug)(1 + Tum + teum)(T +ue + Um)]- (6.5)
1<l<mn
The first integrals over uq,...,upq can be performed successively by simply setting the correspond-

ing variables to zero. The result, after shifting the indices of the variables, is

S(L, p|t) = TPPH+D/2 % . %ﬁ dug (1 + tue)(1 + tup)P (7 + up)PH!
’ =1 Zniuﬁf

x [ [ G-wum) ] @n—u)+tum+ueumn) (@ +ue+ um)]. (6.6)
1<l<sm<p 1<e<mgp

Next we use the following lemma:
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Lemma 2. If AS designates antisymmetrisation: AS(f (u1, ..., up)) = ZaeSp (=D f(ugy, .. Ug(p)), and

(- - -)<o means keeping only non-positive powers of a Laurent polynomial in the variables u,, then the following
equality holds:

p
{ l_[ (1—ugum)AS<1_[u£_2‘”rl l_[ (1+ugum+1:um)>}
<0

1<e<m<p =1 1<l<m<p

~

=AS(1_[(u/(r +ue1)“)> =[Tur" T ' =)+ +u) (6.7)

=1 1<l<m<p

This is equivalent to formula (4.5) of [30]. It is a slightly stronger version of the proposition of [29],
and can be proved along the same lines. We use it to symmetrise the integrand:

P(B+1)/2 P due(1 + tug)(1 + tue)P (T 4 up)PH!
Sply=——¢ ¢ T] -
p! P 2miuyg

x l_[ (Um — U (T + e +um) (U —u, ') (t +u; " +up'). (6.8)
1<l<m<p

Noting that H1<e<m<p(”m —Ug)(T +ug +uy) is just the Vandermonde determinant of the uy (T + uy)
and similarly for the other factors, we can finally pull the determinants out of the integral, resulting
in:

- r d . . .
S(L, p|t) = TPPTD/2  get f A eyt (¢ 4 )t (t+ u1)m+"]. (6.9)
1<em<p ) 2miu

For general t, by using the binomial formula we can evaluate this to be

= (5 I . 1 (L+D m+p m+p
S(L, p|t _ PB+D/2 et ph+2m+20-2r-1 T t
(L, pit) 1<Z,m<p_2r: r—=¢ 2m—r + 2m—r—1

(6.10)

where we recall that p =L/2 — 1 — p. Pulling the 7P out of the determinant we recognise the prefac-
tor tV..r of Proposition 1.
At t = t this expression simplifies slightly:

Sy (L,p)=1t"r det [thm+2£2r(£+p)(m+p+l>:| (6.11)

1<e,m<p r—2¢ 2m—r

as well as at t =7 !;

o [L+D+T\/Mm+D
S_(L,p)=1"r det p2m+2t=2r . 6.12
(. p) 1<£,m§p|:z r—¢ 2m—r (6:12)

The summation over r is such that only a finite number of terms is non-zero; in practice a possible
range is 0 <r < 2p. Formulae (6.11), (6.12) match the expressions given in Proposition 1 for L even.

6.2. 0dd size

Assume L =2n + 1. The reasoning being exactly identical to the case L even, we only provide the
key formulae. The starting point is formally the same integral formula as previously:

n
logq dy.
Vo= | ] [1+xi—xj][1—xi—xj]f---ygﬂq_q_lg

1<i<j<L

y l—[1ge<m<n[)’€ —Ymll1+ye — ymllye + yml H1<g<m<n[1 + Yo+ Yml
[T Tz e + X T e — X1 TTimg 1 (1 + ye — xi]

(6.13)
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but with an odd number of parameters x;, so that it produces a slightly different expression when
the x; are set to zero:

n

- dug
Vay...an = Vby.by = P -+ = T] - ueum)(d+tum +uetm)
e=1271, Ly cicmen
X 1_[ (Um —up)(T +up + um)]. (6.14)

1<l<m<n

Define, for p a non-negative integer, p =n — p and

p L=
S(L.ply= Y Xy G e onjee, (6.15)

so that S+ (L, p) = S(L, p|t*'). We obtain the following integral expression for S(L, p|t):

p n
duy dug (1 + tuy)
S<L,p|t>=7§---f<1'[2 : Z)( [1 ——== )| I a-uauw
=1 <701y (=p41  2TIL 1<e<m<n
n
X l_[(1+rug+u§) 1_[ (Um —ug)(l+rum+u4um)(r+ug+um):|. (6.16)
(=1 1<l<m<n

We integrate over the first p variables and reindex the remaining ones:

’ ) )
S(L’mt):tﬁ(ﬁ_l)ﬂ%m%‘l—[duz(l+tuz)(1+‘fuz)p(l'+ug)p|: M A um
=1

Y
2miuy 1<e<m<p

n
X H(1+TU@+U%) l_[ (um —ug)(1 +tum+ugum)(r+ug+um)]. (6.17)
(=1 1<b<m<p

We use Lemma 2 and pull the determinants out of the integral as before:

Th(P=1/2 Poduy(1+ tup)(1+ tug)?(t + up)?(1 + tup + u?)
S<L,p|t>=7y§mf1_[ — :
p! 2miuy
X 1_[ (um—ug)(r—i-ug-|—um)(u,;1 —uf)(r-i—u;1 +un’11)

1<e<mgp

=05 du -
=7PP=D/2  det [f —— (1 +tu)(1 + tue + uf)ut P!
1<e,m<p 2miu

x (T +uw) P (T 4 u‘1)m+ﬁ_1}
- du i i ;
—PP-D/2 get [f —— (1 + twyu P (¢ pu) P (v 4 u‘l)m”}. (6.18)
1<e,m<p 2miu

In the last line we wrote (1+tu+u?)/u = (t +u~')+u and noted that the second term reproduces
the column m — 1 of the matrix and thus can be subtracted without changing the determinant.
One finally obtains

S(L, plt) = TPP=D/2  det [Ztﬁ+2m+ze—2r—2(f+f’—1)<T(m+ﬁ>_H( m+p ))]
IsemspL% r—¢ 2m—r 2m—r—1

(6.19)

where we recall that p = (L — 1)/2 — p. One pulls out the factor 7P~1 out of the determinant and
recover once again the prefactor tVL.» of Proposition 1.
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At t = T this simplifies to

i . o (l+D—1\/m+Dp+1
Sy(L,p)=1"» det ppH2m+2t=2r 6.20
+(L.p) 1<z,mgp_2r: r—¢ 2m—r (6:20)
whereas at t =77 1:
5 o (t+P\(m+D
S_(L,p)=t"» det phr2mt2e=2r 6.21
2 1<e,mgp_z r—£)\2m-—r (6.21)

r

thus reproducing the expressions of Proposition 1 for L odd.
7. Proof of the bilinear recurrence relations for T (L, p, k)

In this section we prove Proposition 2. To simplify the formulae of this section we introduce k' =
L —2p —k, so that definition (4.1) reads

L4+k—1 m-4+ K
— A 2r
T(L,p,k) = <El’%tgpﬂzm, Teom(k, k') = Er <2m_£_r>( ; )f : (7.1)

Here the limits of summation in r are automatically fixed by the conditions (f) =0, Vr <0 and Vr > n.
We begin with a derivation of yet another determinant formula for T(L, p, k).

Lemma 3.
T(L,p, k)= det  Ugpn, (7.2)
1<e,m<p+1
where
Upi(p) = (=D 12PH=0 0 Uy g (kK) = Tem(k, K = 1). (7.3)

Proof. To check the identity detU = detT we shall perform linear transformations of the matrix U
not affecting its determinant. First, we combine adjacent rows of U with the aim to set to zero all
components of the first column, except the last element U411 = (—1)*:

2
Vim=U¢me1 +T°Upr1,me1-

Then, by decomposing the determinant of the resulting matrix along the first column we find

1<em<p+1 1<e,mgp

The lemma now follows by noticing that the rows of T are linear combinations of those of V,

L4+k—1\/m+k —1 L4k m+k'—1 5
Vim = r
tm Z((Zm—(i—r)( r )+(2m—£—r)< r—1 ))T
_Z C+k—1\(m+k 4 +k—1 m+k —1 Lo
N - 2m—4€ —r r 2m—£ —r—1 r—1

= Tem(k, k) + T2 Tg.m1(k, k),

where we have used Pascal’s rule (") = ("") + ("~]) to go from the second to the third line. Hence
we find

m—1

Z(—Tz)jve,m—j =Tm,

j=0

from which we conclude that detV =detT. O
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Our derivation of formula (4.5) is based on the use of the following particular example of a
Pliicker relation for determinants (for the general case see [27]). Consider a pair of n x n matrices
A¢m and Byn,. Denote by A, the £th row of the matrix A and introduce notation

detA=|Al, A=[A1,..., A

In this notation the Pliicker relation reads
n
|AlIIBI=>_|A1..... An1.Bj| X [B1,.... Bj_1, A, Bjj1..... Bul, (7.4)
j=1

where the sum is taken over permutations of the last row of A with each row of B.
We now take n = p+1 and, recalling the definition of the matrix U in (7.3), substitute for A and B
the following matrices:

Ak, k) =U(k, k') =[Uq,...,Upt1], (7.5)
B(k.K')=1[81,Uz.....Up, 8ps1l, (7.6)

where §;,; is Kronecker’s delta.

By Lemma 3 we have |A| =T(L, p, k). To calculate the determinant of B we expand along its top
and bottom rows and then notice that the first column of the resulting (p — 1) x (p — 1) matrix is
also of §-type:

C4+k—1\ (K
Ug,z(k,k/):n,l(k,k’_n:Z(;; r)(i)fzrﬂz,z for ¢ > 2.
r

So we calculate

Bl= det U k,ky= det T k k' —1
| B <det e4+2,m+2(k, k) gt e4+2,m+1( )
= det Tgm(k—i-z,k/)=T(L—2,p—2,k+2).
1<e,m<p-2

Now let us consider the right-hand side of the relation (7.4). Here only permutations with the top
and the bottom rows of the matrix B give non-vanishing contributions. Permuting the last row in A
and the first row in B gives the following factors:

|U1,...,Up,811=(=1)P det Upms1(k, k')

1<e,mp

=(=1P det T,k —1)=(—=1PT{L-1,p,k),
1<em<p

Upt1,Uay .., Up, 8pi1l = (=1)P U2, ..., Up, Ups1]

=P det Upk+2,kKk+1)=(-1)’T(L—-1,p—2,k+2),
1<e,m<p—1
where in the last calculation when passing to the second line one (i) expands the determinant
along the first column noticing that U412 = 8,1 and (ii) redefines matrix indices using the iden-
tity Up2.my1(k, k) =Upm(k+ 2,k + 1), Ym > 1.
Permuting the last row in A and the last row in B gives the following factors:

U1,...,Up,8p1]l=U1,...,Up| =7% det Uk, k)=1%T(L —2,p—1,k).
1<e,m<p

The factor 72 is extracted from the p-dependent first column of the matrix U: Ugi(p+1) =
72U 1(p);
51,Un, ..., U = det U k, Kk
181, Uz p+1 pdet e+1,m+1(K, k)
= det Upioma2k, k)= det Tk +2,k)=T(L,p—1,k+2).

1<e,m<p-1 1<e,m<p-1



790 J. de Gier et al. / Journal of Combinatorial Theory, Series A 116 (2009) 772-794

Here when passing to the second line of the calculation we first expand detU;41,m+1 along the first
column Uy41,1 =8¢, and then redefines indices of the matrix T: Tyio my1(k, k' — 1) = Tom(k + 2, K').

Thus, the Pliicker relation (7.4) for the matrices A and B defined in (7.5) and (7.6) produces the
equality (4.5).

8. Proof of 72-enumeration of ASMs

In this section, we prove Proposition 3. We start from the determinant formulae of [13] for the
enumeration of various symmetry classes of Alternating Sign Matrices, and reduce them to our own
determinant formulae for Si. In what follows, we keep Kuperberg’s notations (even though they
are non-standard), to ease the comparison of formulae with [13]. In each case, one starts with
configurations of the six-vertex model, which for certain particular boundary conditions are iden-
tified with Alternating Sign Matrices in various symmetry classes. There are three distinct Boltzmann
weights for the six-vertex model, taking into account Z, symmetry, and they are parametrised as
wa=ax 'y —a lxy™!, wy=axy ' —a"'x"ly, we =a® —a~2, x and y being row/column spectral
parameter and a a global parameter. In the ASM language, a weight w. is assigned to a +1, and
weights wy, and w, are assigned to zeroes. In the end we must take the homogeneous limit where
Wa=wp, and w./wy =T = —q — q~': this ensures that adding a —1 to an ASM, that is two extra
vertices of type c¢ (adding a —1 also increases the number of +1 by 1), produces a weight 72. This is
achieved by setting all spectral parameters to 1 and a = —q. Similar parameters, called b and ¢, which
are related to boundary weights will be used below.

To be self-contained, we will give the matrices of Kuperberg relevant to this paper. It is useful to
first define the functions o and « by

o (X) :x—x‘l, o(x) =0 (ax)o (a/x).

The relevant matrices then are

N 1 1
Mulm: % )ij = ai/yy)  axyj)’ (81)
o(b/yjo(cxi) ob/ypo(c/x) obyj)o(cx) obyjoc/x)
a(axi/y;) aa/xiy;) a(ax;y;) a(ayj/xi)
1 1

o(ay;/xi) * o(axi/y;j)

Since the equalities of Proposition 3 are known to be true at T =1 (they are consequences of the
various relations between enumerations of ASMs found in [13], as well the relations between ASMs
and PPs discussed in [9]), and since both sides are easily checked to be polynomials in T of the same
degree, we can safely drop various trivial factors in the calculation, keeping only the determinant
itself as well as factors that become singular in the homogeneous limit.

Muyu(n; X, y)ij = , (8.2)

M (5 %, ¥)ij = (8.3)

8.1. First formula

In [13], it is explained how VSASMs are a special case of UASMs; more precisely, the partition
function of VSASMs can be obtained from the more general one of UASMs by tuning a certain bound-
ary parameter. It is also noted there that the boundary parameter only enters the formula for the
partition function in prefactors, and not in the determinant itself. In particular the enumeration of
VSASMs and UASMs are essentially the same. We shall therefore write directly the partition function
for UASMs of size 2n without all the regular prefactors; using (8.1) it takes the form:

1
AR A(Y?) A*(x*) A*(y?)

ZyasM X

1
x det
1<m<n< (@x? — yH(@?ys —x) @ —x7yH (1 - azxizyﬁ))
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where A stands for the Vandermonde determinant, e.g. A(x?) = ]_[i<j(x? — xiz); and A*(x?) =

(1 —x2x%). The x;, y; are spectral parameters which will eventually be set to one.
i<j i%j J
We use the following integral representation:

1
(@x? — y2)(a%y? — x?)(@® — x2y?)(1 — a’x?y?)
B ad(a® —1)? f uu+a+ab (8.4)
@+ DRy —a?) (@ = 1) ] 2 pu, o, /0, a/y)uu, ay)’ '
where
w(u, x) =a(@+u) — (1+au)x>. (8.5)

The contour of integration in (8.4) surrounds the x-dependent poles but not the y-dependent ones.
This identity can be checked directly by residues. The various prefactors, as well as the integral sign,
can be pulled out of the determinant and we thus find

1 % dui(u; +a+a Huy 7§ duy(up +a+a Huy
AX2)A(Y?) A*(x2) A*(y?) 27 27

ZyasM X

X det< ! )det( 1 )
w(ug, xj) e (ui, 1/x5) u(ui,a/yj)u(ug,ay;)

In order to compute these determinants, we perform the following change of variables:

(1-x)? vo_ (1-y*?
(1—-a?x)(1 —a=2x%)’ (A -a?y)(1—a2y?)

X=—
and use the factorisations

@, ), 1/x) = (@ — x*)(@® —x2)(1 — Xu(a+a~' +u)),
p@,ay)(u,a/y) =a*u?(@® — y*)(@® - y?) 1 -vYu Y(a+a ' +u™)).
Note that a +a~! = 7. Again one can get rid of the trivial factors and obtain

1 dul(u1+r)_”¢dun(un+r)
AX2)A(y2) A*(x2) A*(y?) 2miug 2iug

1 1
X det< )det( 5 5 )
1 —ui(T +uj)X; 1—u; (T+u; )Y

where the contours of integration surround the X;-dependent poles. The determinants are now of
Cauchy type and can be evaluated exactly:

AX)AY) f duq(ui + 1) f dun(un + 1)
AX2)A(y2) A*(x2) A*(y2) 27Uy 27T iUy

1
Alud+tw))Aw 11+ 7u™! ’
x Alu DAL ))ll_J[ (1 —ui(t +ud XA —u;y (T +uy HY))

Zyasm X

ZyAsm X

The Vandermonde determinants outside the integral cancel each other, leaving only a regular part,
due to

(1—a*?(x? — x?)(l — xizx?)

Xi—Xj= :
T @20 — a2 (1 —a2) (1 - a2x2)(1—a~2x2)

At this stage one can take the homogeneous limit, that is set x; = y; =1, or X; = Y; =0, which
results in the simple expression
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duq(t +uq) dun(t + up) 1 1
Av(2n +1; 2 aﬁ—,---ﬁ—_Aur w)A(u” (Tt +u ,
v(2n+1;7%) o o, AT Hw)AWT (T +uT)

where the integrals are performed around zero. We can once again exchange determinant and integral
sign and find

du
Av(2n+1;7%) o« det f—,uz_m(r+u)“1(r+u_l)m.
o<e,m<n—1J 2miu
The first column of this matrix being (1,0, ...), we can restrict the range of the indices to
2 du €+1 —1\m
Av(2n+1;7°) o det —u""Mr+w) T (t+uh)
1<e,m<n—1) 2mwiu

which is identical to (6.9) with t=7"1, p=n—1, p=0.
8.2. Second formula

The reasoning is exactly the same; only the matrix elements of the determinant are slightly mod-
ified. In the case of A\(,ZP),PASM, we must use the matrix Myy defined in (8.2) with parameters b =1/q,
¢ =a. In this case we use the following identity to represent the matrix elements in factorised form:

—a?y?(1+xH + (@ +a® + DA +yH — @+ 1)2y>Hx% ,
xy(a?x? — y?)(a?y? — x?)(a? — x2y2)(1 — a®x?y?)
(- L wipuerd )
27 p(u, x)(u, 1/x)u(u, a/y)u(u, ay)

We thus find the following expression for the “partition function” Z\(,Zl_}PASM (which is really a ratio

of the partition function of UUASMs by the partition function of UASMs)
) AX)AY) dui(1+tuq) du, (1 + tuy)
Zynpasm X A o2 Y A* (x2) AF (V2 : :
AX)A(Y2)A*(X2)A*(y*) 27Uy 2miuy,
1
(1 —ui(r +up XA —u; (T +u;HY))'

x Aul+tw)Au (1 +7u™)) H

and in the homogeneous limit,

dui (1 +7uq) f dup(1 +w”)A(u(r+u))A(u‘1(r+u_1))

2) L2
Avipasm (2n + 15 7%) % 27U 27iun

du
o det ?{ —u"Mr +uw)(t + u‘l)mH.
og<e,m<n—1J 2mi

Once again one can remove the first line and column, and we recover (6.9) with t =1, p=n—1,

p=0.
8.3. Third formula

The generating function Ag&(n; 72) is defined as one of the factors of Al(_lzT) (2n; T2, 1), the other be-
ing Ag&(n; 72,1,1). To compute this generating function we need Z;T’(z)(Zn; &, x 1), (y,y~1) which
is defined in terms of the matrix M, see (8.3). The matrix M;;(2n; (X, X~ 1), (¥,y~")) commutes
with

0 I
= s)
I 0

and thus can be brought to block-diagonal form with blocks
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M;Ti(” X, ¥)ij = Myp(; X, ¥)ij £ My (s X, § 1)ij'

These matrices are readily identified with the matrix Myy with b=c =i and b =c =1, respectively:

N 1 - 5 .
. 1 - -
My (n; %, 3)ij =—m1\/1uu(n;x, Vij (b=c=1).

The further reasoning is again analogous to that in Section 8.1, and in order to compute the ho-
mogeneous limit of det M(z) (n; X, y) we now use the identity

(a2 + 1)2x2y2 _ aZ(XZ + yZ)(1 +x2y2) )
xy(@x? — y»)(a?y? — x*)(a* — x*y*)(1 — a?x?y?)
d
= —az)zf d : . (8.6)
2t p(u, x)(u, 1/x)pu(u, a/y)pu(u, ay)
Thus we find
7@ A(X)A(Y) ﬁ'g duy yg duy,
uu X 2 2)A* () A* (32 o '
AXAD)AYH)A*(xH)A*(y2) J 2miug 2miuy

1
(A —wi (T +ud XA —u; (@ +u7HY)'

x Al +Tw) A (1+7u™) ]

i,j

and

AS (4n; %) 7§ dlfl ?gziulz AT +u)Aw ! (t+u™))

27y

du
o det f—,u@—m(r+u)‘f(r+u—1)’".
oge,m<n-1 ) 2mi

Removing the first line and column, we recover (6.18) with t=t~!, p=n—1, p=0.
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