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To the memory of Evgenii Grigor’evich Maksimov,

a great physicist and a great human being.

1. INTRODUCTION

The talented, straight-out, go-ahead physicist, a great expert in high-temperature superconduc-
tivity, Corresponding Member of the Division of Physics and Astronomy of the Russian Academy
of Sciences, Evgenii Grigor’evich Maksimov, had left us. He was not only direct pupil of Ginzburg,
he inherited the style of Ginzburg’s school, and he was an even more abrupt, more “out-and-out”
physicist than Ginzburg himself.

Since the author is an “out-and-out” mathematician himself, our scientific collisions and con-
troversies with Zhenya reflect the difference between the mathematical and physical approaches in
science as well as possible.

For me, for a mathematician, Zhenya’s remarks, as well as the remarks of Ginzburg, were ex-
traordinarily useful. I was always sincerely delighted with both of them.

I would like to save the unexpected and ingenious answers for the history of the collisions of
these two branches of science. (I italicize his remarks below).

We were friends, but I had no faith in physics and he had no faith in mathematics. Frenkel’,
a remarkable physicist, wrote: “We become readily used to sameness and permanency, and cease
of making note of it. The usual seems to be natural and comprehensible, the unusual seems to be
unnatural and incomprehensible . . . Really and truly, we cannot understand, we can only get used
to.” (V. Ya. Frenkel’. Yakov Il’ich Frenkel’ (“Nauka,” Moscow–Leningrad, 1966).) I had no faith in
this “usual” if it has no rigorous proof.

As an example of different logical approaches to science, I can present an episode concerning the
negative referee’s report concerning a paper by Arnold who had sent this paper to ZhETF (JETP).
He described this episode in his memoirs.

Similar things happened sometimes to me. Once upon a time, when I was young, after being
a guest, I walked together with L.F., a physicist who worked in the Landau institute. We had a
controversy concerning the notion of semiclassical asymptotics.
I carried out the proof on the snow rather than “on sand” (it was winter) and claimed that the tunnel
asymptotics leading to splitting of vacuum vectors (nowadays, these are referred to as instantons) is
a semiclassical asymptotics.1This was our only meeting. However, when I was already a Member of
the Academy and an acknowledged expert in semiclassics, my interlocutor gave a drastic negative
referee’s report about one of my papers and wrote that I cannot understand at all what is the
semiclassical asymptotics.

I remember our controversies with Zhenya Maksimov nearly five years ago at my country house.
I said: “I wonder how it may be that, in Landau’s book concerning quantum statistics, there are two
definitions of the Bose statistics. One of them uses combinatorics, and the other the symmetry of
the eigenfunctions of the N -particle Schrödinger equation, and no formulas are presented to relate
these definitions to each other.”

“Well, the first definition is archaic. Everybody now uses the other one.”

1I could not convince the physicists. They were convinced by the new notion, namely, Euclidean field theory. They
became familiar with this notion very soon.
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“What will happen if the students will ask about their relationship? ”
“They won’t ask,” answered Zhenya with confidence.
The superfluidity and superconductivity are closed problems. In 2005, using a purely mathemat-

ical approach, I obtained a paradoxical fact concerning the superfluidity of water in a nanotube. I
told Maksimov about this. He said: “You won’t convince me by your lemmas.”
I will remember this sentence as long as I live; I then understood that the explanation for physicists
must be of another nature.

I invented an explanation which was more or less perceived by physicists: the rays reflected from
the wall of a capillary can be treated as the collision of two rays one of which moves forward in
time and the other moves backward in time, as an electron and positron (“A positron is an electron
moving backwards in time” (Feynman)).2 The collision of the rays leads to the creation of a photon,
which is absorbed by the wall, and the motion is retarded. For this reason, the radius of the tube
should be so small that no rays of this kind could happen. Then the absorption and the retardation
are absent, and superfluidity occurs. This explanation led to the appropriate associations of the
physicists.

From the point of view of philosophy, this explanation is a more complicated construction than
the introduction by the author of the operators of creation and annihilation of pairs in the ultra-
second quantization and the derivation of the corresponding equation from the asymptotic limits.

One of the greatest physicists of the present time warned me: “If you will continue claiming that
there is a Bose condensate in the two-dimensional case, I shall vote against your nomination” (for
the award of a prize, VM). This occurred although the existence theorem for the Bose condensate in
the two-dimensional case had already been proved by me. Next time, the requirement to renounce
one of my papers was demanded from me as a necessary condition of giving me by a rather large
grant by Russian Federation.

A human intimidated by theoretical physicists has to get rid, for instance, of an old family
diamond, because, by the theory of Maxwell transition, the dianond is in a metastable state, and,
in the course of time, it will certainly be transformed to graphite.

In 2008, the Livermore laboratory (Lawrence Livermore National Laboratory, Livermore, USA)
sent me a series of papers describing experiments confirming the superfluidity in nanotubes. From
the beginning, Maksimov did not believe these data. However, our joint detailed consideration
of these works removed all his doubts. In this consideration, he taught me to carefully consider
experimental data.

Last year, I sent a paper to the journal “Physics-Uspekhi” [“Uspekhi Fizicheskikh Nauk”] for the
issue dedicated to V. L. Ginzburg. I asked the new Editor-in-Chief of the journal to send the paper
for referee’s report to the “fiercest” referee, i.e., to Maksimov. Zhenya studied the work, understood
everything perfectly, and forced me to rewrite the paper completely. In this process, he kept in the
paper pure real world arguments and analogies rather than mathematical considerations.

Ernst Mach, the great physicist and philosopher, wrote in his popular lectures: “It has surely
often struck you as strange that the sciences are divided into two great groups; that the so-called
humanistic sciences, belonging to the so-called “higher education,” are placed in almost a hostile
attitude to the natural sciences... I must confess I do not overmuch believe in this partition of the
sciences. I believe that this view will appear as childlike and ingenuous to a matured age.” (Ernst
Mach, Popular Scientific Lectures, English transl. by Thomas J. McCormack (The Open Court
Pub. Co., London, 1898), p. 86). I wondered why Zhenya did not order to delete from a physical
paper (and even approved) a real world analogy with the Fermi statistics where I cited the rollicking
picaresque novel “The Twelve Chairs” by Il’f and Petrov. In the novel, a situation is described in
which inhabitans are “in the grip of an acute food and commodity shortage. Representatives from
the co-operatives and state-owned trading organizations proposed that until the arrival of food

2“In this solution, the “negative energy states” appear in a form which may be pictured (as by Stuckelberg) in
space-time as waves traveling away from the external potential backwards in time. Experimentally, such a wave
corresponds to a positron approaching the potential and annihilating the electron. A particle moving forward in time
(electron) in a potential may be scattered forward in time (ordinary scattering) or backward (pair annihilation).

When moving backward (positron), it may be scattered backward in time (positron scattering) or forward (pair
production). For such a particle, the amplitude for transition from the initial to the final state is analyzed to any
order in the potential by considering that it undergoes a sequence of such scatterings.” R. P. Feynman, “The Theory
of Positrons,” Phys. Rev. 76, 749–759 (1949).
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supplies, already on their way, the sale of comestibles should be restricted to a pound of sugar and
five pounds of flour a head.” To get a maximal possible amount of sugar and flour by correctly
using a queue, at “the head of the sugar queue stood Alchen. Behind him was his wife, Sashchen,
Pasha Emilevich, four Yakovleviches and all fifteen old-women pensioners in their woollen dresses.”
(I. Ilf and E. Pertov, The Twelve Chairs, English transl. by John Richardson (Sphere Books, 1971
(1928)). It is clear that, from the point of view of the sugar and flour purchased by the bunch
of rogues, it does not matter in what order the members of the group are placed, and they can
be transposed without any loss. At the same time, there is no reason to occupy the same place
by two persons. In this sense, the “Pauli exclusion principle” is fulfilled. Thus, the “exclusion” is
established by us by ourselves, because it is advisable.

Zhenya said: “Yes, the grannies are indistinguishable from the point of view of buying goods, and
it is senseless for two persons to stand at the same point of the queue indeed.”

I have cited some of Maksimov’s sentences in detail to keep him alive not only in my own memory,
and so that his unforgettable fighting character would be reflected in these lines, at least partially.

2. CORRECTION TO THE BOSE–EINSTEIN DISTRIBUTION
AND FRACTIONAL DIMENSION

I added Maksimov’s careful treatment of experimental data to my armoury when my construction
of the spinodal point for metastable negative pressure computed for fractional dimensions less than
two did not coincide with the experimental curve for water (this curve is presented in many sources).
In these experiments, no jump of pressure when passing the zero pressure was discovered, although
this jump is quite obvious. Indeed, an analog of the Young modulus for the compression and
tension for water is different. Namely, water is almost incompressible under compression, whereas
microvoids of cavitation type occur under tension. This convinced V. S. Vorob’ev, a well-known
expert in modern thermodynamics. He believed that my correction to the Bose–Einstein distribution
is valid and sent me his informal proof, which seems to me to be more convincing than Einstein’s
proof (the latter selects a single point of the discrete spectrum and passes to the continuous limit
with respect to the other points of this spectrum).

Let me present this “proof” by Vorob’ev (the derivation of the formula for the Bose gas).
We have

Ωk = −T log
N∑

n=1

(
exp

µ− εk
T

)n

, n = 0, 1, 2, . . . , N, (1)

where N stands for the number of particles. Summing the finite geometric progression, we obtain

Ωk = −T log

(
1− exp µ−εk

T N

1− exp µ−εk
T

)
. (2)

Further,

Ωk = −T
∑
k

log

(
1− exp µ−εk

T N

1− exp µ−εk
T

)
. (3)

Passing in the standard way from the summation over k to integration with respect to the energy,
we see that

Ω = −gV

Λ3
T

2√
π

∫ ∞

0

t1/2 dt log

(
1− exp(µ/T − t)N

1− exp(µ/T − t)

)
, (4)

where

Λ =
h

(2πmT )3/2
, t = ε/T.

Integrating (4) by parts, we obtain

Ω =
gV

Λ3
T

2√
π

2

3

∫ ∞

0

t3/2 dt

(
1

exp(t− µ/T )− 1
− N

exp(t− µ/T )N − 1

)
. (5)
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Formula (5) written out for a fractional dimension becomes

Ω =
gVγ

Λ2(1+γ)
T

1

Γ(2 + γ)

∫ ∞

0

t1+γ dt

(
1

exp(t− µ/T )− 1
− N

exp(t− µ/T )N − 1

)
, (6)

where
Vγ = Lγ(1+γ)

and L stands for the typical size of the system.
The dimension varies from D = 2 to D = 3. The quantity γ characterizing the fractional

dimension is given by
D = 2(1 + γ).

We have the formula
N = −∂Ω/∂µ

for the number of particles, where

Ω =
gVγ

Λ2(1+γ)

1

Γ(1 + γ)

∫ ∞

0

tγ dt

(
1

exp(t− µ/T )− 1
− N

exp(t− µ/T )N − 1

)
. (7)

The quantity γ varies from zero (for D = 2) to 0.5 (for D = 3).

It is convenient to represent formula (6) by introducing the polylogarithms

Lis(x) =
1

Γ(s)

∫ ∞

0

ts−1

(et/x)− 1
dt. (8)

Then we obtain

Ω =
gVγ

Λ2(1+γ)
T

(
Li2+γ(z)−

1

Nγ+1
Li2+γ(z

N )

)
, (9)

where
z = eµ/T

stands for the action.
This gives

N =
gVγ

Λ2(1+γ)

(
Li1+γ(z)−

1

Nγ
Li1+γ(z

N )

)
. (10)

We have γ → 0 in the two-dimensional case, and, as µ → 0 (z → 1), the second term in (9) and
(10) becomes essential.

In the above derivation, the passage from sums to integrals for sufficiently large N is not rigorous.
There is a lack of estimates, according to the Euler–Maclaurin summation formulas, that “do not
spoil” the final result, and also a lack of estimates of the type presented in [1]. However, in any case,
this derivation is more rigorous than the so-called “proof” of the absence of the Bose condensate
in the two-dimensional case, which can be found in all handbooks, where only one point of the
discrete spectrum is singled out (the minimal energies), whereas the passage to the integral is made
with respect to all other points.

Certainly, a rigorous mathematical construction is more complicated than associations, “rules of
the game,” and analogies that correspond to physical constructions. In his own approach, the author
used rigorous constructions from probabilistic number theory and applied these constructions to
problems in science and economics.

The author himself was not able to compare his mathematical results with experimental data,
while this is the only way an influence physicists, in the aggregate, because physicists are accustomed
to simpler notions and phenomenological constructions. Therefore, to explain his theory, the author
is forced to use terminology (from diverse areas) that are customary to physicists, so that, by using
associations and at least approximately, they could be able to understand the constructions used
by the author.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 18 No. 2 2011



NUMBER-THEORETIC INTERNAL ENERGY FOR A GAS MIXTURE 167

Among these notions that have nothing in common with the mathematical constructions, we
can mention

(1) fractal dimension;

(2) Bose gas and the Bose–Einstein distribution;

(3) internal energy;

(4) the Ω-potential, and some other notions.
As far as the notion that was untitled “fractal dimension” by the author is concerned, it means

only the density of the spectrum of a molecule in question and is related to the interaction between
particles only with respect to the fact that the interaction itself depends on this density. This
means that the spectrum and its density are primary. The very density leads to the new ideal gas
of particles that do not interact with one another.

However, as can be seen by the example given by the scattering of particles interacting according
to the Lennard–Jones potential [2], the value of Zcr can be determined with a rather high accuracy.
However, the value of Zcr is only an approximate one for the new ideal gas. Taking the Zeno line
into account leads to a nonideal correction for Z id

cr .

3. NT-INTERNAL ENERGY

Let us now dwell on the Bose gas. For the case in which all particles have the same mass, we have
indeed a coincidence with the Bose gas of fractional dimension (with respect to the momenta!).
However, this construction contradicts the so-called “principle of identical particles” in quantum
mechanics. Physicists explained this contradiction from the point of view of the passage from quan-
tum mechanics to classical mechanics, by dividing the partition function by N !. This is a serious
mathematical mistake. However, this satisfied the physicists, as well as philosophers of Kedrov’s
school who favor the “union of opposites”, namely, on one hand, the particles are distinguish-
able (due to Boltzmann’s statistics), and, on the other hand, these particles are indistinguishable,
because we divide by N !.

A special role in distinguishability–indistinguishability is played by the masses of the parti-
cles. If the masses are equal (or almost equal, like in the case of isotopes), then the particles are
indistinguishable. In this sense, the Bose–Einstein statistics coincides with number theory.

Moreover, there is a remarkable van der Waals law of corresponding states in which, practically,
only one dimensionless quantity is preserved that characterizes the state of the system, namely,
the compressibility factor Z. In this case, the internal energy of the Bose gas coincides with the
number E partitioned into a sum of n summands. There is no such coincidence for gas mixtures.

It is worth recalling here experiments of Jean Perrin and Theodor Svedberg in 1908 (Nobel
Prize in 1926) carried out by the ultramicroscope of Richard Adolf Zsigmondy (Nobel Prize in
1925). Perrin and Svedberg counted the number of aerosols (particles) of different mass in a given
volume. In this case, one can also introduce the notion of internal NT-energy (Number Theory
energy) which coincides with the number E partitioned into a sum of N summands. This internal
NT-energy coincides with the internal energy of the mixture of Bose gases if we set all masses of
the particles to be equal to one. Nevertheless, in the theory of mixtures, it plays an extremely
important role both for the definition of a new ideal gas of the mixture and in the computation of
the Zeno line (the “ideal curve” of the mixture).

A more general way to define the number of particles of different masses can be realized by using
scintillation.3

The notion of internal energy for Brownian particles (aerosols) in the Einstein–Smoluchowski
theory does not depend either on the masses of the particles: as is well known, this gives kT/2
for every degree of freedom, i.e., this is equal to 3kT in the three-dimensional case and does not
depend on the value of the mass.

Remark 1. The mass of the particles is taken into account when evaluating the mean.
Therefore, the NT-internal energy agrees with the above evaluation of the mean energy of

aerosols. It can also be referred to as the aerosol internal energy.

3The scintillation (from the Latin original verb “scintillātiō,” something between “sparkle” and “flicker”) is a short-
term (10−4–10−9 s) light flash (luminescence flash) occurring in scintillators under the action of ionizing radiations.
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If the values E1 and E2 partitioned into sums of N1 and N2 summands, respectively, correspond
to fractional dimensions γ1 and γ2, respectively, and if the values of the pairs E1N1 and E2N2 are at
the “border-line of degeneration,” i.e., adding an extra number to N1 and to N2 leads to “settling-
out into a Bose condensate,” then for the sum E1 + E2 and for the number N1 + N2, adding an
extra number to N1 +N2 also leads to “settling-out into a Bose condensate.”

Let ρcr1 and ρcr2 be the critical densities (in g/cm3) and m1 and m2 be the masses of molecules
of the corresponding gases. The values N1 and N2 are proportional to the molar concentrations,

N1

N1 +N2
= α, (11)

N2

N1 +N2
= α, (12)

N = N1 +N2, α+ β = 1. (13)

In this case, for the full NT-internal energy we obtain the relation

(γcr + 1)ZcrT cr = α(γcr
1 + 1)Zcr

1 T cr
1 + β(γcr

2 + 1)Zcr
2 T cr

2 , (14)

and it follows from the additive property of the entropy for µ = 0 that

Zcr(γcr + 2) = α(γcr
1 + 2)Zcr

1 + β(γcr
2 + 2)Zcr

2 . (15)

These two relations enable us to define γcr
sum and T cr

sum for the ideal gas of the mixture.
For the critical pressure, we have

P cr = T crZcrN crR,

where R stands for the universal gas constant.
However, we are interested only in the values µ1 and µ2 that correspond to the Zeno line of each

of the gases (see the formula (49) in the paper [14]).

The equations (11)–(13) imply the following equation for the sum of entropies, where κ = µ/T :

(γ + 2)Zγ+2(e
κ)− κ = α

{
(γ1 + 2)Zγ1+2(e

κ1)− κ1

}
+ β

{
(γ2 + 2)Zγ2+2(e

κ2)− κ2

}
; (16)

the value Zγ+2 is equal here to the ratio Liγ+2(e
κ)/Liγ+1(e

κ).

Recall that the values κ1 and κ2 are chosen according to the Zeno line of the first and second
gas, respectively. Hence, for the given balues γ, γ1, and γ2 obtained from (15), we obtain the value
κsum, which defines the function φγ(V ) by relation (49) in the paper [14].

Remark 2. Note that it is not rigorously proved in the cycle of papers of the author that
to any “pure” gas there corresponds a Zeno line. As is known, for example, the ideal curve is
substantially curved for water under low densities. He have rigorously obtained the Zeno line only
for the Lennard–Jones interaction potential. The same proof can be carried our for other interaction
potentials. Therefore, one can agree that, for pure gases interacting according to the same potential,
the Zeno line is approximately a line segment (and this segment is far from being straight in problem
(25)–(30) of the paper [15]).

When passing to the liquid, the percentage of the gases is changed. Here one can apply the
scheme of the “law of mass action,” however, to number theory, to the NT-internal energies. For a
small correlation sphere in the fluid, one must consider all possible combinations of molecules and
all stoichiometric coefficients corresponding to them. Under the assumption that the NT-internal
energies are preserved, we obtain the same relations for the chemical potentials as those obtained
in the law of mass action. After this, we obtain a system of equations with the corresponding family
of unknowns.

Solving this system, we obtain the mean value of the concentrations of two pure gases in a liquid.
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4. SPINODAL POINTS FOR THE LIQUID CASE

Since we consider diverse gases of different fractional dimensions, it is reasonable, when consid-
ering the van der Waals normalizations

Pred =
P

Pcr
, Tred =

T

Tcr

to keep only the first of these normalizations in the law of corresponding states,

P γ
red =

P γ

P γ
cr
,

and this normalization forms a new value Tcr, which is in essence the ratio Tcr/Pcr up to a constant
which makes this ratio dimensionless.

However, if we compare diverse gases and study their homogeneous mixtures, then it is most
natural to consider the normalization on Tcr for hydrogen, neon, and helium 4, because, for these
elements, the value of Zcr is maximal among all gases (we do not consider the normalization with
respect to mercury, because no homogeneous mixtures for mercury are known).

In this case, for the classical gas of dimension γ, the critical temperature is given by a number
less than one:

T (γ)
cr =

(
ζ(γ0 + 2)

ζ(γ + 2)

)
,1/(γ+2) (17)

where Z = 0.30 for neon. After this, we find the point of the spinodal of the liquid phase corre-
sponding to this critical temperature and, finally, normalize with respect to the point thus obtained.

We have assumed in [2] that all solutions of the Diophantine equations (7), (8) are equiprobable.
As we have shown by the example of partitioning E banknotes among N spectators [2], if N > Ncr,
then N −Ncr spectators will have no banknotes at all. Here it was certainly assumed that

N/Ncr > 1 + δ,

where δ > 0 is an arbitrarily fixed number, and that the relations

N → ∞, E → ∞, and E ≫ N

are also satisfied. As we have already written several times, this fact corresponds to the Bose
condensate in physics, whereas it can determine, for example, the number of the unemployed in
economics.

An alternative to this phenomenon in number theory is the union into pairs for N = 2Ncr and,
as N increases, into clusters. As was already mentioned above, the union leads to reducing the
dimension, which corresponds to reducing the number of degrees of freedom for the members of the
union.

The following question arises: How to unite optimally, i.e., how to reduce the dimension in the
best possible way? The reduction of the dimension (related to the “number of degrees of freedom”)
happens in economics both at the expense of unions and at the expense of restricting the “market
freedom” by laws. How to choose the best possible way?

In the example with Korov’ev, which was used in the author‘s works many times,4it was men-
tioned that, for the spectators, it is sufficient to combine themselves into groups with ten persons
each, and then every group will obtain at least one banknote with a great probability, the members
of the group will divide the money, and nobody will die of hunger. This procedure will lead to a
significant drop of entropy, because, in every group, the distribution of money obtained in this way
is carried out in accordance with some law; for example, in equal parts.

4According to Bulgakov‘s novel Master and MargaritaKorov’ev‘s trick consisted scattering 1,000,000 banknotes in
the variety theater occupied by 10,000 spectators.
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However, there is the possibility of uniting totally and to “honestly” divide the entire million of
banknotes scattered by Korov’ev. In this version, the entropy drops to zero.

In each of the cases, the main task is solved, namely, all spectators remain alive, which means
in thermodynamics that the number of particles is preserved. However, the problem is to preserve
the number of spectators (or particles) in such a way that the number of persons in any union is
the minimal possible. This means that one must obtain the maximal possible dimension under the
assumption that the number of particles is preserved.

We shall refer to such a passage to the maximal dimension as the passage to the liquid state.
Whereas, for the gaseous branch of the isotherm, we took the dimension γ = γ0 and did not change
this value for γ > γ0, it should be noted that, for the liquid branch, the value γ is reduced provided
that the temperature is reduced, and hence the value Zγ

cr is also reduced in this case.
Obviously, as the temperature is reduced, the number of particles in the union, i.e., the number

of molecules in clusters, increases. To obtain this increase, we must increase the initial temperature
(for γ = γ0) so that the entropy, for the initial number of solutions of the Diophantine equations will
increase. Then the number of molecules in the union (the cluster) becomes greater. This means that
we must increase the value Tcr in the initial formula for the entropy. Thus, if the real temperature of
the liquid phase is decreased, we must increase the relative temperature Tcr in the original formula
for the entropy.

This means that the relative temperature increases at Zγ0 , and the original entropy becomes

S =

(
T

Tliq

)γ+1(
Liγ+2(e

−ξ)(γ + 2) + ξ Liγ+1(e
−ξ)
)
, (18)

where ξ = −µ/T , µ stands for the chemical potential, Li for the polylogarithm, and γ for the
dimension, see [3].

Remark 3. The polylogarithm Liγ+2(e
−ξ) is of the form

Liγ+2(e
−ξ) =

∑ e−kξ

kγ+2
=
∑ e−kξ−γ log k

k2
.

Its derivative with respect to γ is equal to

∂

∂γ
Liγ+2(e

−ξ) = −
∑ log ke−kξ−γ log k

k2
.

For µ = 0, we obtain

S|µ=0 =

(
T

Tliq

)γ+1

ζ(γ + 2)(γ + 2), (19)

where ζ stands for the Riemann zeta function.
This gives a simple condition for the maximization of γ,

dS

dγ

∣∣∣∣
ξ=0

= 0, log

(
T

Tliq

)
ζ(γ + 2)(γ + 2) + ζ ′γ(γ + 2)(γ + 2) + ζ(γ + 2) = 0, (20)

−d log ζ(γ + 2)

dγ
= log

(
1

Tliq

)
+

1

γ + 2
. (21)

In this case, the solution of (20) gives γ = 0.14, and hence

Zγ1(γ0) = 0.24.

Since N = const, it follows that, on the isotherm, we have

Pγ1
= const · Zγ1

.
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The points Zγ1 , Pγ1 are the spinodal points for the liquid phase, i.e., the points of termination
for the metastable state of the liquid phase.5

Remark 4. The method of gradient descent with respect to entropy describes an unstable part,
and its trajectory is not observed in experiments. However, for the graphs to have no discontinuities
for the gaseous and liquid phases, it is more customary to solve the equation of gradient descent
from γ0 to γ1(γ0), from the point γ = γ0, ξ = 0 up to the point γ1 = 0.18.

For hydrogen, we must set
Tred = T/Tcr,

i.e., Tred = 1 for T = Tcr. If T < Tcr, then

T liq
red = T/Tcr.

Since at any point of the liquid, for γ < γ1, the temperature is less than Tcr, and still, to any
point, there corresponds its own related value of Zγ

cr, it is convenient to normalize every value of
Zγ
cr with respect to the value of T γ

liq corresponding to this value of Zγ
cr, which means that

Tred =
1

Tcr
,

i.e., the value T γ0
cr (and hence the entropy S as well) is increased and becomes a new value Tcr equal

to 1/Tred for the liquid. Moreover,

Sγ0 = T γ+1
cr

(
Liγ0+2(e

−ξ)(γ0 + 2) + ξ Liγ0+1(e
−ξ)
)
. (22)

Thus, we set T = 1/Tliq in the formulas 15-17.

A gas is said to be quasi-ideal if
φ′
γ(V ) = const

(see [3]). In this case, the Zeno line appears the definition of the spinodal points of the liquid
phase; however, the liquid remails incompressible. Only the consideration of the function φγ(V )
enables one to bend the straight lines and take into account the fact that the liquid is compressible.
Nevertheless, for Tliq ≪ 1, i.e., for sufficiently small (and still positive) values γ, the influence of
the value φγ(V ) is already inessential. Therefore, a quasi-ideal gas, and especially a mixture of
quasi-ideal gases, gives a sufficiently good approximation for the spinodals of the liquid phase.

The geometrical locus of the points of quasi-ideal spinodals6is given by the formula

P = TρB

(
1− T

TB

)
Zγ
cr, (23)

where ρB and TB stand for the Boyle density and Boyle temperature, respectively.
Here we have

Z
γ(Tliq)
cr =

ζ(2 + γ(Tliq))

ζ(1 + γ(Tliq))
, T = Tliq. (24)

Recall that γ(Tliq) is evaluated by using the algebraic relation (21).

Every point on the quasi-ideal spinodal is joined to the point, corresponding to the given value
of (Tliq), located on the Zeno line placed to the left of the critical line for (Tliq) = 1.

For γ(T ) < 0, we use the correction, to the Bose–Einstein distribution, which was introduced by
the author (see Section 2).

5A metastable state of the liquid phase can exist a billion of years, even under negative pressure (see the above
example concerning the diamond).
6In other words, of the points of termination of the metastable state of the liquid phase.
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Let us find the constants b and κ from the following relations:∫ ∞

0

ξ

{
1

eb(ξ+κ) − 1
− N

ebk(ξ+κ−1)

}
ξγ dξ = E , (25)∫ ∞

0

{
1

eb(ξ+κ) − 1
− N

ebk(ξ+κ−1)

}
ξγ dξ = N, (26)

where
κ = −µ, b = 1/T.

Write n = E . For κ = 0, we have

n =

∫
ξ dξα

ebξ − 1
=

1

b1+α

∫ ∞

0

ηdηα

eη − 1
, (27)

where α = γ + 1. This implies that

b =
1

n1/(1+α)

(∫ ∞

0

ξ dξα

eξ − 1

)1/(1+α)

. (28)

Write Ncr = k0. We obtain

k0 =

∫ ∞

0

{
1

ebξ − 1
− k0

ek0bη − 1

}
dξα

=
1

bα

∫ ∞

0

(
1

eξ − 1
− 1

ξ

)
dξα +

1

bα

∫ ∞

0

(
1

ξ
− 1

ξ(1 + (k0/2)ξ)

)
dξα

− k1−α
0

bα

∫ ∞

0

{
kα0

ek0ξ − 1
− kα0

k0ξ(1 + (k0/2)ξ)

}
dξα.

(29)

Write

c =

∫ ∞

0

(
1

ξ
− 1

eξ − 1

)
ξγ dξ.

After the change k0ξ = η, we obtain

k1−α
0

bα

∫ ∞

0

{
kα0

eη − 1
− kα0

η(1 + η/2)

}
dξα

=
k1−α
0

bα

∫ ∞

0

{
1

eη − 1
− 1

η(1 + η/2)

}
dηα

=
k1−α
0

bα

{∫ ∞

0

(
1

eη − 1
− 1

η

)
+

∫ ∞

0

dηα

2(1 + η
2 )

}
= −c

k1−α
0

bα
+ c1

k1−α
0

bα
.

(30)

Since
1

η(1 + η/2)
=

1

η
− 1

2(1 + η/2)
,

after denoting

c1 =

∫ ∞

0

dηα

2(1 + η
2 )

,

we can write∫ ∞

0

(
1

ξ
− 1

ξ(1 + k0

2 ξ)

)
dξα =

k0
2

∫ ∞

0

dξα

1 + k0

2 ξ
=

(
k0
2

)1−α ∫ ∞

0

dηα

1 + η
= c1

(
k0
2

)
.1−α (31)
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Hence,

k0 = − 1

bα
c1 +

1

bα
c

(
k0
2

)1−α

− k1−α
0

bα

∫ ∞

0

{
1

eη − 1
− 1

η(1− η
2 )

}
dηα − 1

2

∫
dηα

1 + η
2

· k
1−α
0

bα

= − 1

bα
c+

k1−α
0

bα
c.

(32)

Since k0 is the number of particles, b = 1/T , and α = 1 + γ, it follows that k0b
α for γ > 0 is

the value of the Riemann zeta function, ζ(1+ γ). Therefore, kγ+1
0 increases for γ < 1, and the first

term of the right-hand side of equation (32) can be neglected. By setting Tcr = 1 in this asymptotic
formula, we see that the function

M(γ + 1) =

(
c(γ)

Γ(γ + 1)

) 1
1+γ

(33)

can naturally be regarded as an extension of the Riemann zeta function ζ to the additional range
of arguments given by 0 > γ > −1.

Remark 5. The asymptotic behavior of formula (26) for µ < 0 can be represented in the form∫
tγ dt

k2e−µk1et/k2 − 1
− Γ(γ + 1)Liγ+1(e

µ), (34)

and, as k1 → ∞, k2 → ∞, and µ → 0, it passes to c(γ).
The compressibility factor

Zγ = −ζ(γ + 2)/M(γ + 1)

is subjected to a jump from γ = 0 to γ < 0. We obtain a termination of the metastable area
of negative pressures. This implies the paradoxical effect of increasing density under decreasing
temperature, which is actually observed experimentally (see [4], and also [5]).

In the approach under consideration, we see that the trajectory satisfies the relation

µdN = 0. (35)

Thus, the new ideal gas gives discontinuous isotherms consisting of a gaseous branch and an in-
compressible liquid branch.

From the point of view of economics, this means that the reduction of “freedom” is carried out,
first, at the expense of uniting, and then, at the expense of toughening the laws; for instance, there
must be no unemployed and the number N must be preserved. From the point of view of physics,
this means that, for T > 1, as the number N is increased, a cascade-like increase of the joining
into clusters occurs, and then the jamming phenomenon can be observed (an incompressibility) in
which the increase of pressure does not cause any decrease in volume.

The trajectory consisting for T > 1 of two intersecting straight lines on the {Z,P} plane, the
very trajectory following from number theory, is the skeleton of thermodynamics, the new ideal
gas. Smoothing (filling by conjunctive tissue) of this skeleton is given by taking the interactions
into account.

Remark 6. The phase transition of the first kind on the P,Z plane for T < Tcr occurs at P = Pcr
under a modification of the density and variable chemical potential, and the phase transition of the
first kind at T < Tcr occurs on the isotherm for different pressures and different chemical potentials.
In the van der Waals diagram, to the last phase transition there corresponds a passage from the
gaseous branch to the liquid branch along the entire interval of metastable states, from the spinodal
point on the gaseous branch to the spinodal point on the liquid branch.

To obtain a phase transition of the standard form for T < Tcr, one must find points on both
the isotherms at which the chemical potentials are equal. This is a special condition of projecting
to the T, P plane of two Lagrangian manifolds with boundaries (the boundary corresponds to the
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spinodal) under which the Gibbs potential takes the maximal value. In other words, the chemical
potential is minimized along the isotherm.

The so-called geometric quantization of these two manifolds can be carried out by means of
the tunnel canonical operator, where 1/N serves as a small parameter. This is a diffusion of gas
(see [6]).

Thus, in the case of the new ideal gas, we obtain an incompressible liquid and a nonanalytic
dependence, namely, an isotherm–isobar goes from γ to γ′, whereas below γ′, for P < 1, there is
an isotherm–isochor.

For T > Tcr, we consider isochors–isodims issuing from the critical isotherm. These are curves
with constant density and constant fractional dimension γ corresponding to the line Z = const
intersecting with the critical isotherm. As was already mentioned above, along the interval on
isotherm–isobar, the value γ changes from γ = γ0 to γ′.

The smoothing for γ < γ′ occurs at the expense of the Zeno line, and on the isochor–isodim,
at the expense of diffusion and geometric quantization of thermodynamics, we have T = Tcr and
P < Pcr near the focal point.

If the value γsum belongs to the interval (γ, γ′), where γ < γ′, then Zγ = V , where V is the
volume. In this case, the relation for the densities and for the NT-internal energy enables us to
evaluate an analog of the Zeno line for the mixture of two gases, and hence also to evaluate the
function

φγsum(V/ρcr)

and to refine, for a real gas, the relations presented in [6, Sec. 7].

5. CONCLUSION

For thermoeconomics, the suggested approach corresponds to the situation in which a united
currency is introduced for two different states. For experimental physicists, the approach helps to
study the relationship among different parameters of the problem and to understand in what areas
one must make more detailed measurements.

This approach is especially important for computer experiments in which an additional parameter
arises, namely, the step of the grid.

The multiscale features of processes related to molecular physics manifest themselves especially
well in the scaling hypothesis, which is verified quite inaccurately in the model of molecular dy-
namics, by increasing the number of launched particles.

It is impossible to create a correct architecture [8] of computing media and environments without
a deep investigation of the relationship between the computer “viscosity” (see [7]) and the mathe-
matical analysis of “deviations” and paradoxes in laws of phenomenological thermodynamics.
In [2, 3, 6, 9, 10], the “deviations” between the scaling hypothesis and the “classical” critical expo-
nents, Einstein and Gibbs paradoxes, and other discrepancies in phenomenological thermodynam-
ics and molecular physics were studied mathematically rigorously. These contradictions manifest
themselves especially vividly in long-living metastable phenomena for the liquid phase (including
those occurring under negative pressures), where the van der Waals model shows a fundamental
discrepancy from the full-scale data, as well as in the area of fluids.

For this reason, the comparison of mathematical modeling for multiscale thermodynamical pro-
cesses with full-scale data and data of modern computer experiments in molecular dynamics is
necessary do develop hierarchical models of processes, algorithmic assembling, and architecture of
supercomputers.

In the present work, we specially stress the resolution of the above contradictions by using tools
of modern tropical mathematics from the standpoint of applying these solutions to the problem
of mixture of different gases. Up to now, solutions of the last problem by methods of molecular
dynamics were based on an empirical choice of some average interaction potential.

We suggest forecasting in order to predict results of full-scale experiments and to direct them in
the desired way by using modern computer technologies.
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