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PLANE TREES, SHABAT-ZAPPONI POLYNOMIALS AND JULIA
SETS

YURY KOCHETKOV

ABSTRACT. A tree, embedded into plane, is a dessin d’enfant and its Belyi
function is a polynomial — Shabat polynomial. Zapponi form of this polyno-
mial is unique, so we can correspond to an embedded tree the Julia set of its
Shabat-Zapponi polynomial. In this purely experimental work we study rela-
tions between the form of a tree and properties (form, connectedness, Hausdorff
dimension) of its Julia set.

1. INTRODUCTION

Shabat polynomial of a plane bipartite tree is not unique, but we can made it
unique, if we demand that: a) critical values are +1 and —1; b) sum of coordinates
of white vertices (i.e. inverse images of 1) is 1; ¢) sum of coordinates of black
vertices (i.e. inverse images of —1) is —1. Shabat polynomial with these properties
will be called Shabat polynomial in Zapponi form, or Shabat-Zapponi polynomial,
or SZ-polynomial [7]. Thus, we can correspond to a tree the Julia set, i.e. the Julia
set of its SZ-polynomial. We want to understand is there a correspondence between
geometry of a plane tree and such properties of its Julia set as form, connectedness
and Hausdorff dimension?

Remark 1.1. At first it was expected that Julia set of a Shabat polynomial is some-
thing simple with Hausdorff dimension approximately 1 (because Shabat polyno-
mial is a generalized Chebyshev polynomial). This assumption turned out to be
wrong. So, we decided to study the Zapponi form of Shabat polynomial, because
if there exists a SZ-polynomial for a given bipartite tree, then such polynomial is
unique.

In the course of this experimental work we found that: a) there is some similarity
between the form of a given tree and the form of its Julia set; b) the connectedness
of Julia set is probably the main characteristic of an embedded tree.

2. DEFINITIONS AND NOTATIONS

2.1. Zapponi form of Shabat polynomials and its properties. We consider
plane bipatite trees, i.e. trees embedded into plane, with vertices properly colored
in black and white. A polynomial p with exactly two finite critical values — one and
minus one will be called Shabat polynomial [5]. The inverse image T'(p) = p~1[-1,1]
of segment [—1, 1] is a plane bipartite tree, where white vertices are images of 1 and
black — of —1. For each plane bipartite tree T" there exists a Shabat polynomial p
such that trees T and T'(p) are isotopic. Such polynomial will be called a Shabat
polynomial of the tree T'. If polynomials p and g are Shabat polynomials of the
same tree T, then ¢(z) = p(az 4 3) for some constants o # 0 and .
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A Shabat polynomial is in Zapponi form [7], if the sum of coordinates of white
vertices is 1 and black vertices — —1.

Proposition 2.1. Let T be a bipartite tree and p = anz"+an_12""'+...4a1z+ag
— its SZ-polynomial. Then a,—1 = 0.

Proof. Let x1,...,xs be roots of polynomial p — 1 with multiplicities k1, ..., ks,
respectively, and y1,...,vs, l1,...,l; be roots of p+ 1 and their multiplicities. Then

s t s t
Z kiv; = —az_l = leyj = Z kiz; + leyj = -2 az_l. (1)
i=1 n j=1 i=1 j=1 n

Also we have, that

s t
p/(z) _ nanznfl + (n_ 1)an_1zn72 +...4a1 =na, H(Z _./L'i)ki71 H(Z _yj)ljfll
i=1 j=1
Hence,
s t s s t t (n 1)@
— e . e — 9 T 2)On—l

Zkixi—Fleyj —Zkl:vz Z:CZ—FZlJyJ Zy] =-2 o . (2)

=1 Jj=1 =1 =1 j=1 Jj=1
From (1) and (2) we have that a,—1 = 0. O

Corollary 2.1. If p is a Shabat polynomial and a,,—1 = 0, then

s t
i=1 Jj=1

Corollary 2.2. Let T be a bipartite tree. If there exist its SZ-polynomial p, then
p is unique and its field of definition coincides with the field of definition of the tree
T [A].

Proof. If p = ap2™ + apn—12""" 4+ ...+ ag is a Shabat polynomial of a tree T and
an—1 = 0, then p is unique up to variable change z := az and the unique choice of
a in this variable change gives us SZ-polynomial.

Let now K be the field of definition of a tree T" and ¢ = b,2" + ... + by € K|z] be
its Shabat polynomial. The variable change z := z — b,,_1/b,, preserves the field
of definition, but turns coefficient at 2”1 to zero. If X = > z;, then X € K. If
X # 0, then the the variable change z := X - z also preserves the field of definition,
but turns (in new coordinates) X to one. Then ¥ = ) y; = —1. If X = 0, then
Shabat polynomial in Zapponi form does not exist for the tree T'. O

Remark 2.1. In [7] it was proved that SZ-polynomial always exists for trees with
prime number of edges. SZ-polynomial obviously does not exist, if the tree is
symmetric, i.e. if it has a nontrivial rotation automorphism with the center in one
of vertices.

Conjecture. SZ-polynomial exists for non-symmetric trees.

In what follows SZ-polynomial for a tree T' will be denoted pr.
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2.2. Julia sets and Hausdorff dimension. Definitions of Fatou and Julia sets
see, for example, in the book [6]. For us the following properties of Julia sets will
be important.

e Julia set of a polynomial p is the boundary of the basin of infinity, i.e. the
boundary of open set of those points, whose iterations converge to infinity.

o Let Ag be the set of stationary repelling points of p and let A; = p~1(A;_1),
1> 0. Then Julia set of p is the closure of U; A;.

e Julia set of p is connected if and only if iterations of critical points of p
constitute a bounded set. In the case of a SZ-polynomial it means that
connectedness of Julia set is equivalent to the boundedness of iterations of
1 and —1. If iterations of 1 and —1 are both unbounded, then Julia set is
totally disconnected (two dimensional Cantor compact). If iterations of 1,
for example, are bounded, and iterations of —1 — not, then Julia set is a
union of infinite number of connected components [2].

Definition of Hausdorff dimension see in [3]. There are several methods of its
computation. Description of ”box counting” and ”packing dimension” methods see
in [3]. Description of Jenkinson-Pollicott algorithm (JP-algorithm) see in [4].

Remark 2.2. It must be noted that performance of these algorithms differs from case
to case. Box counting method does not work, if Julia set is totally disconnected.
It also demonstrate bad performance, if Hausdorff dimension of Julia set is > 1.5.
If there is a stationary point and derivative in this point is close to 1, then JP-
algorithm demonstrates a bad convergence.

2.3. Julia sets of SZ-polynomials. Let T be a bipartite tree and let ¥ be the
same tree, but with inverse colors (i.e. white vertices in 7" are black in ¥ and black

vertices in T are white in ¥). Then pz(z) = —pr(—z). Let ap be an arbitrary
point and pr(ao) = a1, pr(a1) = az, pr(az) = az and so on. Then pg(—ag) = —a1,
pz(—a1) = —ag, px(—az) = —ag, and so on. It means that Julia sets of polynomials

pz and pr are the same up to rotation on 7 around the origin, i.e. characteristics
of Julia set depends only on tree and not on its coloring. In what follows we will
study one tree from the pair (T, %).

Remark 2.3. Let T be a bipartite tree. By fixing some white vertex of degree > 1 at
1 and some black vertex of degree > 1 at —1 we uniquely define Shabat polynomial
p of T. In this case p will be a postcritically finite polynomial (a pcf-polynomial),
i.e. a polynomial with finite orbit of set of critical points (see [1]). It must be noted
that Shabat pcf-polynomial of a tree T is not unique.

Example 2.1. Let T be a tree with four edges:

>_Q

B (z+1)2(32 - 8)
p——f—l

Then

is its pcf-polynomial and
22z +1)3(22 — 3)
27

pr = +1
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is its SZ-polynomial. Julia sets of p and pr are quite different:

Figure 1. Figure 2.
Julia set of pcf-polynomial p. Julia set of SZ-polynomial pr.

In the left figure iterations of yellow points converge to infinity, of green points —
to —1, of red points — to 1. Julia set is connected. Its Hausdorff dimension approx-
imately equals 1.17 (box counting method) or 1.13 (packing dimension method).

SZ-polynomial pr has a weakly attracting 10-cycle. Let O be a union of the domain
{#z|abs(z) > 3} and 0.01-neighborhood of the attracting cycle. In the right figure
points that get into O in 5 steps or less are white, in 6 or 7 steps — green, in 8, 9 or
10 steps — red. All other points (including points of Julia set) are blue. Julia set
is connected. For its Hausdorff dimension box counting method gives estimation
=~ 1.62, packing dimension method — ~ 1.35, JP-algorithm — ~ 1.22.

3. GENERAL REMARKS

Let T be a tree and pp — its SZ-polynomial. Characteristics of Julia set J(pr)
depend on behavior of iterations of +1. There are several types of this behavior.

3.1. ”Generic” types.

gl: Iterations on +1 converge to an attracting point p. Here Julia set is a
common border of two basins: the basin By, of infinity and the basin B,, of
attracting point p. As all vertices of T' belong to By, then the form of Julia
set resembles the form of the tree (in some general manner). Hausdorff
dimension here is close to 1.

g2: Iterations on +1 converge to an attracting 2-cycle. Julia set approximates
the tree better, than in the previous case. Also the ”fractality” of set is
greater, hence the Hausdorff dimension is greater (in average). Julia sets
in this case are more ”interesting”, than in previous. Good example see in
Figure 4.

g3: Iterations on £1 converge to an attracting k-cycle, where k > 2. Julia sets
can be very "interesting”. The form of Julia set even more closely resembles
the form of the tree. ”Fractality” is great and Hausdorfl dimension is
greater, than 1.5. Good examples see in Figures 2, 3 and 6.

g4: Iterations on +1 converge to infinity. Julia set here is totally disconnected,
but some small similarity to the form of the tree remains. Hausdorff di-
mension can be smaller, than 1. Julia sets are rather "uninteresting”. See
example of s3 case in Figure 5.
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3.2. ”Special” types.

s1: Iterations of 1 (for example) converge to an attracting point and iterations
of —1 converge to an attracting k-cycle, k > 1.

s2: Iterations of 1 converge to one attracting k-cycle, k > 1, and iterations of
—1 converge to another attracting l-cycle, [ > 1.

s3: Tterations of 1 (for example) converge to an attracting point and iterations
of —1 converge to infinity. Julia set here is a union of infinite number of
connected components. Good example see in Figure 5.

Remark 3.1. In what follows we will give several most interesting examples of Julia
sets of SZ-polynomials.

4. TREES WITH FIVE EDGES

In this section for each 5-edge tree T" we will compute its SZ-polynomial pr and
find characteristics of J(pr). The passport of a tree T is the list of degrees of white
vertices (in non increasing order) and the list of degrees of black vertices (also in
non increasing order). We will always assume that ”white” list is lexicographically
not less, than ”black” list.

Estimations of Hausdorff dimension we will write in order: the box counting esti-
mation, the packing estimation and the JP-algorithm estimation. If some method
is inapplicable, then we will put ”?” in the corresponding position.

(1) Passport (4,1]2,1,1,1).

(3z+1)4(32z —4)
: = 1.
T = prT 198 +

Polynomial pr has an attracting 24-cycle. Iterations of £1 converge to this
cycle, i.e. pr is of g3-type. The set J(pr) is very similar to the set in Figure
2. Hausdorff dimension: ~ 1.65, ~ 1.32, 7.

(2) Passport (3,2]2,1,1,1).

23 _32
T:>_(H I

Polynomial pr has an attracting 2-cycle:
0.607872363 — 0.879463661 — 0.607872363

Iterations +1 and —1 converge to this cycle, i.e. pr is of g2-type. Hausdorff
dimension: ~ 1.24, ~ 1.19, 7.

(3) Passport (3,1,1]3,1,1).

1
T: =  pr=—122°4+102° - %.

Iterations of +1 and —1 converge to infinity, i.e. pr is of gd-type. Julia set
is totally disconnected. Hausdorff dimension: 7, ~ 0.85, ~ 0.83.
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(4) Passport (3,1,1]2,2,1).

(22 +1)3(22% — 32+ 18)

1.
432 +

T: = pr =

Iterations of +1 and —1 converge to infinity, i.e. pr is of g4. Hausdorff
dimension: 7, &~ 1.11, ~ 1.15.

(5) Passport (2,2,1]2,2,1).

2% — 523 + 5z
T: e—0—e—0——0 = pr = f .
The polynomial pr has two attracting 4-cycles:
0.500469 — 0.953491 — 0.610612 — 0.999810 — 0.500469
and

—0.500469 — —0.953491 — —0.610612 — —0.999810 — —0.500469

Iterations of 1 converge to the first cycle and iterations of —1 — to the
second, i.e. pr is of s2-type. Hausdorff dimension: ~ 1.60, ~ 1.50, 7.

5. TREES WITH SIX EDGES

Only one non-symmetric 6 edge tree generates a connected Julia set:

—20 4624 +423—-922 12244
T: = pr = 3 .

The polynomial pr has a superattracting 2-cycle: 1 <» —1, p(1) = p/(—1) = 0,
i.e. pr is of g2-type. Hausdorff dimension: ~ 1.21, ~ 1.15, 7. Julia set is similar to
Julia set in Figure 4.

6. TREES WITH SEVEN EDGES

Here we have many trees that generate connected Julia sets. For such tree T we
will present behavior of iterations of +1, characteristics of Julia set J(pr) and the
picture of this set in interesting cases. In the picture of Julia set points that quite
fast come into attracting domain of infinity (or into attracting domain of attracting
point or a cycle) are white, points that come there more slowly are yellow, even
more slowly are green, then light red, then deep red.

We will use the following notations:

e +1 — oo means that iterations of 1 and —1 converge to infinity, so Julia
set is totally disconnected;
”p” means that SZ-polynomial has an attracting point;

e "¢(k)” means that SZ-polynomial has an attracting k-cycle;

e ”1 — ¢1(2),—1 — ¢2(3)” means that iterations of 1 converge to attracting

2-cycle and iterations of —1 to attracting 3-cycle.
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1) (6,1]2,1,1,1,1,1).

\/‘< o = £1-—c¢4); dim: 1.38,1.38,1.17.

The polynomial pr is of g3-type. Julia set here is similar to Julia set in Figure 2.

2) (5,212,1,1,1,1,1).

><—04 = +1—¢(2); dim: 1.25,1.24,1.17.

The polynomial pr is of g2-type. Julia set here is similar to Julia set in Figure 4.

) (5,1,1]2,2,1,1,1).

>§ +1—=p; dim: 1.11,1.07,1.31.

Polynomial pr is of gl-type. Convergence rate is quite good: |p/(p)| ~ 0.35.
4) (4,3]2,1,1,1,1,1).

+—< +1—p; dim: 1.21,1.15, 7.

Polynomial pr is of gl-type. Convergence rate is weak: |p/-(p)| ~ 0.95.
5) (4,2,1]2,2,1,1,1).

I
|

Polynomial pr is of gl-type.
) (4,1,1,1]3,2,1,1).

@—§< +1—c(4); dim: 1.50,1.38,1.33.

o = *£1—p; dim: 1.13,1.19,0.99.
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Polynomial pr is of g3-type. Here we have a high rate of convergence to the
attracting cycle: the product of derivatives in cycle points is around 1074,

Figure 3

7) (4,1,1,1]2,2,2,1).

= +1—p; dim: 1.16,1.12,7.

The polynomial pr is of gl-type.

8) (3,2,2(3,1,1,1,1).

=  +£1-5¢(2); dim: 1.30,1.26,7.

The polynomial pr is of g2-type. Here we have a medium rate of convergence to
the attracting cycle: the product of derivatives in cycle points is around 0.38.

A E
s » T
y T 5 -
» k& -
J(pr) : “
P s
e, B &l
o - 2 J‘T - ;“
»
™

Figure 4
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9) (3,2,2(2,2,1,1,1).

< +1—o00; dim: ?7,1.22,7.

The polynomial pr is of g4-type.

10) (3,2,2(2,2,1,1,1).

>_O_M

The polynomial pr is of s2-type.

) (3,2,1,1]3,2,1,1).

—1>¢(2);1—c¢(); dim: 1.63,1.55,7.

)—< +1—p; dim: 1.02,1.02,1.03.

The polynomial pr is of gl-type.

) (3,2,1,1,2,2,2,1

%

The polynomial pr is of s3-type.

—1—=p;

Figure 5

1 — oo ;dim: 1.32,1.28,7.



10 YURY KOCHETKOV

7. TREES WITH EIGHT EDGES

There are five trees whose SZ-polynomials have an attracting point, i.e. are of

S NS -
™~

I I

=< =<

There are three trees whose SZ-polynomials has an attracting 2-cycle, i.e. are of

K K

Next three cases are more interesting.

1. = —1—=¢?),1—0p.

Polynomial pp is of sl-type.

2, T =  +1-¢(7)

|

Polynomial pr is of g3-type and its Julia set is visually interesting.

Figure 6
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= +1 = ¢(7)

It is an interesting example of g3-type polynomial pr that is not defined over R,
i.e. where T is not mirror symmetric.
8. SOME RESULTS ABOUT TREES WITH BIG NUMBER OF EDGES

If the passport is relatively simple, then SZ-polynomials can be computed for trees
with big number of edges. Here are some examples.

Example 8.1. Passport (n,1]2,1,...,1). If n > 7, then Julia set is totally dis-
connected. Otherwise:

n=3:41—=¢(10);n=4:+1 5 c(24);n=5:4+1 s o00; n=06: %1 — c(4).

Passport (n,2|2,1,...,1). If n > 13, then Julia set is totally disconnected. Other-
wise:

n= 3:+t1—=¢(2); n= 4:+1—c(2);
n=5:+t1—-¢(2); n= 6:+1—c(2);
n= T:+t1—=c¢(4); n= 8:+1— c(16);
n=9:+1 —>00; n=10:%1— c(3);
n=11:+1 s 00; n=12:41— ¢(5).

Passport (n,32,1,...,1). If 4 <n < 10 then £1 — ¢(2). If n > 19, then Julia set
is totally disconnected. Otherwise:

n=11:+1 - c(4); n=12:+1—-c¢(4); n=13:+1 — ¢(3);
n=14:+1—¢(5); n=15:+1—=00; n=16:+1— ¢(3);
n=17:+1 5 00; n=18:+1— ¢(6).

Passport (13,1,1]2,2,1,...,1).

1) +1 — 00 2) +1 — 00

3) +1 - 00 4) +1 - 00
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5) +1—p 6) +1 5 p

This example demonstrates that when we consider a set of trees with the same
passport, then almost all trees in this set have totally disconnected Julia sets, but
for "nearly symmetric” trees this set is connected.

9. CONCLUSION

Further work in this field is related to the following problems.

Problem 1. Prove that SZ-polynomials exist for all non-symmetric trees, or find
an example of non-symmetric tree, for which SZ-polynomial does not exist.

Problem 2. When SZ-polynomial pr of a tree T has an attracting cycle c¢(k),
k> 17

Problem 3. Construct an analogue of SZ-polynomial for genus zero maps and
study Julia sets for them.
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