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1.  Introduction

Quantum cryptography—quantum key distribution is intended 
to transmit secret keys through a quantum communication 
channel. Moreover, the channel is not controlled by legiti-
mate users so the eavesdropper can make any modifications 
to the channel. An auxiliary classic authentic channel is also 
open and available for listening [1]. The secrecy of the keys is 
guaranteed by fundamental restrictions of quantum mechanics 
on distinguishability of non-orthogonal quantum states [1, 2]. 
The no-cloning theorem [3] guarantees that any acquisition of 
information about one of the sets of non-orthogonal quantum 
states will inevitably lead to a perturbation of the quantum 
states, which are detected at the receiving side. The inevitable 

perturbation of non-orthogonal states when extracting infor-
mation from them is not limited to single-photon states and 
is valid for any of the non-orthogonal states, including multi-
photon states. At the same time, the detection of disturbance 
of multiphoton states requires a corresponding set of measure-
ments. In the case of a pair of non-orthogonal states, measure-
ments that will detect any disturbance of the states should be 
kept to the projection on the subspace orthogonal to this mul-
tiphoton state. Such measurements are practically impossible 
to realize today, though there are no fundamental prohibitions 
against it. Nowadays measurements are limited to avalanche 
detectors, which do not distinguish even the number of pho-
tons, not to mention the more complex measurements. Today 
real systems of quantum cryptography use strongly attenuated 
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Abstract
The problem of quantum key distribution security in channels with large losses is still open. 
Quasi-single-photon sources of quantum states with losses in the quantum communication 
channel open up the possibility of attacking with unambiguous state discrimination (USD) 
measurements, resulting in a loss of privacy. In this letter, the problem is solved by counting 
the classic reference pulses. Conservation of the number of counts of intense coherent pulses 
makes it impossible to conduct USD measurements. Moreover, the losses in the communication 
channel are considered to be unknown in advance and are subject to change throughout the 
series parcels. Unlike other protocols, differential phase shift (Inoue et al 2002 Phys. Rev. 
Lett. 89 037902, Inoue et al 2003 Phys. Rev. A 68 022317, Takesue et al 2007 Nat. Photon. 
1 343, Wen et al 2009 Phys. Rev. Lett. 103 170503) and coherent one way (Stucki et al 2005 
Appl. Phys. Lett. 87 194108, Branciard et al 2005 Appl. Phys. Lett. 87 194108, Branciard et al 
2008 New J. Phys. 10 013031, Stucki et al 2008 Opt. Express 17 13326), the simplicity of the 
protocol makes it possible to carry out a complete analysis of its security.
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coherent states, which are quasi-single-photon states with 
Poisson statistics on the number of photons.

There is another factor that is lacking in the no-cloning theo-
rem [3]—losses. This theorem does not forbid obtaining reliable 
information about one of the non-orthogonal states, but with a 
probability of outcome of less than one. More precisely, if the set 
of quantum states is linearly independent then it is a necessary 
and sufficient condition for the existence of unambiquous meas-
uremnets (UM or USD—unambiguous state discrimination) [4]. 
Strongly attenuated coherent states, which are used as informa-
tion states in quantum cryptography protocols satisfy these con-
ditions [5]. If losses in the quantum channel exceed a certain 
critical value then it is impossible to detect an eavesdropper and 
to guarantee the secrecy of the keys [5]. The USD attack is as 
follows. The eavesdropper breaks the quantum channel near the 
transmitting and receiving stations. If the eavesdropper near the 
transmitter receives a conclusive outcome then the eavesdrop-
per near the receiver resends the true state. If an inconclusive 
outcome is received (the probability of an outcome is Pr(?)), 
then nothing resends. Starting with a certain level of losses, the 
eavesdropper knows all of the quantum states, does not make 
mistakes, is not detected and knows the key. Note that the eaves-
dropper can make USD not only due to the losses in the quantum 
channel but can also use the internal losses in the receiver.

Thus, the closer probability Pr(?) of an inconclusive out-
come to unity, the larger the losses (respectively, the lengths 
of the communication channel) the protocol guarantees. To 
overcome this problem a series of protocols that increase the 
probability of an inconclusive outcome have been proposed. 
The differential phase shift (DPS) protocol [6–8] and derived 
from it the coherent one way (COW) protocol [9–12] can 
bring Pr(?) arbitrarily close to unity by increasing the length 
of the sequence of quantum states. Since in DSP and CW pro-
tocols bits of the key are encoded in the relative phase of the 
neighbouring coherent states, the proof of secrecy becomes 
much more complicated [6–12]. The critical error in DPS and 
COW protocols is still unknown, even in the channel without 
loss. Thus, a large Pr(?) in DPS and COW protocols is too 
big a cost because of the unprovability of the security of the 
protocols [6–12].

So far we have discussed the fiber optics system of quan-
tum cryptography. For quantum cryptography systems, the 
additional fundamental constraints dictated by the special the-
ory of relativity when working through open space, solves the 
problem of USD. Relativistic causality prohibits the transfer 
information faster than the speed of light. In contrast to the 
above-mentioned protocols in relativistic quantum cryptog-
raphy, unambiguous measurements inevitably lead to delays 
and errors on the receiving side [13–15].

Previous nonrelativistic protocols (DPS, CW and others) 
were aimed at reducing the role of unambiguous measure-
ments. Below we present a radical solution of the problem. 
The basic idea is to disable unambiguous measurements. 
Implementation and analysis of the security of the protocol is 
simple and transparent enough. In this protocol unambiguous 
measurements inevitably lead to errors on the receiving side.

The idea is to combine the quantum part of the proto-
col with the classical part. More precisely, in any system of 

quantum cryptography (fiber or open space) an intense clas-
sical coherent state is used as a synchronization pulse. The 
presence of such an intense state due to the technical part of 
the protocol (gated avalanche detectors), generally speaking, 
is not included in the quantum cryptographic part of the pro-
tocol. The intensity of the synchronization pulse is always 
enough in order for all of the clocks in each series of parcels 
to be registered. Otherwise, the system indicates a failure of 
synchronization, and a whole series of parcels is discarded. 
The idea is to use the intense coherent state (synchronization 
pulse) in quantum cryptographic parts of the protocol.

2.  Fiber-optic protocol implementation

Protocol implementation is shown in figure  1. The laser 
generates a localized in time intensive coherent state  ∣α*〉 
(∣α*  ∣  2  ≫  1, where for convenience it is denoted α ζα=* 2 ,  
ζ  ≫  1, α  ≈  1). A Mach–Zehnder interferometer with different 
arm lengths converts the localized in time intensive coherent 
state into two time-shifted coherent states. The lower arm of 
the interferometer has a built-in variable attenuator, which 
weakens the intensive coherent state to the strongly attenuated 
coherent state—  ∣  α〉qu (∣α  ∣  2  <  1).

In the output of the interferometer there are a pair of 
coherent states—intensive classical and quantum (strongly 
attenuated coherent state)—  ∣  α〉qu  ⊗  ∣ζα〉cl. After the interfer-
ometer, the pair state goes through a phase modulator. At the 
time of the passage of the quantum state to the phase modula-
tor, a voltage pulse is applied, resulting in an additional phase 
shift in the quantum coherent state. Information on key bits is 
encoded in a phase of the strongly attenuated coherent quan-
tum state— φ→0 A

0, φ→1 A
1.

Coming in channel states consist of the time-shifted classi-
cal coherent state and quantum state—the strongly attenuated 
coherent state

ζα α⊗ φe .
cl

i

qu
A
0,1

Both states ( ζα α⊗ φecl
i

qu
A
0.1

) go the same way in the com-
munication channel and in the channel with linear loss, inten-
sive and strongly attenuated coherent states are attenuated 
self-similar

ζα α ζα α⊗ → ⊗

=

φ φ
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10 ,L
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qu cl

i

qu
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where L is the length of the communication channel, δ is a loss 
factor (for fiber SMF-28 δ  ≈  0.2 db km−1).

At the receiving side the states are divided into two channels
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Part of the intensive coherent state arrives at the detector, 
which produces a gating voltage pulse for the phase modu-
lator. The phase modulator is activated at the time when the 
strongly attenuated coherent state passes φ αe T Li ( )

2 qu
Ai
0,1

, which 

is transformed to a state φ φ α−e T Li( ) ( )

2 qu
A B
0,1 0,1

.

The attitude of intensive and quantum (strongly attenuated) 
coherent states persists in the course of the communication 
channel’s passage—ζ = ζα

α
T L

T L

( )

( )
. The attenuator in the short 

arm attenuates the classical and quantum coherent states pass-
ing through this arm in ζ times. It is important to note that the 
attenuation is determined only by the ratio of the amplitudes 
of the initial coherent states.

The intensive coherent state goes into 

→ −ζα φ φ α(e e )T L T L( )

2 cl

i i ( )

2 cl
A B
0,1 0,1

,
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 are the states which appeared in 

the course of interference of the initial strongly attenuated 

information coherent state and the attenuated initial intensive 
reference coherent state.

At the output of the Mach–Zehnder interferometer, the pair 
of states interfere (constructively and destructively) and are 
registered by avalanche photo-detectors in the central time-
window (see figure 1).

The protocol uses a pair of non-orthogonal states. Alice 
with equal probability selects one of the phases of the φA

0 or φA
1.  

Bob independently from Alice with equal probability selects 
one of the two phases φB

0 or φB
1. Phase values are selected in 

such a way that there was

+ = + =

+ = + =

φ φ φ φ

φ φ φ φ

e e

2
1,

e e

2
1,

e e

2
0,

e e

2
0.

i i i i

i i i i
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A B A B

0 0 1 1

0 1 1 0

If Alice’s and Bob’s phases are identical, there is construc-
tive interference and the detector clicks. Otherwise, when the 
phases of Alice and Bob are not the same, there is destructive 
interference, and the detector does not click.

Detection of an eavesdropper occurs on the parcels that do 
not produce clicks in the detector, i.e. then Alice’s and Bob’s 
phases do not coincide.

Figure 1.  Functional diagram of the fiber system, (a) transmitting station, (b) receiving station. Designations: laser—source of coherent 
states, 50/50—symmetrical beam splitters, MZ—Mach–Zehnder interferometer with different length arms, PM—phase modulators,  
Att.—slow variable attenuator, APD—avalanche photon detectors, QC—quantum communication channel.
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3.  Informal reasons for the security of the protocol 
with respect to unambiguous measurements

An eavesdropper must be able to distinguish between two 
non-orthogonal quantum states in the communication channel 

ζα α⊗ φe
cl qu

A
0

 or ζα α⊗ φe
cl qu

A
1

. Assume in favor of the 

eavesdropper that the phase α is known, for example, from the 
classical coherent state. In this case, the eavesdropper must be 

able to distinguish between two non-orthogonal pure coherent 

quantum states αφe
qu

A
0

 or αφe
qu

A
1

.

The probability of an inconclusive outcome is

⎛

⎝
⎜

⎞

⎠
⎟

α α μ α= ⟨ ⟩ = = <φ φ μ
φ φ

−
−

Pr(?) | e |e | e , | | 1.qu qu

2 sin
2 2A A

A A
0 1

2
0 1

The eavesdropper can not block the intensive coherent state 
otherwise the whole series will be discarded by Alice and 
Bob. In the case of an inconclusive outcome, an eavesdrop-

per is obliged, instead of a true state αφe
qu

A
0

 or αφe
qu

A
1

, to 

send a quantum state at random. A fake quantum state causes 
clicks of the detector in the passes where such clicks should 
be absent.

For example, if instead of a true state, the eavesdropper 

resends fake state αφe
qu

A
0

, and Bob chose phase αφe
qu

A
1

, 

then the detector produces an error click. Thus, if there are 
any losses in the communication channel, an eavesdropper 
will never be able to know the key and will not produce errors 
on the receiving side. If it were not the classic impulse which 
interferes after attenuation with the quantum coherent state, an 
eavesdropper could block the parcel which received an incon-
clusive outcome (?). In the presence of the classic reference 
state, unambiguous measurements lead to errors at the receiver.

It should be noted that for a classic state, it is enough to 
use the coherent state before entering the avalanche detector 
having ζ2μ  ≈  50 ÷ 60 photons. In this case, the single-photon 
detector fires in each pass.

This means when the length of the line is 100 km, Alice’s 
classic coherent state must contain ζ2μ  ≈  5 · 103 · ÷ 6 · 103 
photons to guarantee detector clicks in each parcel.

4. The length of the secret key in the asymptotic 
limit of long sequences

Any protocol of quantum key distribution consists of the fol-
lowing stages:

	 (a)	Transfer of quantum states from Alice to Bob and their 
measurement on the receiving side.

	(b)	Discarding of empty passes.
	 (c)	Estimation of the error probability and error correction 

through public classic channel.
	(d)	Estimation of Eve’s information changing after error cor-

rection.
	 (e)	Privacy amplification.

Quantum state Alice–Bob–Eve after stage (a) is described 
by the joint density matrix ρn

XX′E, where Xn, X′n are Alice’s 
and Bob’s bit strings. A string X′ is possible with errors, 
where ρ ρ= ′ ′Tr { }E

n
XX XX E

n  is Eve’s quantum system. Taking into 
account Eve’s information obtained from the quantum chan-
nel and classical information during error correction, Alice 
and Bob perform compression of keys (privacy amplification). 
After privacy amplification Eve has no information about the 
final secret key. The protocol should satisfy the correctness 
and secrecy criteria [16]. Correctness means that Alice’s and 
Bob’s keys are identical with probability of at least 1  −  εcorr,

′ ε≠ <X XPr[ ] ,n n
corr� (1)

where Xn and X′n are Alice’s and Bob’s bit strings after error 
correction. The criterion for security of the keys is the trace 
distance—the distance to the ideal situation. The ideal situ-
ation is where Eve’s quantum system is not correlated with 
Alice’s bit string,

ρ ρ ρ εΔ = − ⊗ <1

2
.XE

n
U
n

E
n

1 secr� (2)

According to leftover hash lemma [16, 17] after hashing with 
two-universal hash functions [18] trace distance becomes

Δ = − −ε( )1

2
2 ,H X C E R( )n n n

nmin� (3)

here εH X C E( )n n n
min  is smooth conditional min entropy, 

including error correction information Cn transmitted from 
Alice to Bob through a public channel.

Under the definition where λ is the minimum number such 
that λ ρ ρ⊗ − >I ~ ~ 0X

n n
CE XCE , ρ ρ ε− <~n n

CE CE 1
, and ρ =Tr(~ ) 1n

CE . 
The protocol is ε secret [3], if the length of the final secret key 
Rn is not greater than

ε⩽ −εR H X C E( | ) 2 log(1/2 ).n
n n n

min� (4)

Conditional entropy εH X C E( | )n n n
min  satisfies the inequality 

[16],

ε⩾ − −ε εH X C E H X E( | ) ( | ) leak 2 log(1/2 ),n n n n n
nmin min� (5)

where leakn is classical information in bits transmitted through 
a public channel during error correction, and it is defined only 

by the procedure of error correction. Formula (4) has an intui-

tively transparent interpretation. The εH X C E( )n n n
min  is a lack 

of information, which is not enough for Eve, having a quan-
tum system E and classical information C ρ( )n

CE , to fully know 
the bit string of Alice.

The length of the private key in the asymptotic limit 
(n  →  ∞, ε, εcor  →  0), is the following

= = −
→∞

R
R

n
H X Elim ( | ) leak.

n

n
� (6)

Allowing the observed probability of error Q. Error correc-
tions in the asymptotic limit require disclosure of nh (Q) 
bits through a public channel; h(Q)  =  −QlogQ  −  (1  −  Q)
log(1  −  Q) is the Shannon binary entropy function. An eaves-
dropper cannot block the quantum channel because the pres-
ence of the reference coherent state leads to Eve’s information 
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being restricted by the fundamental Holevo quantity [19]. The 
information deficit of Eve is

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

φ μ

ξ ξ ξ ξ

= −

= + − − − + +

)H X E C( | 1 ( , )

1
1

2
log

1

2

1

2
log

1

2
,

0,1

� (7)

where ξ  =  Pr(?) is denoted. Finally for the length of the pri-
vate key, in terms of a registered parcel, we have

φ μ= − −R Q h Q C( ) 1 ( ) ( , ).0,1� (8)

It is important to emphasize that in formula (8), evaluation 
of the eavesdropper’s information does not depend on the 
observed errors on the receiving side. The upper bound of 
the eavesdropper’s information may not exceed Holevo’s 
information—classical accessible information that can be 
extracted from quantum ensemble. The length of the secret 
key as a function of the observed error at the receiver is pre-
sented in figure 2(a).

5. The length of the quantum communication 
channel in which there is guaranteed secret key 
distribution

Let’s estimate the quantum channel length up to which there 
is guaranteed secret key distribution. In the absence of an 
eavesdropper, the error occurs only because of dark noise. The 
following estimate is obtained for the error probability due to 
dark noise

=
+

= − η η μ− ⋅ ⋅Q L
p

p n L
n L( )

1

2 ( ( ))
, ( ) 1 e ,d

d

L

reg
reg

( )APD� (9)

μ μ= ⋅
δ− ⋅

L( ) 10 ,
L

10

L is the length of the quantum communication channel, nreg(L) 
is the detection probability of the avalanche detector, ηAPD is 
the quantum efficiency of the detector, η is the beam-splitter 
coefficient, pd is the probability of a dark count per gate. The 

length of the secret key as a function of quantum communica-
tion channel length can be obtained by substituting (9) into 
(8), we have

φ μ= − −R Q L h Q L C( ( )) 1 ( ( )) ( , ).0,1� (10)

The secret key length for different parameter values are shown 
in figure 2(b).

6.  Conclusion

USD measurements in some systems with a certain level of 
losses in the quantum channel lead to a loss of privacy. An 
eavesdropper without producing errors, knows the whole key 
and is not detected. In this protocol, the USD measurements 
will inevitably lead to an error on the receiving side, which 
ensures the eavesdropper is detected and the security of the 
keys. Unlike other protocols, DPS [6–8] and COW [9–12], 
the simplicity of the protocol makes it possible to carry out a 
complete analysis of its security.
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