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Abstract. We consider probability measures on R∞ and study optimal trans-
portation mappings for the case of infinite Kantorovich distance. Our exam-

ples include 1) quasi-product measures, 2) measures with certain symmetric

properties, in particular, exchangeable and stationary measures. We show in
the latter case that existence problem for optimal transportation is closely re-

lated to ergodicity of the target measure. In particular, we prove existence of

the symmetric optimal transportation for a certain class of stationary Gibbs
measures.
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1. Introduction

Let us consider two Borel probability measures µ, ν on Rd. The central re-
sult (Brenier theorem) of the finite-dimensional optimal transportation theory es-
tablishes under fairy general assumptions existence of the corresponding optimal
transportation mapping T , which can be characterized by the following properties:

1) T = ∇ϕ, where ϕ is a convex function
2) ν is the image of µ under T : ν = µ ◦ T−1.
The mapping T exists, in particular, when both measures are absolutely contin-

uous and have finite second moments. The second assumption can be replaced by
the weaker assumption of the finiteness of the corresponding Kantorovich distance
W2(µ, ν) but it does not make much difference for the finite-dimensional problems.
However, this difference becomes essential in the infinite-dimensional case.

It is well-known that the optimal transportation mapping T solves the so-called
Monge problem, meaning that T gives minimum to the functional∫

Rd
‖r(x)− x‖2dµ(x)

among of the mappings r : Rd 7→ Rd pushing forward µ onto ν; here ‖ · ‖ is the
standard Euclidean norm. The corresponding minimal value coincides with the
squared Kantorovich distance W 2

2 (µ, ν).
Now let us consider a couple of measures on an infinite-dimensional linear space

X; to avoid unessential technicalities, we will assume everywhere that X = R∞.
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We deal throughout with the standard Hilbert norm

‖x‖2 := ‖x‖2l2 =

∞∑
i=1

x2
i ,

which takes infinite value almost everywhere with respect to most of the measures
we are interested in.

What is a natural analog of the Brenier theorem in this setting? To understand
the situation better let us consider the Gaussian model.

Example 1.1. Let γ =
∏∞
i=1 γi =

∏∞
i=1

1√
2π
e−

x2
i
2 dxi be the standard Gaussian

product measure on R∞ and H = l2 be the corresponding Cameron–Martin space.
More generally, one can consider any abstract Wiener space.

The optimal transportation problem is well-understood for the case of measures
µ and ν which are absolutely continuous with respect to γ. The most general results
were obtained in [12] (another approach has been developed in [15]). In particular,
for a broad class of probability measures f · γ absolutely continuous w.r.t. γ there
exists a transportation mapping T (x) = x+∇ϕ(x) minimizing the cost∫

‖T (x)− x‖2l2 dγ

and pushing forward γ onto f ·γ. Analogously, there exists a transportation mapping
pushing forward f · γ onto γ. The gradient operator ∇ is understood with respect
to 〈·, ·〉l2 -scalar product.

It is known (this follows from the so-called Talagrand transportation inequality)
that under assumption

∫
f log f dγ < ∞ the Kantorovich distance between γ and

f · γ is finite

W 2
2 (γ, f · γ) =

∫
‖T (x)− x‖2l2 dγ <∞.

In particular, ∇ϕ(x) ∈ l2 for γ-almost all x. More on optimal transportation on the
Wiener space, the corresponding Monge–Ampére equation, regularity issues, and
transportation on other infinite-dimensional spaces see in [5], [6], [8], [11], and [10].

In this paper we study situation when the Kantorovich distance between mea-
sures is a priori infinite. This makes impossible in general to understand T as
a solution to a certain minimization problem. Nevertheless, we have many good
candidates to be called ”optimal transportation” in many particular cases. The
following example motivates our study.

Example 1.2. 1) Let µ =
∏∞
i=1 µi(dxi), ν =

∏∞
i=1 νi(dxi) be product probability

measures. Assume that all µi have densities. Then there exists a mass transporta-
tion mapping T pushing forward µ onto ν which has the form

T (x) = (T1(x1), · · · , Ti(xi), · · · ),

where Ti(xi) is the one-dimensional optimal transportation pushing forward µi onto
νi.

2) Let us consider the Gaussian measure µ which is a push-forward image of
the standard Gaussian measure γ under a linear mapping T (x) = Ax with A
symmetric and positive. It is well-known (and can be obtained from the law of large
numbers) that γ and µ are mutually singular even in the simplest case A = 2 · Id.
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T is ”optimal” because it is linear and given by a positive symmetric operator.
Heuristically,

T (x) =
1

2
∇〈Ax, x〉.

It is clear that in both cases T cannot be obtained as a minimizer of a functional
of the type

∫
‖T (x)− x‖2l2 dµ.

We state now the central problem of this paper.

Problem 1.3. Let µ and ν be two probability measures on R∞. When does exist
a transportation mapping T pushing forward µ onto ν which is ”optimal” for the
cost function c(x, y) = ‖x− y‖2l2?

In this paper we deal with two model situations.
Quasi-product measures.
We assume that both measures have densities with respect to product probability

measures
µ = f · µ0, ν = g · ν0,

µ0 =

∞∏
i=1

µi(dxi), ν0 =

∞∏
i=1

νi(dxi).

Then the corresponding ”optimal tranportation” is a small perturbation of the
diagonal mapping, considered in Example 1.2.

Symmetric measures.
It is possible to give a meaning to the Monge–Kantorovich optimization problem

if we restrict ourselves to a certain class of symmetric measures. In this paper we
consider two types of symmetry: exchangeable measures (invariant with respect to
finite permutations of coordinates) and stationary measures on R∞ (invariant with
respect to shifts of coordinates). Note that ‖x− y‖2l2 is symmetric with respect to
both types of symmetry. More generally, let G be a group of linear operators which
acts on X = Y = R∞ and X × Y : x→ gx, (x, y)→ (gx, gy), g ∈ G and preserves
the cost function c(x, y). We assume that every basic vector ej can be obtained from
any other ei by action of this group: there exists g ∈ G such that ei = gej . Note
that under these assumptions all the coordinates are identically distributed. This
leads us to the following definition: given G-invariant marginals µ and ν we call π
an optimal (symmetric, invariant) solution to the Monge–Kantorovich problem if
π solves the Monge–Kantorovich problem∫

(x1 − y1)2 dπ → min

among all of the measures which are invariant with respect to G. If there exists a
mapping T such that its graph Γ = {x, T (x)} satisfies m(Γ) = 1, we say that T is
an optimal transportation mapping pushing forward µ onto ν.

The following counter-example, however, demonstrates that the optimal trans-
portation may fail to exist by a quite simple reason.

Example 1.4. Let µ = γ be the standard Gaussian measure on R∞ and

ν =
1

2
(γ + γ2)

be the average of γ and its homothetic image γ2 = γ ◦ S−1, where S(x) = 2x.
There is no any mass transportation T of µ to ν which commutes with any cylin-
drical rotation. Indeed, any mapping of such a type must have the form T (x) =
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g(x)(x1, x2, · · · ) = g(x) · x, where g is invariant with respect to any ”rotation”, in
particular, with respect to any coordinate permutation. But any function g of this
type is constant γ-a.e. This is a corollary of the Hewitt–Savage 0−1 law. It is clear
that there is no any mass transportation of this type for the given target measure.

There is a general principle behind of this simple example. Recall that a measure
µ is called ergodic with respect to a group action G, if for every G-invariant set A
one has either µ(A) = 1 or µ(A) = 0. It follows directly from the definition that
there does not exists a bijective mass transportation T pushing forwarg µ onto ν,
such that T ◦ g = g ◦ T for every g ∈ G, provided µ is G-ergodic but ν is not.

This observation leads to the following problem.
Problem. Let G be a group of linear operators acting on R∞ and preserving

l2-distance (model example: group of shifts). Let µ, ν be ergodic G-invariant
measures. When does exist a transportation T : R∞ 7→ R∞ pushing forward µ
onto ν, which commutes with G and gives minimum to the Monge functional T 7→∫
R∞(T1(x)− x1)2 dµ?

Trivially, the ergodicity by itself is not sufficient for the affirmative answer to
this problem. In addition to it, we need to have certain infinite-dimesional analogs
of ”absolute continuity” for the source measure µ.

We believe that the symmetric transportation problem must have deep and very
interesting relation with the ergodic theory. The second named author studied the
interplay between ergodic decompositions and transportation theory in [26]. An-
other interesting connection has been established in [3]. It was shown that the
Birkhoff ergodic theorem implies equivalence between optimality and the so-called
cyclical monotonicity property. The related problems on optimal transportation in
symmetric settings have been considered in [22] (stationary processes), in [23] (sym-
metric measures on graphs), and in [19], [20], [9] (ergodic theory). Transportation
problems with symmetries have been studied in [13], [21]. Further development
of the duality theory for transportation problem with linear restriction has been
obtained in [25].

The paper is organized as follows: in Section 2 we give preliminaries in trans-
portation theory, ergodic theory, and recall some important results on log-concave
measures. In Section 3 we establish sufficient conditions for existence of optimal
transportation mappings which are obtained as a.e.-limits of finite-dimensional ap-
proximations. The applications of this result are obtained in Section 4. Here we
prove existence of optimal transportation for a couple of measures having densities
with respect to product measures. In Section 5 we discuss the invariant optimal
transportation problem, consider examples and prove some basic facts. In Section
6 we briefly discuss Kantorovich duality for problem which is invariant with respect
to the action of a group. In Section 7 we construct a non-trivial example of a
symmetric optimal transportation T . Namely, we establish sufficient conditions for
existence of T pushing forward a stationary measure into the standard Gaussian
measure. Finally, we apply this result to a certain class of Gibbs measures.
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2. Preliminaries

2.1. Optimal transportation problem.
Kantorovich problem. Given two probability measures µ and ν on the spaces

X and Y respectively, and a cost function c : X × Y 7→ R ∪ {+∞} we are looking
for the minimum of the functional

W 2
2 (µ, ν) = inf

{∫
‖x− y‖2 dm : m ∈ P (µ, ν)

}
,

on the space P (µ, ν) of probability measures with fixed projections: PrXm =
µ, PrYm = ν.

In the classical setup X = Y = Rn, c = |x− y|2 the solution m is supported on
the graph of a mapping T : Rn 7→ Rn:

m(Γ) = 1, where Γ = {(x, T (x)), x ∈ Rd}.

(see [1], [7], [24].). The functional W2(µ, ν) is a distance in the space of probability
measures. In what follows we call it the Kantorovich distance. The mapping T is
called optimal transportation of µ onto ν.

Another well-known fact which will be used throughout the paper is the following
relation called the Kantorovich duality:

W2(µ, ν) = −1

2
J(ϕ,ψ),

where

J(ϕ,ψ) = inf
ϕ,ψ

{∫ (
ϕ(x)− |x|

2

2

)
dµ+

∫ (
ψ(y)− |y|

2

2

)
dν, ϕ(x) + ψ(y) ≥ 〈x, y〉

}
,

where the infimum is taken over couples of integrable Borel functions ϕ(x), ψ(y).
The function ϕ in the dual problem coincides with the potential generating the
transportation mapping

T = ∇ϕ.

2.2. Ergodic decomposition. Given a Borel transformation S : X 7→ X of the
space X we call a Borel probability measure µ ergodic if any S-invariant measurable
set A has the property µ(A) = 1 or µ(A) = 0. A similar terminology is used if
instead of a single mapping S we deal with a family G of transformations.

The ergodic G-invariant measures are extreme points of the set of all G-invariant
measures, hence any G-invariant measure can be represented as the average of G-
invariant ergodic measures. The famous de Finetti theorem establishes decomposi-
tion of this type for a class of exchangeable measures, i.e. measures, invariant with
respect to a permutation of a finite number of coordinates.

Theorem 2.1. Let P be the space of Borel probability measures on R equipped with
the weak topology. Then for every Borel exchangeable µ on R∞ there exists a Borel
probability measure Π on P such that

µ(B) =

∫
m∞(B)Π(dm),

for every Borel B ⊂ R∞.

Yet another example of the ergodic decomposition where a precise description is
possible is given by rotationally invariant measures (see Example 5.9).
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2.3. Log-concave measures and functional inequalities. We recall that a
probability measure µ on Rn is called log-concave if it has the form e−V · Hk|L,
where Hk is the k-dimensional Hausdorff measure, k ∈ {0, 1, · · · , n}, L is an affine
subspace, and V is a convex function.

In what follows we consider uniformly log-concave measures. Roughly speaking,
these are the measures with potential V satisfying

V (x)− V (y)− 〈∇V (y), x− y〉 ≥ K

2
|x− y|2,

which is equivalent to D2V ≥ K · Id in the smooth (finite-dimensional) case. Here
K is a positive constant.

More precisely, we say that a probability measure µ is K-uniformly log-concave

(K > 0) if for any ε > 0 the measure µ̂ = 1
Z e

K−ε
2 |x|

2 ·µ is log-concave for a suitable
renormalization factor Z. It is well-known (C. Borell) that the projections of log-
concave measures are log-concave (this is in fact a corollary of the Brunn-Minkowski
theorem). It can be easily checked that the uniform log-concavity is preserved by
projections as well. We can extend this notion to the infinite-dimensional case.
Namely, we call a probability measure µ on a locally convex space X log-concave
(K-uniformly log-concave with K > 0) if its images µ ◦ l−1, l ∈ X∗ under linear
continuous functionals are all log-concave (K-uniformly log-concave with K > 0).

Throughout the paper we apply the following estimate (see [15], [16]), which
generalizes the famous Talagrand transportation inequality.

Theorem 2.2. (Generalized Talagrand inequality.) Let m be a K-uniformly
log-concave probability measure with some K > 0. Then for any couple of probability
measures µ = e−V dx, ν = e−W dx and the corresponding optimal mappings ∇ϕµ,
∇ϕν , pushing forward µ, ν onto m respectively, one has the following estimate

Entν

(µ
ν

)
=

∫
log

dµ

dν
dµ =

∫
(W − V ) dµ ≥ K

2

∫
|∇ϕµ −∇ϕν |2 dµ.

Another result used in the paper is the Cafarelli’s contraction theorem. Here is
the version from [16] (see also [17]).

Theorem 2.3. (Caffarelli contraction theorem). Let ∇Φ be the optimal trans-
portation of the probability measure µ = e−V dx into ν = e−W dx. Assume that for
some positive c, C one has D2V ≤ C · Id, D2W ≥ c · Id. Then ∇Φ is Lipschitz with

‖∇Φ‖Lip ≤
√

C
c .

The quantity Entν

(
µ
ν

)
is called the relative entropy or the Kullback-Leibler

distance between µ and ν.

3. Sufficient condition for existence of limits of finite-dimensional
optimal mappings

3.1. Preliminary finite-dimensional estimates. Let µ and ν be probability
measures on Rd and T (x) = ∇ϕ(x) be the optimal transportation mapping pushing
forward µ onto ν. Let us denote by µv the images of µ under the shifts x 7→ x+ v,
v ∈ Rd.

It will be assumed throughout that µv have densities with respect to µ:

dµv
dµ

= eβv .
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Lemma 3.1. For every p, q ≥ 1 with 1
p + 1

q = 1, ε ≥ 0, and e ∈ Rd∫
|ϕ(x+ te)− ϕ(x)|1+ε dµ ≤ t1+ε‖ |〈x, e〉|1+ε‖Lp(ν) · sup

0≤s≤t
‖eβse‖Lq(µ).

∫ (
ϕ(x+ te)− ϕ(x)− t∂eϕ(x)

)
dµ ≤ t‖〈x, e〉‖Lp(ν) · sup

0≤s≤t
‖eβse − 1‖Lq(µ).

Proof. One has ϕ(x+ te)− ϕ(x) =
∫ t

0
∂eϕ(x+ se) ds. Hence∫

|ϕ(x+ te)− ϕ(x)|1+ε dµ ≤ tε
∫ ∫ t

0

|∂eϕ|1+ε(x+ se) ds dµ

= tε
∫ t

0

[∫
|∂eϕ|1+εeβse dµ

]
ds ≤ t1+ε‖|∂eϕ|1+ε‖Lp(µ) · sup

0≤s≤t
‖eβse‖Lq(µ)

= t1+ε‖ |〈x, e〉|1+ε‖Lp(ν) · sup
0≤s≤t

‖eβse‖Lq(µ).

Applying the same arguments one gets∫ (
ϕ(x+ te)− ϕ(x)− t∂eϕ(x)

)
dµ =

∫ ∫ t

0

(∂eϕ(x+ se)− ∂eϕ(x)) ds dµ

=

∫ [∫ t

0

(eβse − 1) ds
]
∂eϕ(x) dµ ≤ t

1
p ‖∂eϕ‖Lp(µ)

[∫ ∫ t

0

|eβse − 1|q ds dµ
] 1
q

.

The desired estimate follows from the change of variables formula and trivial uni-
form bounds. �

In addition, we will apply the following elementary Lemma.

Lemma 3.2. Assume that a sequence {Tn} of measurable mappings Tn : R∞ → R∞
converges to a mapping T in the following sense: for every ei, limn〈Tn, ei〉 = 〈T, ei〉
in measure with respect to µ. Then the measures {µ ◦ T−1

n } converge weakly to
µ ◦ T−1.

3.2. Existence theorem. We consider a couple of Borel probability measures µ
and ν on R∞, where R∞ is the space of all real sequences: R∞ =

∏∞
i=1 Ri. We deal

with the standard coordinate system x = (x1, x2, · · · , xn, · · · ) and the standard
basis vectors ei = (δij). The projection on the first n coordinates will be denoted
by Pn: Pn(x) = (x1, · · · , xn). We use notations ‖x‖, 〈x, y〉 for the Hilbert space
norm and inner product: ‖x‖ =

∑∞
i=1 x

2
i , 〈x, y〉 =

∑∞
i=1 xiyi. We use notation

IEnµ for the conditional expectation with respect to µ and the σ-algebra generated

by x1, · · · , xn. For any product measure P =
∏∞
i=1 pi(xi) dxi its projection Pn =

P ◦P−1
n has the form

∏n
i=1 pi(xi) dxi and the projection (f ·P )◦P−1

n = fn ·Pn of the
measure f ·P satisfies fn = IEnP f . Everywhere below we agree that every cylindrical
function f = f(x1, · · · , xn) can be extended to R∞ by the formula x→ fn(Pnx).

It will be assumed throughout the paper that the shifts of µ along any vector
v = tei are absolutely continuous with respect to µ:

dµv
dµ

= eβv .

In Section 3, moreover, the following assumption holds.
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Assumption (A). For every basic vector e = ei there exist p ≥ 1, q ≥ 1,
satisfying 1

p + 1
q = 1, and ε > 0 such that∫

|〈x, e〉|(1+ε)p dν <∞

and

p(t) = sup
0≤s≤t

∫
|eβse − 1|q dµ

satisfies limt→0 p(t) = 0.
Let µn = µ ◦ P−1

n (x), νn = ν ◦ P−1
n (y) be the projections of µ, ν. For every

v = tei let us set
d(µn)v
dµn

= eβ
(n)
v .

It is easy to check that the projections of µ, ν satisfy Assumption (A).

Lemma 3.3. For every n ∈ N and every e = ei one has∫
|〈Pn(x), e〉|p dνn ≤

∫
|〈x, e〉|p dν,

∫
|eβ

(n)
e − 1|q dµn ≤

∫
|eβe − 1|q dµ.

Proof. The first estimate is trivial. To prove the second one, let us note that

eβ
(n)
v = IEnµe

βv . The claim follows from the Jensen inequality and convexity of the
function t→ |t− 1|q. �

We denote by πn the optimal transportation plan for the couple (µn, νn). Let
ϕn(x) and ψn(y) solve the dual Kantorovich problem. Let us recall that∇ϕn (∇ψn)
is the optimal transportation mapping sending µn to νn (νn to µn). One has

ϕn(x) + ψn(y) ≥ 〈Pnx, Pny〉

for every x, y. The equality is attained on the support of πn. In particular,

ϕn(x) + ψn(∇ϕn(x)) = 〈Pnx,∇ϕn(x)〉.

It is easy to check that {πn} is a tight sequence. By the Prokhorov theorem one
can extract a weakly convergent subsequence πnk → π. Note that πn is not the
projection of π.

The main result if the section is the following theorem.

Theorem 3.4. Assume that (A) is fulfilled and, in addition,

Fn(x, y, 0, 0) = ϕn(x) + ψn(y)− 〈Pnx, Pny〉 → 0

in measure with respect to π. Then there exists a mapping T : R∞ 7→ R∞ such that

T (x) = y

for π-almost all (x, y).

In what follows we will pass several time to subsequences and use for the new
subsequences the same index n again, with the agreement that n takes values in
another infinite set N′ ⊂ N. Let us fix unit vectors ei, ej for some i, j ∈ N and
consider the following sequence of non-negative functions:

Fn(x, y, t, s) = ϕn(x+ tei) + ψn(y + sej)− 〈Pn(x+ tei), Pn(y + sej)〉

with n > i, n > j.
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Lemma 3.5. There exists a L1+ε(π)-weakly convergent subsequence

ϕnk(x+ tei)− ϕnk(x)→ U(x).

The following relation holds for the limiting function U(x):∣∣∣∫ U(x) dµ− t
∫
〈y, ei〉 dν

∣∣∣ ≤ Ctp(t).
Proof. Taking into account that

∫
Fn(x, y, 0, 0) dπn = 0, one obtains∫

Fn(x, y, t, 0) dπn =

∫
Fn(x, y, t, 0) dπn −

∫
Fn(x, y, 0, 0) dπn ≥ 0.

Note that the right-hand side equals∫
(Fn(x, y, t, 0)− Fn(x, y, 0, 0)) dπn =

∫ [
ϕn(x+ tei)− ϕn(x)− t〈y, ei〉

]
dπn.

Taking into account that the projection of πn onto X coincides with µn and ϕn
depends on the first n coordinates, one finally obtains that for n > i the latter is
equal to∫ [

ϕn(x+tei)−ϕn(x)
]
dµ−t

∫
〈y, ei〉 dν =

∫ [
ϕn(x+tei)−ϕn(x)−t∂eiϕn(x)

]
dµ.

It follows from Lemma 3.1, Lemma 3.3 and Assumption (A) that

(1)
∣∣∣∫ Fn(x, y, t, 0) dπn

∣∣∣ ≤ Ctp(t).
Since ϕn depends on a finite number of coordinates (≤ n), one has∫

|ϕn(x+ tei)− ϕn(x)|1+ε dµ =

∫
|ϕn(x+ tei)− ϕn(x)|1+ε dµn.

Hence by Lemma 3.1

Un(x) = ϕn(x+ tei)− ϕn(x) ∈ L1+ε(µ)

and, moreover, supn ‖Un‖L1+ε(µ) < ∞. Thus there exists function U ∈ L1+ε(µ)
such that for some subsequence nk

ϕnk(x+ tei)− ϕnk(x)→ U(x)

weakly in L1+ε(µ). Passing to the limit we obtain from (1) that∣∣∣∫ U(x) dµ− t
∫
〈y, ei〉 dν

∣∣∣ ≤ Ctp(t).
�

Lemma 3.6. Assume that Fn(x, y, 0, 0)→ 0 in measure with respect to π. Then

U(x)− t〈y, ei〉 ≥ 0

for π-almost all (x, y).

Proof. Note that[
ϕn(x+tei)−ϕn(x)−t〈y, ei〉

]
+Fn(x, y, 0, 0) = ϕn(x+tei)+ψn(y)−〈Pny, Pn(x+tei)〉

is a non-negative function for every n. Since Fn(x, y, 0, 0) → 0 in measure, there
exists a subsequence (denoted again by Fn) which converges to zero π-almost ev-
erywhere. Since fn = ϕn(x + tei) − ϕn(x) − t〈y, ei〉 converges to f = U(x) −

9



t〈y, ei〉 weakly in L1+ε(π), one can assume (passing again to a subsequence) that
1
N

∑N
n=1 fn → f π-a.e. Since fn + Fn ≥ 0, this implies that f ≥ 0 π-a.e. �

Proposition 3.7. Assume that there exists a sequence of continuous functions

fn(x1, · · · , xn), gn(y1, · · · , yn) ∈ L1(πn)

such that Gn = fn(x) + gn(y)−
∑n
i=1 xiyi has the following properties:

1) Gn ≥ 0,
2) Gn ≤ Gm, ∀ n ≤ m,x, y ∈ Rm,
3) supn

∫
Gn dπn <∞.

Then Fn(x, y, 0, 0)→ 0 in L1(π).

Proof. We start with the identity
∫
Fn(x, y, 0, 0) dπn = 0 and rewrite it in the

following way:

(2) 0 =

∫
(ϕn − fn) dµ+

∫
(ψn − gn) dν +

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi
)
dπn.

Since ϕn, ψn are defined up to a constant, one can assume that
∫

(ψn− gn) dν = 0.

Thus −
∫

(ϕn − fn) dµ =
∫ (
fn(x) + gn(y) −

∑n
i=1 xiyi

)
dπn. It follows from 1)

and 3) that the right-hand side is a bounded sequence of non-negative numbers.
Passing to a subsequence we may assume that the right-hand side has a limit. It
follows from the weak convergence πn → π and the monotonicity property 2) that
for every k

limn

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi
)
dπn ≥ limn

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi
)
dπn

=

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi
)
dπ.

Hence

limn

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi
)
dπn ≥ lim

k

∫ (
fk(x) + gk(y)−

k∑
i=1

xiyi
)
dπ,

where the limit in the right-hand side exists, because the sequence is monotone.
Hence we get from (2)

0 ≥ lim
n

∫
(ϕn − fn) dµ+ lim

n

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi
)
dπ.

Taking into account that
∫
gn dπ =

∫
gn dν =

∫
ψn dν =

∫
ψn dπ, we obtain

0 ≥ lim
n

∫
(ϕn − fn)(x) dµ+ lim

n

∫ (
fn(x) + gn(y)−

n∑
i=1

xiyi
)
dπ

= lim
n

(∫
(ϕn(x) + ψn(y)−

n∑
i=1

xiyi) dπ
)
≥ 0.

The proof is complete. �

Finally, we obtain a sufficient condition for the existence of an optimal mapping
in the infinite-dimensional case.

10



Proof. (Theorem 3.4) Let us fix ei and choose a sequence of numbers tn → 0. We
get from Lemma 3.5 and Lemma 3.6 that there exist π-a.e. nonnegative functions

Utn(x)− tn〈y, ei〉 with
∫ (
Utn(x)− tn〈y, ei〉

)
dπ = o(tn). Hence, limtn→0

∫ (Utn (x)
tn
−

〈y, ei〉
)
dπ = 0. Taking into account that

Utn (x)
tn
−〈y, ei〉 ≥ 0 for π-almost all (x, y),

we conclude that
Utn (x)
tn

converges µ-a.e. and in L1(µ) to a function ui(x) satisfying

ui(x) − 〈y, ei〉 ≥ 0, π-a.e. and
∫

(ui(x) − 〈y, ei〉) dπ = 0. Clearly, u(x) = 〈y, ei〉
for π-almost all (x, y). Repeating these arguments for every i ∈ N, we get the
claim. �

4. Application: quasi-product case

The main result of this section is a generalization of the optimal transport ex-
istence theorem for Gaussian measures. Recall that by results from [12], [15] that
for the standard Gaussian measure γ =

∏∞
i=1 γi(dxi), γi ∼ N (0, 1) the existence of

the optimal transportation mapping pushing forward f · γ into g · γ is established,
for instance, under assumption

∫
f log f dγ <∞,

∫
g log g dγ <∞. We give in this

section a generalization of this result for a wide class of quasi-product measures.
Let us consider two product reference measures

P =

∞∏
i=1

pi(xi) dxi, Q =

∞∏
i=1

qi(xi)dxi

and fix the diagonal infinite transportation mapping

T (x) = (T1(x1), · · · , Tn(xn), · · · )

where Ti(xi) pushes forward pi(xi)dxi onto qi(xi)dxi. Clearly, T takes P onto Q.
The inverse mapping S = T−1 has the same diagonal structure:

S(x) = (S1(x1), · · · , Sn(xn), · · · ).

Theorem 4.1. Let µ = f · P and ν = g · Q be probability measures satisfying the
Assumption (A) of the previous section. Assume, in addition, that

1) there exists K > 0 such that every qi is K-uniformly log-concave;
2) there exists M > 0 such that

S′i(xi) ≤M

for all i, xi;
3) Assume that either a) or b) holds for some constants C > c > 0

a) g log2 g ∈ L1(Q), 1
f ∈ L

1(P ), f ≤ C,

b) f log f ∈ L1(P ), c ≤ g ≤ C.

Then there exists a transportation mapping T pushing forward µ onto ν which is
µ-a.e. limit of finite-dimensional optimal transportation mappings Tn.

Remark 4.2. It follows from Caffarelli’s contraction theorem (see Section 2) that
assumption 2) is satisfied if (− log pi(xi))

′′ ≥ C0, (− log qi(xi))
′′ ≤ C1 for some

C0, C1 > 0 and every i. Of course, there exist many other examples when this
assumption is satisfied.

Proof. Consider the finite-dimensional projections µn = fn ·Pn, νn = gn ·Qn, where
Pn =

∏n
i=1 pi(xi) dxi, Qn =

∏n
i=1 qi(xi) dxi. Here fn and gn are the conditional

11



expectations of f, g with respect to P,Q and the σ-algebra Fn, generated by the
first n coordinates. Recall that ∇ϕn is the optimal transportation of µn to νn. Let

ui(xi), vi(yi) = u∗i

be the one-dimensional convex potentials associated to the mappings Ti, Si, respec-
tively:

Ti = u′i, Si = v′i.

Note that T̃n = (T1, · · · , Tn) pushes forward Pn onto Qn and ∇ϕn pushes forward
fn

gn(∇ϕn) · Pn onto Qn.

According to Proposition 2.2 one has the following estimate:

(3)
K

2

∫
|T̃n −∇ϕn|2dPn ≤

∫
log
(gn(∇ϕn)

fn

)
dPn.

To see that the right-hand side is finite, let us estimate∫
log
(gn(∇ϕn)

fn

)
dPn ≤

∫
log

1

fn
dPn +

1

2

∫
log2 gn(∇ϕn)fndPn +

1

2

∫
dPn
fn

=

∫
log

1

fn
dPn +

1

2

∫
gn log2 gndQn +

1

2

∫
dPn
fn

.

Applying Assumption 3a of the Theorem and the Jensen inequality one can easily
get that the right-hand side is uniformly bounded.

We complete the proof by applying Theorem 3.4 and Proposition 3.7. For appli-
cation of Proposition 3.7 set

fn =

n∑
i=1

ui(xi), gn =

n∑
i=1

vi(yi).

We need to estimate
∑n
i=1

∫
(ui(xi) + vi(yi)− xiyi) dπn. Taking into account that

πn is supported on the graph of ∇ϕn, and the relation ui(xi) + vi(Ti(x)) = xiTi(x)
we obtain that the latter equals to∫ (

ui(xi) + vi(∂xiϕn)− xi∂xiϕn(x)
)
dµn

=

∫ [
vi(∂xiϕn(x))− vi(Ti(x))− xi(∂xiϕn(x)− Ti(x))

]
dµn

=

∫ [
vi(∂xiϕn(x))− vi(Ti(x))− v′i(Ti(x))(∂xiϕn(x)− Ti(x))

]
dµn

≤M
∫

(∂xiϕn(x)− Ti)2 dµn.

Here we use the uniform bound v′′i = S′i ≤ M . Finally, using the uniform bound
f ≤ C and the Jensen inequality we obtain that

n∑
i=1

∫
(ui(xi) + vi(yi)− xiyi) dπn ≤MC

∫
|∇ϕn − T̃n|2 dPn.

We have already shown that the right-hand side is bounded. The result now follows
from Proposition 3.7.

The proof follows the same line under Assumption 3b, but we use another corol-
lary of Proposition 2.2:

K

2

∫
|T̃n −∇ϕn|2

fn
gn(∇ϕn)

dPn ≤
∫

log
( fn
gn(∇ϕn)

) fn
gn(∇ϕn)

dPn.

12



The detailes are left to the reader. �

5. Symmetric transportation problem and ergodic decomposition of
optimal transportation plans

5.1. Symmetric transportation problem. In this section we discuss the mass
transportation of symmetric (mainly exchangeable) measures, where the word ”sym-
metric” means ”invariant under action of a group Γ”.

Recall that a probability measure is exchangeable if it is invariant with respect
to any permutation of finite number of coordinates. Before we consider R∞, let us
make some remarks on the finite-dimensional case.

Consider the group Sd of all permutations of {1, · · · , d} acting on Rd as follows:

Lσ(x) = (xσ(1), xσ(2), · · · , xσ(d)), σ ∈ Sd.
Let Γ ⊂ Sd be any subgroup with the property that for every couple i, j there exists
σ ∈ Γ such that σ(i) = j.

Assume that the source and target measures are both invariant with respect
to Γ. Under additional assumption that the cost function c is Γ-invariant (for
instance, c = |x − y|2) one can easily check that the Kantorivich potential ϕ is
Γ-invariant as well: ϕ = ϕ ◦ Lσ for any σ ∈ Γ see [21], [25]. Consequently, the
optimal transportation T = ∇ϕ has the following commutation property:

T = L∗σ(T ◦ Lσ) = L−1
σ ◦ T ◦ Lσ.

Equivalently,
Lσ ◦ T = T ◦ Lσ.

The optimal transportation plan π(dx, dy) is also Γ-invariant under the following
extension of the action of Γ to Rd × Rd:

Lσ(x, y) = (Lσx, Lσy).

Now let σ(i) = j. One has∫
xiyi dπ =

∫
〈ei, x〉〈ei, y〉 dπ =

∫
〈Lσei, Lσx〉〈Lσei, Lσy〉 dπ

=

∫
〈ej , Lσx〉〈ej , Lσy〉 dπ =

∫
xjyj dπ.

Consequently,

(4) W 2
2 (µ, ν) =

∫
‖x− y‖2 dπ =

d∑
i=1

∫
(xi − yi)2 dπ = d

∫
(xi − yi)2 dπ, ∀i.

Lemma 5.1. The standard quadratic Kantorovich problem on Rd with Γ-invariant
marginals is equivalent to the transportation problem for the cost |x1 − y1|2 with
additional constraint that the solution is a Γ-invariant probability measure

Proof. Let π be the solution to the quadratic Kantorovich problem for the marginals
µ, ν and π̃ be a measure giving the minimum to the functional m 7→

∫
|x1− y1|2dm

among of the Γ-invariant measures with the same marginals. By optimality of π∫
‖x− y‖2dπ ≤

∫
‖x− y‖2dπ̃.

Since π and π̃ are both Γ-invariant, (4) implies that
∫
|x1 − y1|2dπ ≤

∫
|x1 −

y1|2dπ̃. By optimality of π̃ one gets
∫
|x1 − y1|2dπ =

∫
|x1 − y1|2dπ̃, and, finally

13



∫
‖x− y‖2dπ =

∫
‖x− y‖2dπ̃. This means that π̃ solves the quadratic Kantorovich

problem as well and, vice versa, π solves the Kantorovich problem with symmetric
constraints. �

The conclusion made above helps us to give a variational meaning to the trans-
portation problem in the infinite-dimensional case.

Definition 5.2. Symmetric Kantorovich problem. Let Γ be a group of linear
operators acting on R∞ and µ, ν be Γ-invariant probability measures. Assume in
addition that

• For every i, j ∈ N there exists g ∈ Γ such that

g(ei) = ej .

• The space of probability measures ΠΓ(µ, ν) on R∞×R∞ which are invariant
with respect to the action (x, y) 7→ (g(x), g(y)), g ∈ Γ of Γ and have
marginals µ, ν, is non-empty and closed in the weak topology.

We say that a measure π ∈ ΠΓ(µ, ν) is a solution to the Γ-symmetric (quadratic)
Kantorovich problem if it gives the minimum to the functional

(5) ΠΓ(µ, ν) 3 m 7→
∫

(x1 − y1)2 dm.

Definition 5.3. Symmetric optimal transportation. Let m be a solution to
the symmetric Kantorovich problem. A measurable mapping T : R∞ 7→ R∞ is
called optimal transportation mapping of µ onto ν if

m({(x, T (x))}) = 1.

The standard compactness arguments imply that a solution to the Kantorovich
problem (5) exists provided

∫
x2

1 dµ <∞,
∫
y2

1 dν <∞. If, in addition, there exists
an optimal transportation mapping T , it commutes with any g ∈ Γ. This means
that for µ-almost all x and every g ∈ Γ

(6) (T ◦ g)(x) = (g ◦ T )(x).

Example 5.4. Exchangeable measures. We denote by S∞ the group of permuta-
tion of N which change only a finite number of coordinates. We consider its natural
action on R∞ defined by

σ(x) = (xσ(i)), x = (xi) ∈ R∞, σ ∈ S∞.

Consider measures µ and ν which are invariant with respect to any σ ∈ S∞:

µ = µ ◦ σ−1, ν = ν ◦ σ−1.

The measures of this type are called exchangeable. The basic example is given
by the countable power m∞ of some Borel measure m on R. The structure of
mappings satisfying (6) in the case µ = m∞ is very easy to describe. Consider
the function T1(x) = 〈T (x), e1〉 and fix the first coordinate x1. Then the function
F : (x2, x3, · · · ) → T1(x) is invariant with respect to S∞ (acting on (x2, x3, · · · )).
Hence F is constant according by the Hewitt–Sawage 0 − 1 law applied to the
measure µ. Thus T1(x) = T1(x1) depends on x1 only (up to a set of measure
zero). The same arguments applied to other coordinates imply that T is diagonal:
(T1(x1), T2(x2), · · · ). Moreover, Ti(x) = T1(x) because T commutes with every
permutation of coordinates.
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Example 5.5. Optimal transportation not always exists. Let µ1, µ2 be count-
able powers of two different one-dimensional measures. By the Kakutani dichotomy
theorem they are mutually singular. There is no any mass transportation T of
µ = µ1 onto ν = 1

2 (µ1 + µ2) satisfying (6). Indeed, according to Example 5.4 any

T satisfying (6) must be diagonal, hence the measure µ ◦ T−1 must be a product
measure.

Thus, we see that the optimal transportation does not always exist. This example
can be easily generalized to many other linear groups Γ and Γ-invariant measures.
It can be easily understood that T does not exist provided the source measure is
ergodic, but the target measure is not.

5.2. Ergodic decomposition of optimal transportation plans. The connec-
tion between Kantorovich problem and ergodic decomposition has been established
under fairy general assumptions by the second-named author in [26]. A particular
case of this result is given in the following theorem.

Let Γ be an amenable group acting by continuous one-to-one mappings on a
Polish space X. Let ΠΓ be the set of all Borel probability Γ-invariant measures and
µ, ν ∈ ΠΓ. The set of Γ-invariant transportation plans with marginals µ, ν will be
denoted by ΠΓ(µ, ν). Assume that the cost function c is lower semicontinuous and
ΠΓ(µ, ν) is non-empty and closed in the weak topology.

Let us fix a solution π to the Γ-invariant Kantorovich problem with marginals
µ, ν. Denote by ∆(X) the set all Γ-invariant ergodic measures on X. Assume we
are given ergodic decompositions

(7) µ =

∫
∆(X)

µx dσµ, ν =

∫
∆(Y )

νy dσν

of µ, ν, where X = Y , σµ, σν are probability measures on ∆(X),∆(Y ) and, simi-
larly, the ergodic decomposition of π:

(8) π =

∫
∆(X×Y )

πx,ydδ

(recall that the Γ-invariance for π means the invariance with respect to the action
(x, y) 7→ (g(x), g(y))). We stress that in (7) the integrals are taken not with respect
to variables x, y, but with respect to variables µx, νy (x, y indicate the spaces where
the measures are defined), the same holds for (8). It is straightforward that δ-almost
all πx,y have ergodic marginals and taking the projections of the both sides of (8)
we obtain decompositions (7). Moreover, the following statement holds:

Theorem 5.6. Under δ almost every measure πx,y solves the Γ-symmetric Kan-
torovich problem with marginals µx, νy:

KΓ
c (µx, νy) = inf

m∈ΠΓ(µx,νy)

∫
cdm =

∫
cdπx,y

and the following representation formula holds:

inf
π∈ΠΓ(µ,ν)

∫
cdπ = inf

δ∈Π(σµ,σν)

∫
KΓ
c (µx, νy) dδ.

Remark 5.7. In the situation of Theorem 5.6 one can decompose the optimal trans-
portation plan for ergodic marginals µ, ν: π =

∫
∆(X×Y )

πx,ydδ. Ergodicity of the

marginals implies immediately that δ-almost all πx,y have the same marginals µ
15



and ν. The optimality of πx,y for the cost c follows from Theorem 5.6. Thus we get
that any solvable symmetric Kantorovich problem with ergodic marginals admits,
in particular, an ergodic solution.

Thus the symmetric transportation problem can be reduced to the following
steps:

Q1) Construct a solution to the symmetric Kantorovich problem for ergodic
measures.

Q2) Given two non-ergodic measures µ, ν and the corresponding ergodic decom-
positions (7) construct a solution to the Kantorovich problem to measures
σµ, σν on ∆(X) with the cost function KΓ

c .

Consider application of Theorem 5.6 to several classical groups.

Example 5.8. Exchangeable measures revisited. Consider invariant trans-
portation problem for exchangeable measures and c = (x1 − y1)2. The answer
to Q1) is trivial, because ergodic measures are countable powers and the structure
of the corresponding solution is trivial. As for Q2), by the de Finetti theorem the
space of ergodic measures is isomorphic to the space P(R) of probability measures
on R. Thus to resolve an optimal transportation problem for exchangeable mea-
sures, we need to study the optimal transportation problem for a couple of measures
µ0, ν0 on P(R) arising from the de Finetti decomposition. It is clear that the cost
function c on P(R) satisfies

c(p1, p2) = W 2
2 (p1, p2),

where W2 is the standard Kantorovich distance on R.

Example 5.9. Rotationally invariant measures. Consider invariant transporta-
tion problem for measures invariant with respect to operators of the type U × Id,
where U is a rotation of Rn = Prn(R∞) and Id is the identical operator on the or-
thogonal complement to Rn As usual c = (x1− y1)2. This is an example where the
optimal transportation problem admits a precise solution. By a well known result
(see [14]) every rotationally invariant measure µ on R∞ admits a representation

µ =

∫
γtdpµ(t),

where γt is the distribution of the Gaussian i.i.d. with zero mean and variance t and
pµ is a measure on R+. The optimal transportation problem is reduced obviously
to the one-dimensional optimal transportation between pµ and pν .

Example 5.10. Stationary measures. These are the measures which are invariant
with respect to the shift:

T : x = (x1, x2, · · · ) 7→ (x2, x3, · · · ).

Note that the powers of T generates the semigroup {0} ∪ N, but not the group.
However, it makes no difference for our analysis, we are still able to consider the
corresponding ergodic decompositions. In this case the description of ergodic mea-
sures is nontrivial and we do not know any general sufficient conditions for existence
even in the case when both measures are ergodic. Some sufficient conditions are
given in Section 7.
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We conclude the section with the remark that existence of a transportation
mapping for (not necessary optimal) symmetric plan π with ergodic X-marginal
implies ergodicity of π.

Proposition 5.11. Let X = Y be Polish space and Γ be a group of Borel one-to-one
transformations acting on X. Assume that π and µ are Γ-invariant Borel probability
measures on X × Y and X respectively. Assume, in addition, that PrXπ = µ, µ is
ergodic, and π({x, T (x)}) = 1 for some Borel mapping T . Then π is ergodic.

Proof. Assuming the contrary we represent π as a convex combinations of two Γ-
invariant measures

π = λπ1 + (1− λ)π2,

π1 6= π2, 0 < λ < 1. Clearly, this implies a similar decomposition for the projections
µ = λPrXπ1 + (1− λ)PrXπ2. If we show that µ1, µ2 are Γ-invariant and distinct,
we will get a contradiction. The Γ-invariance of both measures follows immediately
from the Γ-invariance of πi. Let us show that µ1 6= µ2. Assume the contrary
and take a Borel set B ⊂ X × Y . We get that πi(B) equals to µi(A), where
A = PrX(B ∩Graph(T ))) (note that A is universally measurable as a projection of
a Borel set). Then it follows that πi coincide because µi do coincide. �

6. Kantorovich duality

In this section we start to study measures which are invariant under actions of
some group. The results of this section will not be used in this paper, but they are
of independent interest.

Let X, Y be Polish spaces, Γ be a locally-compact amenable group with contin-
uous actions LXΓ , LYΓ on X, Y respectively. The action LΓ on the product space
X × Y is defined as follows:

Lg(x, y) = (Lg(x), Lg(y)).

where Lg is an element of LΓ corresponding to g ∈ Γ.
Let us define the space WΓ ⊂ Cb(X × Y ) as the closure of linear span of the

following set:
{f − f ◦ Lg : f ∈ Cb(X × Y ), g ∈ Γ}.

It can be checked that the property

(9)

∫
ωdπ = 0, ∀ω ∈WΓ

of a probability measure π ∈ P(X × Y ) is equivalent to its invariance w.r.t. LΓ.
Let µ ∈ P(X), ν ∈ P(Y ) be invariant under the actions LXΓ , LYΓ respectively.

Then a transport plan π ∈ Π(µ, ν) is invariant iff the property (9) is satisfied. We
denote the set of all invariant transport plans by ΠΓ(µ, ν).

The following Theorem is a refinement of the duality result, which was proved
in [25] (Theorem 2.5). In there we considered only Cb(X × Y ) cost functions (we
warn the reader that the classical duality statement from Section 2 is formulated in

a slightly different but equivalent way: in notations of this section Φ = x2

2 −ϕ,Ψ =
y2

2 − ψ).

Theorem 6.1. Let c ∈ C(X × Y ) be a nonnegative function such that there exist
f ∈ L1(X,µ), g ∈ L1(Y, ν), and

c(x, y) ≤ f(x) + g(y), ∀(x, y) ∈ X × Y.
17



Then, in the setting described above,

inf
π∈ΠΓ

∫
cdπ = sup

Φ+Ψ+ω≤c

∫
X

Φ(x)dµ+

∫
Y

Ψ(y)dν,

where Φ ∈ L1(X), Ψ ∈ L1(Y ), ω ∈WΓ.

Proof. The inequality

inf
π∈ΠΓ

∫
cdπ ≥ sup

Φ+Ψ+ω≤c

∫
Φdµ+

∫
Ψdν

can be easily obtained:

inf
π∈ΠΓ

∫
cdπ ≥ inf

π∈ΠΓ

(
sup

Φ+Ψ+ω≤c

∫
(Φ + Ψ + ω)dπ

)
=

= inf
π∈ΠΓ

(
sup

Φ+Ψ+ω≤c

∫
Φdµ+

∫
Ψdν

)
= sup

Φ+Ψ+ω≤c

∫
Φdµ+

∫
Ψdν.

To obtain the opposite inequality we use the following statement from Theorem 2.5
of [25].

inf
π∈ΠΓ

∫
cbdπ = sup

Φ+Ψ+ω≤cb

∫
X

Φ(x)dµ+

∫
Y

Ψ(y)dν

for cb ∈ Cb(X×Y ), Φ ∈ Cb(X), Ψ ∈ Cb(Y ), ω ∈WΓ. Let cn(x, y) := min{c(x, y), n}
for each n ∈ N . The inequality

sup
Φ+Ψ+ω≤cn

∫
X

Φ(x)dµ+

∫
Y

Ψ(y)dν ≤ sup
Φ+Ψ+ω≤c

∫
X

Φ(x)dµ+

∫
Y

Ψ(y)dν

is obvious for any natural n. Thus it remains to prove that

lim
n→∞

inf
π∈ΠΓ

∫
cndπ = inf

π∈ΠΓ

∫
cdπ.

Recall that the functional π →
∫
cbdπ is weakly continuous for every cb ∈ Cb(X×Y ).

It follows from the characterization (9) of invariant measures, that ΠΓ(µ, ν) is a
closed subset of Π(µ, ν), which is known to be compact. Thus ΠΓ(µ, ν) is compact
in the topology of weak convergence. If πn is the solution for

inf
π∈ΠΓ

∫
cndπ,

the sequence (πn) has to have a subsequence converging to some element π∗ ∈ ΠΓ.
Since for any fixed m ∈ N the inequality: limn→∞

∫
cndπ

∗ ≥
∫
cmdπ

∗ is satisfied,
and, by monotone convergence theorem, limm→∞

∫
cmdπ

∗ =
∫
cdπ∗ ≤

∫
(f(x) +

g(y))dπ∗ <∞, we obtain

lim
n→∞

∫
cndπn ≥ lim

m→∞

∫
cmdπ

∗ =

∫
cdπ∗ ≥ inf

π∈ΠΓ

∫
cdπ.

This fact concludes the proof of the theorem. �

As one can see, the form of the duality theorem is similar to the well-known
classic result, but the difference is substantial: dual functionals are related to each
other in a more complicated way. Moreover, there is no existence result for the dual
problem without any additional assumptions.
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It was shown in [25] (Theorem 5.7) that in case of compact group Γ and under
the assumptions of Theorem 6.1,

inf
π∈ΠΓ

∫
cdπ = sup

Φ+Ψ≤c̄

∫
X

Φ(x)dµ+

∫
Y

Ψ(y)dν.

where c̄ :=
∫

Γ
(c ◦ g)dχ(g) and χ(g) is the probability Haar measure. It is clear that

if cost function is Γ-invariant, the invariant dual problem coincides with the usual
one.

Moameni ([21]) proved that for Γ = Z and an invariant cost function c, the
corresponding invariant dual problem coincides with the usual one, and, moreover,
both prime and dual Kantorovich problems have an invariant solution.

7. Existence of invariant optimal mapping for stationary measures

Recall that the measures on R∞ which are invariant with respect to the shift

σ(x1, x2, . . .) = (x2, x3, . . .)

are called stationary measures. Unlike exchangeable measures, the projections of
stationary measures are in general not invariant with respect to some reasonable
family of linear transformation.

As usual we assume that R∞ is approximated by the sequence of finite-dimensional
spaces Rn in the following sense: we identify Rn with the subset

Pn(R∞) = {x = (x1, x2, · · · , xn, 0, 0, · · · )} ⊂ R∞.
On every finite-dimensional space Rn we will apply the following operator of cyclical
shift:

σn(x1, x2, · · · , xn) = (x2, x3, · · · , xn, x1).

Let us associate with every stationary measure µ the cyclical average of its projec-
tions:

µ̂n =
1

n

n∑
i=1

(µ ◦ P−1
n ) ◦ σ−(i−1)

n .

In addition, let us denote by Rm,n the orthogonal complement of Rm ⊂ Rn:

Rn = Rm × Rm,n, m < n.

The marginal measures are always assumed to satify the following property:
Assumption B. The measures µ, ν are stationary Borel probability measures

such that their projections on every Rn

µ ◦ Pr−1
n , ν ◦ Pr−1

n

have Lebesgue densities and bounded second moments.
We consider symmetric Monge-Kantorovich problem

(10)

∫
(x1 − y1)2 dπ → min

where the infimum is taken among of all stationary measures ΠΓ(µ, ν) with marginals
µ, ν.

Remark 7.1. Minimizing
∫

(x1 − y1)2 dπ is equivalent to maximizing of
∫
x1y1 dπ,

because
∫
x2

1 dπ =
∫
x2

1 dµ,
∫
y2

1 dπ =
∫
y2

1dν are fixed.

Theorem 7.2. Let µ be a stationary measure which satisfies the following assump-
tions:
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1) µ is a weak limit of a sequence of σn-invariant measures µn on Rn.
2) For every m < n there exists a probability measure µm,n on Rm,n such that

the relative entropy (the Kullback-Leibler distance) between µm × µm,n and
µn is uniformly bounded in n:∫

log
( dµn
d(µm × µm,n)

)
dµn < Cm

with Cm satisfying

lim
m

Cm
m

= 0;

3) The cyclical average µ̂n of the n-dimensional projection µ ◦ P−1
n has finite

second moments and admits a density ρn with respect to µ satisfying

sup
n

∫
ρ−εn dµ <∞

for some ε > 0.

Then there exists a mapping T with the properties

• T pushes forward µ onto the standard Gaussian measure on R∞:

ν = γ.

• T a µ-a.e. limit of finite dimensional mappings Tn : Rn 7→ Rn such that
every Tn is a solution to an optimal transportation problem on Rn.

Proof. We consider the sequence of n-dimensional optimal transportation mappings
Tn with cost function

∑n
i=1(xi − yi)2 pushing forward µn onto γn. It follows from

the σn-invariance of µn and γn that the mapping Tn is cyclically invariant:

〈Tn ◦ σn, ei〉 = 〈Tn, ei−1〉, µn − a.e.

Fix a couple of numbers m,n with n > m. Let Tm,n be the optimal transporta-
tion mapping for the cost function

∑m
i=n+1(xi − yi)

2 pushing foward µm,n onto
the standard Gaussian measure on Rm,n. We stress that Tm and Tm,n depend on
different collections of coordinates.

We extend Tm onto Rn in the following way:

Tm(x) = Tm(Pmx) + Tm,n(Pm,nx).

Clearly, Tm pushes forward µm×µm,n onto the standard Gaussian measure on Rn.
Applying Proposition 2.2 to the couple of mappings Tm, Tn, we get

(11)
1

2

∫
‖Tn − Tm‖2dµn ≤

∫
log
( dµn
d(µm × µm,n)

)
dµn.

This implies

(12)

m∑
i=1

∫
〈Tn − Tm, ei〉2 dµn ≤

∫
‖Tn − Tm‖2dµn ≤ 2Cm

for every m,n, m < n.
Let us note that for every i one can extract a weakly convergent subsequence

from a sequence of (signed) measures {〈Tn, ei〉 · µn}. Indeed, for any compact set
K (∫

Kc

|〈Tn, ei〉|dµn
)2

≤
∫
|〈Tn, ei〉|2dµn · µn(Kc) =

∫
x2
i dγ · µn(Kc).
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Using the tightness of {µn} we get that {|〈Tn, ei〉| · µn} is a tight sequence. In
addition, note that for every continuous f

lim
n

(∫
f |〈Tn, ei〉|dµn

)2

≤
∫
x2
i dγ ·

∫
f2dµ.

This implies that any limiting point of {〈Tn, ei〉 · µn} is absolutely continuous with
respect to µ. Applying the diagonal method and passing to a subsequence one can
assume that convergence takes place for all i simultaneously. Consequently, there
exists a subsequence {nk} and a measurable mapping T with values in R∞ such
that

〈Tnk , ei〉 · µnk → 〈T, ei〉 · µ

weakly in the sense of measures for every i. It is easy to check that the standard
property of L2-weak convergence holds also in this case:

(13)

∫
〈T, ei〉2dµ ≤ limk

∫
〈Tnk , ei〉2dµn =

∫
x2
i dγ = 1.

Finally, we pass to the limit in (12) and get

(14)

m∑
i=1

∫
〈T − Tm, ei〉2 dµ ≤ 2Cm.

The claim follows from (13) and the fact that limn

∫
ϕ dµn =

∫
ϕ dµ for every

ϕ ∈ L2(µ). Indeed, if ϕ is bounded and continuous, this follows from the weak
convergence 〈Tn, ei〉 · µn → 〈T, ei〉 · µ. For arbitrary ϕ ∈ L2(µ) we find continuous
bounded cylindrical function ϕ̃ such that ‖ϕ−ϕ̃‖L2(µ) < ε. One has limn

∫
ϕ dµn =

limn

∫
(ϕ− ϕ̃) dµn +

∫
ϕ̃ dµ. The claim follows from the estimate(∫

|ϕ− ϕ̃| dµn
)2

≤
∫

(ϕ− ϕ̃)2 dµ ·
∫
ρ2
n dµ ≤ (sup

n

∫
ρ2
n dµ)ε2.

Note that T commutes with the shift σ: 〈T ◦σ, ei〉 = 〈T, ei−1〉. Indeed, for every
bounded cylindrical ϕ one has∫
ϕ〈Tn, ei−1〉dµn =

∫
ϕ〈Tn(σn), ei〉dµn =

∫
ϕ(σ−1

n )〈Tn, ei〉dµn =

∫
ϕ(σ−1)〈Tn, ei〉dµn.

Here we use that ϕ(σ−1
n ) = ϕ(σ−1) for sufficiently large values of n and the cyclical

invariance of Tn. Passing to the limit in the nk-subsequence one gets∫
ϕ〈T, ei−1〉dµ =

∫
ϕ(σ−1)〈T, ei〉dµ =

∫
ϕ〈T ◦ σ, ei〉dµ.

Hence T ◦ σ = σ ◦ T .
Hence by assumptions of the theorem and (14) we get

lim sup
m

1

m

m∑
i=1

∫
〈T − Tm, ei〉2 dµ = 0.

To prove that T pushes forward µ into γ it is sufficient to show that that
〈Tm, ei〉 → 〈T, ei〉 in measure (see Lemma 3.2). To this end let us approximate
T1 by a bounded function ξ1(x1, . . . , xk) depending on finite number of coordinates
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in L2(µ):
∫
‖T1−ξ1‖2dµ < ε, where ε is chosen sufficiently small. Set: ξi = ξ◦σi−1.

Clearly, we get by the shift invariance

1

m

∫ m∑
i=1

(Ti − ξi)2dµ =

∫
(T1 − ξ1)2dµ < ε.

Hence

lim sup
m

1

m

∫
‖Tm − ξ‖2dµ ≤ ε, ξ = (ξ1, ξ2, . . .).

Let make the change of variables under the cyclical shift σn. One has

〈Tm, ei〉 ◦ σ−(i−1)
m = T1

for all 1 ≤ i ≤ m and

ξi ◦ σ−(i−1)
m = ξ1

as soon as i− 1 + k ≤ m. Hence for the latter values of i one has∫
〈ξ − T, ei〉2dµ =

∫
〈ξ − T, e1〉2 dµ ◦ σin.

The number of indices which do not satify this property is limited by k. Clearly, it
doses not affect the limit of averages. Finally we obtain

ε ≥ lim sup
m

1

m

∫ n∑
i=1

〈ξ − Tm, ei〉2dµ = lim sup
m

∫
〈ξ − Tm, e1〉2dµ̂m.

Recall that
∫

(T1 − ξ1)2dµ ≤ ε. Finally

lim sup
m

∫
〈T − Tm, e1〉2dµ̂m ≤ 2 lim sup

m

∫
〈ξ − Tm, e1〉2dµ̂m

+ 2 lim sup
m

∫
(T1 − ξ1)2dµ̂m ≤ 4ε.

Since ε > 0 is arbitrary, one gets
∫
〈T −Tm, e1〉2dµ̂m → 0. By the Hölder inequality∫

〈T − Tm, e1〉
2
p dµ ≤

(∫
〈T − Tm, e1〉2dµ̂m

) 1
p
(∫

ρ
− 1
p−1

m dµ
) 1
q

.

Take p = 1 + 1
ε we get by the assumption of the theorem that the latter tends to

zero. The proof is complete. �

Remark 7.3. In Theorem 7.2 the Gaussian measure γ can be replaced by any count-
able power of an uniformly log-concave one-dimensional measure.

In the following proposition we prove that the transportation mapping T is
indeed optimal under additional assumptions.

Proposition 7.4. Let the assumptions of Theorem 7.2 hold. Assume in addition
that

lim
n→∞

1

n
W 2

2 (µ̂n, µn) = 0.

Then there exists a solution π of problem (10) in the class of stationary measures
such that π{(x, T (x)), x ∈ R∞} = 1.

22



Proof. We show that the measure π = µ ◦ (x, T (x))−1, which is the weak limit of
measures πn is optimal. Recall that πn gives minimum to m→

∫ ∑n
i=1(xi−yi)2dm

and has marginals µn, γn, hence measure π has marginals µ, γ. Indeed,∫
(x1 − y1)2dπ = lim

n

∫
(x1 − y1)2dπn = lim

n

1

n

∫ n∑
i=1

(xi − yi)2dπn.

If π is not optimal, when there exists a stationary measure π0 with projections µ, ν
such that ∫

(x1 − y1)2dπ0 + ε <
1

n

∫ N∑
i=1

(xi − yi)2dπn

for some ε > 0 and all sufficiently big values of n. Taking into account stationarity
of π0 we get

∫
xiyidπ0 =

∫
xjyjπ0 for every i, j, thus∫ n∑

i=1

(xi − yi)2dπ̂0 + nε =

∫ n∑
i=1

(xi − yi)2dπ0 + nε <

∫ n∑
i=1

(xi − yi)2dπn,

where π̂0 = 1
n

∑n
i=1(π0 ◦ Pr−1

n ) ◦ σ−(i−1)
n . The latter inequality implies

W 2
2 (µ̂n, γn) + nε ≤W 2

2 (µn, γn).

By the triangle inequality

W 2
2 (µ̂n, γn) + nε ≤ (W2(µn, µ̃n) +W2(µ̂n, γn))2

≤W 2
2 (µn, µ̂n) + 2W2(µ̂n, γn)W2(µn, µ̂n) +W 2

2 (µ̂n, γn).

Hence

(15) ε ≤ 1

n
(2W2(µ̂n, γn)W2(µn, µ̂n) +W 2

2 (µ̂n, µn)).

The quantityW 2
2 (µ̂n, γn) can be trivially estimated by 2

∑n
i=1(

∫
x2
i dµ̂n+

∫
y2
i dγn) ≤

Cn. Then the using the assumption of the theorem we get that the right-hand side
of (15) tends to zero, which contradicts to positivity of ε. �

We finish this section with a concrete application of Theorem 7.2. We study a
transportation of a Gibbs measure µ which can be formally written in the form

µ = e−H(x)dx,

where the potential H admits the following heuristic representation:

H(x) =

∞∑
i=1

V (xi) +

∞∑
i=1

W (xi, xi+1).

Here V and W are smooth functions and W (x, y) is symmetric: W (x, y) = W (y, x).
The existence of such measures was proved in [2].

Let us specify the assumptions about V and W . These are a particular case of
assumptions A1-A3 from [2].

1)

W (x, y) = W (y, x);

2) There exist numbers J > 0, L ≥ 1, N ≥ 2, σ > 0, and A,B,C > 0 such
that

|W (x, y)| ≤ J(1 + |x|+ |y|)N−1, |∂xW (x, y)| ≤ J(1 + |x|+ |y|)N−1
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3)

|V (x)| ≤ C(1 + |x|)L, |V ′(x)| ≤ C(1 + |x|)L−1;

4) (coercivity assumption)

V ′(x) · x ≥ A|x|N+σ −B.

Let us define the following probability measure on En:

µn =
1

Zn
exp
(
−

n∑
i=1

(
V (xi) +W (xi, xi+1)

))
,

with the convention xn+1 := x1. Here Zn is the normalizing constant.

Proposition 7.5. The sequence µn admits a weakly convergent subsequence µnk →
µ satisfying the assumptions of Theorem 7.2.

Proof. It was proved in Theorem 3.1 of [2] that any sequence of probability measures

µ̃n = cne
−Hndx−n · · · dxn,

where Hn is obtained from H by fixing a boundary condition x̃

Hn =

n∑
i=1

V (xi) +

n−1∑
i=1

W (xi, xi+1) +W (xn, x̃1),

has a weakly convergent subsequence µ̃nk → µ̃. In addition (see [2]), µ satisfies the
following a priori estimate: for every λ > 0

sup
k∈N

∫
exp(λ|xk|N ) dµ̃ <∞.

The same estimate holds for µ̃n uniformly in n.
Following the reasoning from [2] it is easy to show that the sequence {µn} is tight

and satisfies the same a priori estimate. Thus, we can pass to a subsequence {µn′}
which weakly converges to a measure µ. For the sake of simplicity this subsequence
will be denoted by {µn} again. The limiting measure µ satisfies

(16) sup
k∈N

∫
exp(λ|xk|N ) dµ <∞,

moreover,

(17) sup
n

sup
k∈N

∫
exp(λ|xk|N ) dµn <∞.

Let us estimate the relative entropy. We note that µn and µm (n > m) are
related in the following way:

eZµn∫
eZdµn

= µm × νm,n,

where Z = −W (xm, x1) + W (xm, xm+1) + W (xn, x1), and νm,n is a probability
measure on Em,n. Set: µm,n = νm,n. Then∫

log
( dµn
d(µm × µm,n)

)
dµn =

∫
(Z − log

∫
eZ dµn) dµn.

The desired bound follows immediately from (17) and the assumptions about W .
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In order to prove assumption 3) we note that[
eW (xn,xn+1)+W (x1,xn) · µ

]
◦ P−1

n∫
eW (xn,x1)+W (x1,xn)dµ

=
eW (x1,xn) · µn∫
eW (x1,xn) dµn

.

The normalizing constants can be easily estimated with the help of a priori bounds
for µ and µn. Applying assumptions on W one can easily get that

Ae−B(|xn|N−1+|xq|N−1) ≤ dµn

dµ ◦ P−1
n

≤ AeB(|xn|N−1+|x1|N−1)

where A,B > 0 do not depend on n. Hence, Assumption 3) follows immediately
from (17), the Jensen inequality and convexity if the function x−ε. �

Remark 7.6. Finally, let us briefly discuss when the transportation mapping ob-
tained in Proposition 7.5 by Theorem 7.2 solves the corresponding optimal trans-
portation problem. To this end we apply Proposition 7.4.

Following the estimates obtained in Proposition 7.5 and applying Jensen inequal-
ity one can easily show that the sequence of the entropies∫

log
(dµ̂n
dµn

)
dµ̂n

is bounded. Then the assumption of Proposition 7.4 holds, for instance, if every
µn satisfies the Talagrand inequality

W 2
2 (µn, ρ · µn) ≤ C

∫
ρ log ρdµn

with constant which does not depends on n. We don’t investigate here sufficient
condition for measures µn to satisfy this inequality, we just mention that this clearly
holds in many natural situations (e.g. under assumption of uniform log-concavity
or finiteness of the log-Sobolev constant).

In addition, we emphasize, that in many applications the measures do indeed
satisfy the Talagrand inequality, but Proposition 7.4 should actually work under
much milder assumptions.
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