



Abstract — An approach of using of the DSM-platform

MetaLanguage for integration of various modeling systems is

presented. This tool allows to design visual domain-specific

modeling languages and to create domain models with developed

languages. The MetaLanguage system includes components for

describing transformations of models from one formal notation to

another. Domain-specific modeling permits various specialists to use

concepts from different domains at creating and analyzing of models.

An integration of DSM-platforms with tools of models analysis

allows to involve domain experts, end-users in the process of

constructing and analyzing of models; to reduce the complexity of

models development; to fulfill research of models from various

points of view with usage of various methods and tools.

Keywords — Domain-specific languages, language workbench,

modeling languages, models transformation, simulation.

I. INTRODUCTION

Information and analytical systems, which are used for

solution of various management tasks, are created with

technologies, which are based on the models. Mainly for

models creation graphical notations, diagrams of various types

are used. These notations and diagrams allow to describe

objects of the modeled business system, their properties,

relations between them, operations executed over them,

business processes, etc.

The important conditions for reducing the complexity of

users work are the possibility of integration of various

information systems, the reusing of created models, and their

transfer from one system to another for solving of various

tasks. The transformation of models from one modeling

language to another can be required [1].

These requirements can be implemented on the basis of

creation of domain-specific modeling (DSM) tools, which are

called the DSM-platforms (language workbenches), the main

purpose of these tools is development of high-level domain-

specific languages (DSLs), designed to create models of

systems, focused on solving problems in various domains [2],

This work was supported in part by Russian Foundation for Basic

Research (grants 14-07-31330, 12-07-00302, 13-07-96506).

E. B. Zamyatina is with the National Research University Higher School

of Economics, Perm, Russia (e-mail: E_Zamyatina@mail.ru).

L. N. Lyadova is with the National Research University Higher School of

Economics, Perm, Russia (e-mail: LNLyadova@gmail.com).

A. O. Sukhov is with the National Research University Higher School of

Economics, Perm, Russia (phone: (+7) 912-589-0986; e-mail:

Sukhov.psu@gmail.com).

[3], [4]. The language workbench can become the basis for

integration of various tools intended for development of

information systems, based on the created models (CASE-

tools), and for systems analysis (in particular, simulation

systems) [5]. At DSLs usage not only domain singularities, but

also qualification of users can be considered.

Maximal flexibility of modeling tools may be obtained at

creating the multilevel models describing the modeled systems

from various points of view and with different levels of details.

For matching of various system descriptions it is necessary to

construct the whole hierarchy of models: model, metamodel,

meta-metamodel, etc., where model is an abstract description

of system characteristics that are important from the point of

view of the modeling purpose, metamodel is a model of the

language, which is used for models development, and meta-

metamodel (metalanguage) is a language, on which

metamodels are described [6].

As a part of the delivered problem the complex of tasks on

creation of DSM-platform, which satisfies the following

requirements, should be solved:

 possibility of modeling languages constructing for a wide

range of domains;

 possibility of multi-level modeling (it allows to modify

the metalanguage description, to extend it with new

constructions, thus approaching the metalanguage to the

specificity of domain);

 possibility of modification of modeling language

description without regeneration of source code of DSLs

editor;

 automatic support in a consistent state of the metamodels

and models description at modification of a

metalanguage or a metamodel;

 uniformity of tools of representation, description and

usage as models and metamodels: creation of models at

different levels of hierarchy and operation with them

should be carried out uniformly, using the same tools;

 availability of tools for models transformations that allow

to convert models as between different levels of the

hierarchy, and within the same level (between various

modeling languages);

 usability of language toolkits for various categories of

users: professional developers (programmers, system

analysts, date base designers, etc.), domain experts,

business analysts, end-users.

An Integration of Modeling Systems

Based on DSM-platform

Lyudmila N. Lyadova, Alexander O. Sukhov, Elena B. Zamyatina

II. DEVELOPMENT OF MODELS IN METALANGUAGE

All the possibilities and demands mentioned above are not

realized in any language workbench nowadays [7]. But DSM-

platform MetaLanguage attempts to overcome these

disadvantages. The MetaLanguage system is designed to create

visual dynamic adaptable domain-specific modeling

languages, to construct models using these languages and to

transform created models in various textual and graphical

notations.

One of the basic elements of language workbench is the

metalanguage. The basic elements of the metalanguage of the

presented system are entity, relationship and constraint [8].

The entity describes a particular construction of modeling

language, i.e. it is the domain object, important from the point

of view of the solving problem. The relationship is used for

describing a physical or conceptual links between entities. The

Metalanguage system allows to create three types of

relationships: association, aggregation, inheritance. The

constraints define the rules of models constructing. The

constraints are defined for the entities and relationships

between them.

Let’s describe the process of building models using the

MetaLanguage system (see Fig. 1).

Entity

creation/

modification

Metamodel creation/modification

Specifying the

relationships

between entities

Set constraints

imposed on

metamodel

Entities instances

creation/modification

Model creation/modification

Relationships instances

creation/modification

Checking of constraints

imposed on entities

Validation

Checking of constraints

imposed on relationships

Transformation

Description of model

transformation

Execution of model

transformation

Fig. 1. Process of creation/modification of domain models

with MetaLanguage system usage

The first stage supposes developing of a metamodel. The

metamodel is a domain-specific language intending to solve

specific problems of analyzing domain. Metamodel developers

have to use a model’s editor. The developer obtains an

extensible dynamically customizable visual modeling language

as a result of metamodel creation.

Then users (model designers, system analysts) can develop

models, which contain instances of specific entities and

relations between them, with application of constructions of

created DSL. Thereafter, it is necessary to validate the

developed model: to check if all constraints for the entities and

relations between them are met.

A developer can store designed models in repository.

User can transform model in accordance to rules defined in

system [9]. So the designed model can be translated to one or

other languages and can be exported to external program

systems (simulation system, CASE-tool, for example).

Developed DSL can be used as a metalanguage. The whole

hierarchy of languages can be created on its basis. This

hierarchy allows to work with models of various abstraction

levels, focused on solving of various tasks by different

categories of users in terms of their domain [10]. At

metamodel modification, the system automatically will make

all necessary changes in models created on the basis of this

metamodel.

Different categories of users are involved in development of

domain-specific languages and creation of models with their

usage (see Fig. 2).

Main

developer

Main

developer

Main

developer

Main

developer

Assistant

Development of

DSL

Modification of

DSL’s description

Models creation

and transformation

Assistant

IT-specialist

Domain expert

End-user

Fig. 2. Involvement of various categories of users

in the development of DSLs and models

So developers (IT specialists) with the direct participation

of domain experts create DSL, describing the basic concepts of

the domain, relationships between them and the constraints,

imposed on a metamodel, define rules of models

transformations. Domain experts and end-users with the

developed language build domain models and fulfill

transformations. If it is necessary to modify modeling language

the domain experts can independently make appropriate

changes in language description or invite the IT-specialists for

performing of all necessary modifications.

III. DSM-PLATFORM AS A BASE OF INTEGRATION

Creation of information systems with usage of modern

CASE-tools is based on development of the various models

describing the information system domain, defining data

structures and algorithms of system functioning [11]–[14]. The

choice of tools frequently determines also a choice of language

for models description. Thus, the used tool actually “imposes”

to developers and users a specific modeling language, which

more often operates with terms of some programming

paradigm, therefore tools do not allow to domain experts to

participate in development and modification of models, that is

a necessary condition for creation of effective management

systems, increase of efficiency of their adaptation, reducing of

maintenance complexity.

One of approaches to solving of this problem is integration

of DSM-platforms with tools of information systems

development or directly with the information systems, which

fulfill interpretation of models at the stage of functioning.

Thus, the DSM-platform can become the basis for integration

of various tools intended for development of the information

systems on the basis of created models and for the analysis of

systems via formal models. So, for example, the

MetaLanguage system can be integrated with CASE-tools,

business analysis systems, simulation systems (see Fig. 3).

Fig. 3. Scheme of usage of MetaLanguage system in the process

of creation and maintenance of information systems

Instead of describing models in the notation of visual

general-purpose languages, experts with usage of

MetaLanguage system can develop DSLs for creation and

maintenance of models. After designing of domain-specific

languages, the developers with the participation of domain

experts create models of information systems. For export of

designed models to CASE-tool, it is necessary preliminarily to

fulfill conversion of model description to one of standard

modeling languages, supported by this tool.

If the developed product is an information system with

interpretation of models, the DSM-platform can be used even

at the stage of system functioning, so end-users can modify

description of domain model, business processes developed

with usage of DSLs to adapt system for new conditions.

For business processes analysis and optimization the

simulation systems can be used. For carrying out simulation

experiments, it is necessary to transform business processes

models, created with usage of DSLs or with notation of other

modeling languages, in graphical/textual notation, supported

by simulation system. After research of business processes

their reengineering with usage of domain-specific languages,

created in the MetaLanguage system, without source code

regeneration and participation of IT-experts can be fulfilled.

Thus, the MetaLanguage system can be used both at the

process of development and maintenance of information

systems, and as the extension of systems analysis tools.

IV. INTEGRATION OF METALANGUAGE SYSTEM WITH

SIMULATION SYSTEMS

It is known that in some cases, simulation is a single method

of research of complex dynamic systems, and it is widely

applied in various fields of science and industry. Development

of science and technologies, and, hence, increase of

complexity of researched systems, puts more and more

complex tasks for simulation. For obtaining of reliable

information during simulation experiments it is required to

involve experts from different fields of knowledge, and

therefore, simulation software should allow to researchers to

work in various modeling environments, using different

systems of concepts, varied visual or textual languages. For

example, at business processes modeling, researchers can

attract graph theory, Petri nets or queuing networks. In this

case, it is necessary, that a modeling system submitted the user

possibility of using not only of various mathematical

apparatus, but also of various modeling languages, which

operate with terms clear to various categories of users.

Queuing networks (QN) are widely used to analyze the

characteristics of business systems in various areas. Various

methods and tools (statistical analysis, simulation, etc.) are

used for research. Let’s consider the example: we’ll design

new DSL for QN modeling with MetaLanguage system and

then we’ll define rules for the model transformation from

designed DSL to the GPSS modeling language.

The metamodel of this domain-specific language contains

following entities (see Fig. 4):

 Generator is the entity, which is responsible for

generation of requests flow (transacts flow), expecting

service in system. Intervals between requests arrivals are

the random values with a certain distribution. This entity

has the following attributes “Name”, “Initial delay”,

“Amount of transactions”, “Priority”.

 Queue is the entity, representing set of transacts, which

expect service. It is waiting buffer of the servicing device

if it is occupied. The entity “Queue” has the following

attributes: “Name”, “Maximum length” and “Current

length”.

 Servicing device is the entity, which is responsible for

service of requests. The device possesses limited

possibilities of transacts service. Handling of request

takes some time. The service time is a random value with

a certain distribution function. The attributes of the entity

are “Name”, “Amount of channels”, “Service time”.

 Separator is the entity, allowing to create multiple copies

of transacts, each of which will request claim of service.

The attributes of this entity are “Name”, “Amount of

copies”, “Block” (name of the block, to which it is

necessary to transmit copy of request for service).

 Collector is the entity, allowing to integrate multiple

transacts flows into a single flow. The entity “Collector”

has the attributes “Name” and “Amount of flows”.

 Terminator is the entity, deleting transacts from model.

 Distribution is the entity, which is parent for the entities

“Normal distribution”, “Uniform distribution”,

“Student’s distribution”, etc.

 Normal distribution is a distribution, according to which

a generation of new requests and/or their service is

fulfilled. This entity has two attributes “Expected value”,

“Variance”.

 Uniform distribution is a distribution, according to which

generation of new requests and/or their service is

fulfilled. This entity has two attributes “Minimum value”,

“Maximum value”.

 Student’s distribution is a distribution, according to

which generation of new requests and/or their service is

fulfilled. This entity has attribute “Amount of degrees of

freedoms”.

Fig. 4. Simplified metamodel of language for simulation

models description

Further, let’s describe relationships between metamodel

entities. As can be seen from Fig. 4, the metamodel contains

the following relationships of association:

 unidirectional relationship “Create transactions”,

connecting the entity “Generator” with entities “Queue”

and “Separator”, shows that after creation of requests

they can be placed in a queue for service or be split into

multiple flows;

 bidirectional relationship “Service transactions” allows to

indicate, what device handles requests in a queue and

where they go after service;

 unidirectional relationship “Send transactions”,

connecting entities “Servicing device” and “Separator”,

allows to split requests into multiple flows;

 unidirectional relationship “Combine flows” connects

entities “Servicing device” and “Collector” and indicates,

what collector combines flows of requests for service

after their handling by multiple servicing devices;

 unidirectional relationship “Split transactions”,

connecting entity “Separator” and “Queue”, allows to

indicate in what queues requests after their separation

into several flows should be placed;

 unidirectional relationship “Delete transactions”,

connecting entities “Servicing device” and “Collector”

with entity “Terminator”, allows to indicate that after

service or combine the transacts should be removed.

The metamodel of modeling language for creation of

QN-models also contains three inheritance “Is” that connect

the abstract entity “Distribution” with child entities “Normal

distribution”, “Uniform distribution”, “Student’s distribution”.

Child entities inherit all parent entity’s relationships.

The aggregation “Has distribution” allows to specify

distribution, according to which generation of new requests

(transacts) and/or their service is fulfilled.

In Fig. 5 the example of model, constructed with usage of

the developed modeling language, is presented. As can be seen

from the figure, the model contains generator, four servicing

devices (SD1, SD2, SD3, SD4), four queues (QQ1, QQ2,

QQ3, QQ4), separator, collector and terminator; two

distributions is used. This model describes QN for any

domain.

Fig. 5. Exapmle of QN-model

Let’s describe the transformation rules of the constructed

modeling language to the notation of GPSS language. User can

generate the program in GPSS language applying these rules to

the constructed model, and then user can make the analysis of

model with usage of the simulation system GPSS.

The rule “Generator_Norm”, which converts an instance of

entity “Generator”, connected by an instance of aggregation

relationship with an instance of entity “Normal distribution”,

into the appropriate command of GPSS language, looks like:



GENERATE

(NORMAL(1,

<<Normal distribution.Expected value>>,

<<Normal distribution.Variance>>)), ,

<<Generator.Initial delay>>,

<<Generator.Amount of transactions>>,

<<Generator.Priority>>

Symbols “<<” (double opening angle brackets) and “>>”

(double closing angle brackets) are used for selection of rule

dynamic part, which allows to get values of attributes of

entities and relationships instances.

Rules for other types of distributions are described

similarly.

The transformation rule “Queue”, which converts connected

instances of entities “Queue”, “Servicing device”, “Normal

distribution” into the appropriate code of GPSS language, has

the following form:



QUEUE <<Queue.Name>>

SEIZE <<Servicing device.Name>>

DEPART <<Queue.Name>>

ADVANCE (NORMAL(1, <<Normal

distribution.Expected value>>,

<<Normal distribution.Variance>>))

RELEASE <<Servicing device.Name>>

The rule “Separator” transforms an instance of entity

“Separator” into SPLIT command of GPSS language. This

rule looks like:


SPLIT <<Separator.Amount of copies>>,

<<Separator.Block>>

The rule “Collector”, which converts an instance of entity

“Collector” into ASSEMBLE command of GPSS language,

has the following form:

 ASSEMBLE <<Collector.Amount of flows>>

The rule “Terminator”, which converts an instance of entity

“Terminator” into the appropriate command of GPSS

language, looks like:

 TERMINATE 1

After applying of the described transformations to the model

presented in Fig. 5 the MetaLanguage system has generated

the following code in GPSS language:

GENERATE (UNIFORM(1, 2, 8)),,20,100,1

QUEUE QQ1

SEIZE SD1

DEPART QQ1

ADVANCE (NORMAL(1, 3, 1))

RELEASE SD1

QUEUE QQ2

SEIZE SD2

DEPART QQ2

ADVANCE (NORMAL(1, 3, 1))

RELEASE SD2

SPLIT 1, QQ4

QUEUE QQ3

SEIZE SD3

DEPART QQ3

ADVANCE (NORMAL(1, 3, 1))

RELEASE SD3

QUEUE QQ4

SEIZE SD4

DEPART QQ4

ADVANCE (UNIFORM(1, 2, 8))

RELEASE SD4

ASSEMBLE 2

TERMINATE 1

The generated code of model was used for simulation

running in GPSS system. The translation of any other visual

model developed with created DSL, won’t demand additional

efforts of model designer or programmer.

V. CONCLUSION

The Metalanguage system, including transformation

component, supports integration of different modeling

systems. It provides interoperability of the languages and

models in different information and analytical systems. This

DSM-platform allows to reduce the complexity of analysts

work, to increase efficiency of information systems

functioning. Presented language workbench is quite convenient

and flexible tool for building of modeling languages and

transformation rules of the created models. Usage of the

system allows to create DSLs and to determine transformations

operatively. Users don’t need programming language to

develop languages or models. They operate with visual

constructions or textual code of initial and target modeling

languages.

The research prototype of MetaLanguage system has been

used for development of several domain-specific languages, in

particular, language for modeling of administrative regulations

[15], for manufacturing processes modeling, applications for

mobile devices, etc.

In the future, it is planned to develop the tools, which allow

to automate the creation of visual DSLs on the basis of

ontologies, that are obtained on the basis of on the analysis of

corpus of domain documents. It will reduce the complexity of

the creation of such languages and allow domain experts to

participate in the process of DSLs creation.

In addition, it is planned to fulfil integration of the

MetaLanguage system with simulation system Triad.Net [16]-

[18].

REFERENCES

[1] S. Sendall, W. Kozaczynski, “Model transformation: the heart and soul

of model-driven software development”, IEEE Software, vol. 20,

pp. 42–45, 2003.

[2] J. Karna, J.-P. Tolvanen, S. Kelly, “Evaluating the use of domain-

specific modeling in practice”, in Proc. of the 9th Workshop on

Domain-Specific Modeling at OOPSLA, Orlando, 2009, pp. 147–153.

[3] M. Velter. (March 2011). MD*/DSL best practices Update March 2011.

[Online]. Available: http://www.voelter.de/data/pub/DSLBestPractices-

2011Update.pdf.

[4] Z. Melis, J. Zacek, F. Hunka, “Domain-specific modelling of business

processes”, in Proc. of the 2013 International Conference on Systems,

Control, Signal Processing and Informatics, Rhodes Island, Rhodes

Island, 2013, pp. 481–487.

[5] K. Balasubramanian, D. C. Schmidt, Z. Molnar, A. Ledeczi,

“Component-based system integration via (meta)model composition”, in

Proc. of the 14th Annual IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems, Tucson,

Arizona, 2007, pp. 93–102.

[6] J. M. Alvarez, A. Evans, P. Sammut, “Mapping between levels in the

metamodel architecture”, in Proc. of the 4th International Conference

on The Unified Modeling Language, Modeling Languages, Concepts,

and Tools, Toronto, 2001, pp. 34–46.

[7] A. O. Sukhov, “Comparing of the system of visual domain-specific

languages development”, Mathematics of Program Systems, Vol. 9,

pp. 84-111, 2012. (in Russian)

[8] A. O. Sukhov, L. N. Lyadova, “MetaLanguage: a tool for creating visual

domain-specific modeling languages”, in Proc. of the 6th

Spring/Summer Young Researchers’ Colloquium on Software

Engineering, Perm, Russia, 2012, pp. 42–53.

[9] A. O. Sukhov, L. N. Lyadova, “Horizontal transformations of visual

models in MetaLanguage system”, in Proc. of the 7th Spring/Summer

Young Researchers’ Colloquium on Software Engineering, Kazan,

Russia, 2013, pp. 31–40.

[10] E. B. Zamyatina, L. N. Lyadova, A. O. Sukhov, “Multilanguage

modeling with MetaLanguage DSM-platform usage”, Informatization

and Communication, no. 5, pp. 11-14, 2013. (in Russian)

[11] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, E. Neema,

“Developing applications using model-driven design environments”,

Computer, vol. 39, pp. 33–40, 2006.

[12] J.-M. Favre, “Towards a basic theory to model driven engineering”, in

Proc. of the Workshop on Software Model Engineering, Lisboa, 2004,

pp. 48–55.

[13] R. France, B. Rumpe, “Model-driven development of complex software:

a research roadmap”, in Proc. of the Workshop on the Future of

Software Engineering, Washington, 2007, pp. 37–54.

[14] J. Hutchinson, M. Rouncefield, J. Whittle, “Model driven engineering

practices in industry”, in Proc. of the 33rd International Conference on

Software Engineering, Waikiki, USA, 2011, pp. 633–642.

[15] L. N. Lyadova, A. O. Sukhov, “Modeling of administrative regulations

using opportunities of MetaLanguage language workbench”, in Proc.

International Conference on Information Systems Development

Technologies, Gelendzhik, 2013, part 2, pp. 45–49. (in Russian)

[16] I. S. Volegov, E. B. Zamyatina, “An ontological approach to the

integration of the components of a simulation model Triad.Net”, in

Proc. of the International Scientific Conference on Open Semantic

Technologies of Intelligent Systems, Minsk, 2012, pp. 229–236. (in

Russian)

[17] A. I. Mikov, E. B. Zamyatina, E. A. Kubrak “Implementation of

simulation process under incomplete knowledge using domain

ontology”, in Proc. of the 6-th EUROSIM Congress on Modeling and

Simulation, Ljubljana, 2007, vol. 2, pp. 1–7.

[18] E. B. Zamyatina, A. I. Mikov, “Software tools of simulation system

Triad.Net for it’s adaptability and openness”, Informatization and

Communication, no. 5, pp.130–133, 2012. (in Russian)

