Содержание

ИНФОРМАТИКА 2–11. УМК «ШКОЛА БИНОМ»

Бородин М. Н. О месте учебного предмета «Информатика» в ФГОС .. 3

Матвеева Н. В. Фундаментальные основы информатики в начале пути. УМК «Информатика» для II—IV классов .. 6

Плаксин М. А. Интеграция информационно-коммуникационных и интеллектуальных технологий работы с информацией в начальной школе. УМК «Информатика» для III—IV классов .. 12

Могилев А. В., Цветкова М. С. О формировании информационной активности учащихся начальной школы. УМК «Информатика» для III—IV классов .. 18

Босова Л. Л. Непрерывный курс информатики в основной школе. УМК «Информатика» для V—IX классов .. 25

Угринович Н. Д. Мультисистемный и мультимедийный подход при изучении информатики. УМК «Информатика» для VII—IX и X—XI классов .. 32

Семакин И. Г. Новое поколение учебников по информатике. УМК «Информатика» для VII—IX и X—XI классов .. 39

Калинин И. А., Самылина Н. Н. Один из подходов к содержанию углубленного курса информатики. УМК «Информатика» для X—XI классов, углубленный уровень .. 48

Поляков К. Ю., Еремин Е. А. Предпрофессиональная подготовка в рамках углубленного курса информатики. УМК «Информатика» для X—XI классов, углубленный уровень .. 54

Цветкова М. С., Самылина Н. Н. Информационно-методическое обеспечение деятельности учителей информатики, методов и администрации образовательных организаций .. 59
Интеграция информационно-коммуникационных и интеллектуальных технологий в начальной школе. УМК «Информатика» для III—IV классов

Аннотация
В статье рассматривается интеграция информационно-коммуникационных и интеллектуальных технологий работы с информацией, пользова основы элементов системного анализа и ТРИЗ, которые становятся серьезными инструментами при изучении всех остальных предметов, обеспечивая возможность широкого развития межпредметных связей, выхода за узкие границы «собственно информатики».

Ключевые слова: система, системный анализ, системный эффект, ТРИЗ.

Переход России к информационному обществу характеризуется колоссальным ростом объема информации, увеличением сложности восприятия окружающего мира и взаимосвязи всех его явлений, увеличением скорости обновления знаний, постоянным появлением новых задач.

Для того чтобы школа могла отвечать запросам современного общества, ей необходимо:
- интенсифицировать обучение;
- перейти от репродуктивного обучения к проблемно-исследовательскому — научить школьника, умеющего вычленять задачу из окружающего мира, грамотно сформулировать ее, определить оптимальный способ решения и решить;
- научить учиться — передать ребенку не только некоторый объем знаний, умений и навыков, но и технологию получения новых знаний.

Авторами М. А. Плаксиным, Н. Г. Ивановой, О. Л. Русаковой был разработан учебно-методический комплект для начальной школы, в состав которого входят:
- Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика: учебник для 3 класса: в 2 ч. М.: БИНОМ. Лаборатория знаний, 2012;
- Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика: учебник для 4 класса: в 2 ч. М.: БИНОМ. Лаборатория знаний, 2012;
- компьютерный практикум:
- Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика: практикум для 3 класса. М.: БИНОМ. Лаборатория знаний, 2013;
ИНФОРМАТИКА 2-11. УМК «ШКОЛА БИНОМ»

- Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика и ИКТ. Практикум. 4 класс. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);

- Методики (интеллектуальный практикум):
 - Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика. Задачник. 3 класс. Рабочая тетрадь. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);
 - Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика в ИКТ. Задачник. 4 класс. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);

- Программа:
 - Плаксин М. А., Цветкова М. С. Информатика. Программа для начальной школы: 3—4 классы. М.: БИНОМ. Лаборатория знаний, 2012;

- Методическое пособие для учителя:
 - Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика: методическое пособие для 3 класса. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);
 - Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика: методическое пособие для 4 класса. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);

- Лаборатории по ряду сложных тем:
 - Плаксин М. А., Иванова Н. Г., Русакова О. Л. Информатика в картинках. М.: БИНОМ. Лаборатория знаний, 2013 (готовится к изданию);

- Саамобучалка — пособие для учащихся, родителей и учителей, представляющее курс в форме «вопрос-ответ» и позволяющее детям и родителям контролировать уровень знаний ребенка (готовится к изданию);

- Комплект плакатов «Введение в информатику» (12 плакатов);

- Методическое пособие к комплекту плакатов «Введение в информатику»;

- Электронные материалы для учителя и для учащихся на компакт-диске;

- Сайт методической поддержки учителей: http://metodist.lib.ru/

- Предлагаемый УМК нацелен на решение вышеуказанных задач в рамках начальной школы. Для этого в традиционную тематику учебников по информатике, нацеленных на освоение ИКТ, были внесены логические составляющие (на уровне, соответствующем возрасту учащихся), элементы системного анализа и ТРИЗ/ТРТВ (теории решения изобретательских задач / теории развития творческого воображения).

- Таким образом, в предлагаемой линейке учебников собраны вместе информационно-коммуникационные и интеллектуальные технологии работы с информацией.

- Представление любого изучаемого объекта в виде системы является действенным приемом познания мира. Учащийся осваивает стандартную схему системного анализа:
 - выделение системы из окружающего мира;
 - определение системного эффекта, главной и вспомогательной функции системы, ее структуры;
 - анализ ее достоинств и недостатков;
 - поиск альтернативных систем, выполняющих ту же главную функцию;
 - сравнение систем;
 - поиск способа исправления найденных недостатков и анализ затрат, которые обязательно повлекут за собой сделанные исправления.

- Владение этой методикой позволяет интенсифицировать образовательную деятельность учителя. Применение методики позволяет ему в будущем самостоятельно знакомиться с любыми новыми системами.

- Элементы диалектической логики (ТРИЗовской теории противоречий) воспитывают в ребенке критический взгляд на мир, помогают понять противоречие как основу любого развития, недостатки системы — как фактор, определяющий направление ее совершенствования.

- В качестве инструмента научного (экспериментального) познания мира школьникам предлагается методика исследования системы как «черного ящика».

- Основные в курсе информатики элементы системного анализа в ТРИЗ становятся действительными инструментами при изучении всех остальных предметов, обеспечивают возможность широкого развития меж предметных связей, выхода за границы предмета «Информатика».

- Одним из видов системных связей являются причинно-следственные. Учение о всеобщей взаимосвязи явлений естественным образом переходит в осознание последствий своих действий, в воспитание ответственности за совершаемые поступки. Таким образом в информатике затрагивается этическая сторона.

- Важным моментом является введение в учебный процесс «открытых задач», т. е. задач, которые не имеют четких входных данных, точного алгоритма решения и однозначно определенного результата. Именно такова большая часть задач, с которыми человек сталкивается в жизни. В данном случае решению задачи в традиционном смысле этого слова должен предшествовать анализ ситуации, постановка задачи, определение недостающих для решения данных, определение источников, откуда их можно получить (в том числе источников, которые с точки зрения традиционной школьной программы относятся к различным дисциплинам).

- Большое внимание уделяется системализации (структурированию) большого объема информации. Представление большого объема знаний в виде системы способствует их пониманию учащимися. Это еще один инструмент интеграции обучения, который дается в руки ребенка.

- Одними из первых изучаемых наборов информации являются словари и книги. Овладение техникой быстрого поиска слов в словаре или значений в книге с помощью предметного указателя — это поддержка со стороны курса информатики как языковым курсам, так и всем другим предметам.
«Информатика в картинках» — набор комиксов по ряду сложных тем.
«Самообучалка» — это одна из новейших курсов. Это пособие, которое представляет материал курса в виде перечня вопросов и ответов. Расположены они таким образом, чтобы ребенок может самостоятельно повторять изученный материал и контролировать свои знания. Пособие полезно не только для ребенка, но и для учителя (как источник заданий для устного опроса и при подготовке к контрольным работам), и для родителей (как инструмент контроля знаний своих детей).

Сочетание работы с метапредметными результатами обучения, а также продолжения обозрения наиболее ценными являются следующие компетенции, отраженные в содержании курса: ценностно-смысловые компетенции:
- понимание системы мира, всеобщей связи явлений, наличия причинно-следственных связей между явлениями;
- понимание противоречивости мира, диалектического единства противоречий;
- понимание себя как части мира, связанной с другими его частями; понимание того, что любой поступок обязательно влечет те или иные последствия;
- критичность мышления, формируемая на базе понимания противоречивости мира;
- понимание наличия у проблемы множества решений, каждое из которых обладает своими достоинствами и недостатками и подразумевает определенные затраты на достижение; умение сравнивать эти достоинства и недостатки, оценивать их важность и сопоставлять их с требуемыми затратами;
- понимание практики как критерия истинности знаний (выработанное при освоении методик экспериментального исследования мира);
- понимание намечаемости, развивающейся мира;
- понимание недостатков системы как факторов, определяющих направление ее развития;
- критичность мышления, базирующаяся, в частности, на осознании элементов ТРИЗ как инструмента для осмысленного принятия решений в самых разных жизненных ситуациях;
- понимание различий синтагматического, семантического и pragматического аспектов информации;
- владение здоровьесберегающими технологиями работы на компьютере (правила поведения в компьютерном классе, гимнастика для глаз и рук);
- учебно-познавательные компетенции, обеспечивающие возможность интенсификации обучения (получения большего объема знаний за то же время);
- умение рассуждать правильно с точки зрения классической логики.
• освоение универсальной методики системного анализа — анализ любого объекта как системы по заданной схеме:
 — выделение системы из окружающего мира;
 — определение системного эффекта;
 — пределение главной функции;
 — определение вспомогательных функций (полезных и вредных);
 — описание структуры;
 — перечисление достоинств и недостатков;
 — поиск ситуаций, в которых достоинства свершаются в недостатки и наоборот;
 — поиск альтернативных систем, выполняющих ту же главную функцию, сравнение исследуемой системы с альтернативными,
 — выявление сравнительных достоинств и недостатков;
 — анализ возможности исправления недостатков и тех затрат, которые повлекут за собой сделанные исправления;

• сознательное применение при изучении других предметов понятий и методов системного анализа;

• освоение методики экспериментального исследования как механизма получения нового знания и проверки его истинности; умение проектировать процесс наблюдений;

• соотнесение достигнутых результатов с поставленной целью; понимание относительности успеха в достижении цели («До какой степени удаётся достичь поставленной цели?»);

• определение причин возникающих трудностей и путей их устранения через анализ заложенных в систему противоречий;

• умение систематизировать (структурировать, организовывать) информацию различными способами в зависимости от ситуации;

• владение такими инструментами быстрого поиска информации, как быстрые поиски слов в словаре и поиск значений в книге по предметно-именному указателю;

• умение действовать по готовым алгоритмам, умение строить простые алгоритмы для решения жизненных задач (планировать свою деятельность);

• умение применять технологические приемы (алгоритмы, методы логики, системного анализа и ТРИЗ) для решения творческих задач;

• умение искать информацию в компьютере и в сети Интернет;

• умение представлять результаты работы в виде компьютерных презентаций;

• развитие умений воспринимать информацию, представленную в различных формах;

• умение выбирать оптимальную форму для представления информации;

• освоение таких способов получения информации, как умение грамотно задавать вопросы, наблюдать, рассуждать и делать выводы;

• обоснование высказанного суждения;

• критическое отношение к приводимым аргументам; понимание относительности преимуществ и/или недостатков;

• понимание взаимозависимости поступков и явлений, анализ последствий поступков в виде цепочки причинно-следственных связей;

• информационные компетенции:
 — определение различными способами представления информации;
 — выбор способа представления информации, оптимального для решаемой задачи;
 — умение вычленять из потока информации нужные знания и представлять их в виде, максимально удобном для дальнейшего применения;
 — знакомство с генерацией новых знаний как проявлением принципа эмерджентности, появлением системного эффекта (нового качества) при построении информационной системы;
 — умение грамотно преобразовывать информацию в процессе логических рассуждений;
 — знакомство с базовыми компьютерными технологиями представления и обработки информации.

Курс вырабатывает такие свойства мышления, как системность, логическая правильность, диалектичность, критичность, креативность, исследовательский характер.

Системность вырабатывается при изучении основ системного анализа, логичность мышления — при изучении основ классической логики.

Диалектичность мышления формируется при изучении основ диалектической логики (тема «Противоречия»).

Критичность — прямое следствие диалектичности. Ребенок знает, что любая система имеет недостатки и что исправление недостатков породит новые. Он учится сопоставлять значимость недостатков и выбирать вариант с менее значимыми недостатками.

Системность, диалектичность и критичность мышления тесно связаны со способностью решить задачу и оценить достигнутые результаты, ответить на такие вопросы, как: такой ли получен результат? правильно ли это делается? удалось ли достичь поставленной цели? Для грамотного ответа необходимо определить, какие существуют альтернативные возможности достижения цели, оценить, до какой степени удаётся достичь цели при выборе каждого варианта и какие затраты это повлечет.

Другое важное применение системности, диалектичности и критичности — определение причин возникающих трудностей и путей их устранения; в идеале — предвидение трудностей и их предупреждение. Чтобы оценить возникающие трудности, найти пути их устранения, а уж тем более их предвидеть, необходимо понять, какие противоречия заложены в системе, найти пути их устранения, оценить значимость проблем, которые (неизбежно) будут при этом порождены.

Креативность. Курс сознательно и целенаправленно стремится взвестить ребенка из мира привычных, хорошо формализованных закрытых задач (имеющих четко определенные условия, входные данные и результаты, алгоритм решения) к задачам открытым (не имеющим точных условий, подразумевающих множество путей решения, набор возможных результатов, имеющих разную степень
приемлемости), т. е. именно тем, которые ждут его в жизни. При этом учащиеся приобретают крайне необходимые умения:

- анализировать условия задачи, определять, что именно должно стать решением задачи и каких данных недостает для его нахождения;
- определять возможные источники недостающей информации;
- добывать недостающие сведения из различных источников или выводить их из известных фактов;
- уметь оперировать приблизительными данными;
- уметь критически оценить результаты.

Открытые задачи заставляют учащихся привлекать знания и умения из разных предметных областей.

Исследовательский характер мышления вырабатывается при основании темы «Черный ящик», которая начинается в третьем классе и продолжается в четвертом. «Черный ящик» предуждает ребенка к тому, что знание выводится из опыта, что критерием истинности идеи является ее соответствие практике, что главное достоинство любой теории — ее способность правильно предсказать будущее. Эта методика противопоставляет традиционному дидактическому получению знаний, утверждению, что всякая идея является либо правильной, либо неправильной, причем правильность определяется мнением (родителей, учителей, книг).

Курсы предполагают четыре направления развития учащихся:

- жироплатежное (ключевые слова — «информация» и «система») — рассматривают понятия информации и информационных процессов (обработка, хранение, получение и передача информации). В результате должно сформироваться умение понимать информационную сущность мира, его систематичность, логичность и пространственность, распознавать и анализировать информационные процессы, оптимально представлять информацию для решения поставленных задач и применять понятия информатики на практике;
- практическое (ключевое слово — «компьютер») — формируется представление о компьютере как универсальном инструменте для работы с информацией, рассматриваются разнообразные способы применения компьютера, дети приобретают навыки общения с компьютером на основе использования электронного приложения, свободного программного обеспечения и ресурсов;
- алгоритмическое (ключевые слова — «алгоритм», «программа») — развитие алгоритмического мышления идет через решение алгоритмических задач, изучение «черных ящиков». В результате формируется представление об алгоритмах и отрабатывается умение решать алгоритмические задачи на компьютере средствами ресурса «Интерактивный заданиший для младших школьников» на сайте государственной коллекции ЦОР (http://www.school-collection.edu.ru);
- исследовательское (ключевые слова — «логика», «творчество») — содержание и методика преподавания курса способствуют формированию творческих, исследовательских способностей ребенка через освоение основ логики и теории решения проблем, основных проблем снятия задач, в результате формирования творческой активности учащихся. Исследовательское направление курса, выстроенного на основе актуальности, творческих приемов работы, позволяет учащимся осваивать новые знания, развивать интерес к изучаемому предмету, формировать навыки самостоятельной работы. Каждое из направлений развивается по своим законам, но при этом они пересекаются, поддерживаются и дополняют друг друга.

Тексты учебников, задания и упражнения в учебниках и заданичиках составлены с учетом возрастных и психологических особенностей учащихся, жизненного опыта учителей начальной школы.

В построении курса авторы используют спиральный подход, согласно которому в каждом из тем изучаются в несколько приемов — в каждом классе идет углубление и расширение изучаемого материала. Например, в третьем классе вводится понятие алгоритма, в четвертом — изучаются способы записи и виды алгоритмов; в третьем классе вводится понятие «черного ящика», в четвертом — изучаются правила проведения определений при исследовании «черного ящика», и т. л.

Ряд заданий рассчитан на привлечение к учебному процессу родителей, изложение информации из семейных архивов (задания на структуру семьи).

Учебники включают параграфы, четко соотнесенные с уроками. В учебнике для третьего класса параграфы имеют линейную нумерацию, в учебнике для четвертого класса — структурную (номер главы и номер параграфа в начале). Каждый параграф имеет доступную для ребенка структуру, включая такие части, как:

- определения и опорные задания, важные для усвоения в данном параграфе и позволяющие самому ребенку проверить себя по данным диалогическому единицам параграфа (объяснять определение, самостоятельно решать вопрос задания, разобранные в параграфе);
- вопросы и задания к параграфу, которые позволяют ребенку активно работать с текстом параграфа, использовать в схемы, иллюстрации к параграфу, стимулируют к обобщению, анализу, соединению собственных примеров, систематизации материалов нескольких параграфов и формулированию выводов, закономерностей;
- иллюстрации понимают и обобщают теоретические положения, комплексно отражают основные идеи, которые ребенок должен вынести из параграфа, служат темой для обсуждения материала параграфа, создают образный ряд упражнений, позволяют подключить к восприятию материала не только логическое, но и образное мышление. Все рисунки выполнены с учетом возрастных особенностей в едином стиле (детский рисунок). При разра-
Информатика 2-11. УМК «Школа Бином»

Для актуализации внимания младших школьников при работе с учебным текстом параграф снабжён визуальными навигационными инструментами: навигационной панелью со специальными закладками, акцентирующей внимание учащихся на важных конструкциях параграфа, а также позволяющими связать в единый комплекс все составляющие УМК благодаря ссылкам на задачи, практикум электронные материалы к параграфу. Таким образом, навигационные инструменты учебника активизируют деятельностный характер взаимодействия учащихся с учебным материалом параграфа.

Все дидактические объекты учебного текста параграфа представлены в ясной для младших школьников форме, позволяют организовать как коллективную работу детей в классе, так и индивидуальную работу ребенка с параграфом домаш. Для успешного освоения курса «Информатика» для III—IV классов предлагается использовать на уроках следующие виды деятельности:
- эвристические беседы;
- выполнение заданий интеллектуального прак-
 тикума;
- наблюдение за объектом изучения, проведе-
 ние экспериментальных исследований;
- просмотр и обсуждение учебных презентаций
 и мультфильмов;
- выполнение на компьютере заданий компью-
 терного практикума;
- работу со словарями, энциклопедиями, спра-
 вочниками и т. д.;
- изучение графического словаря;
- работа с письменной работой на компьютере;
- тестирование (прозакончок и итоговое), в том
 числе на компьютере;
- работу по инструкции;
- чтение и обсуждение текста;
- разбор домашнего задания;
- физкультурные минутки;
- компьютерные эстафеты.

Предлагается использовать как групповую, так и индивидуальную формы обучения.

Вариативность преподавания курса обеспечивается большим количеством практических заданий в практикумах.

Для увлеченных школьников предлагается использовать следующие виды внеурочной деятельностности:
- кружковые занятия с использованием задачни-
 ка;
- участие в ежегодном Межрегиональном интерне-

«ТРИЗформашка» — это ежегодный конкурс, в котором требуется не столько знание материала того или иного школьного учебника, сколько сообразительность и владение интеллектуальными технологиями обработки информации. И в этом конкурсе ситуация, когда учащиеся начальной школы побеж-
 дают старшеклассников и даже студентов (!), не ред.
 кость. Такие победы очень способствуют росту само-
 уповения учащихся младших классов, слушают
 мотиваций для углубленного изучения курса.

Новости

Intel впервые выпустила компьютер под открытым лицензией

Проект MinnowBoard.org, созданный при поддержке корпорации Intel, приступил к поставкам одно-
 чипового Open Hardware-компьютера MinnowBoard.

MinnowBoard оснащен 32-разрядным процессором Intel Atom E640 с одним ядром, работающим на частоте 1 ГГц (архитектура Tunnel Creek), видеодекодером Intel GMA 600, 1 ГБ оперативной памяти и 4 МБ флеш-памяти для записи пропилки.

Компьютер поддерживает карты памяти microSD, подключение накопителей с интерфейсом SATA2
 шиной(7), подключение нескольких USB-устройств, имеет линейный аудиоин/вход и поддержку локальных сетей со скоростью до 1 Гбит/с. Размеры платы составляют 10,7х10,7 см.

MinnowBoard предлагается с дистрибутивом Angstrom Linux. Стоимость компьютера равна $199.

В дополнение к одноплатному компьютеру MinnowBoard получили возможность платы расширения, которые могут размещаться на плате MinnowBoard в несколько этапов. Эти платы продаются отдельно.

На сайте MinnowBoard.org можно найти всю необходимую документацию, включая чертежи компьютера и схемы. Всем этим материалам можно пользоваться в рамках открытой лицензии Creative Commons.

Как рассказали в MinnowBoard.org, их целью было создание наборного компьютера на базе архитектуры Intel, который можно было бы легко скопировать, и который является максимально открытым, как в плане аппаратного, так и программного обеспечения. MinnowBoard состоит из старых компонентов (например, процессор компьютера выпущен еще в 2010 г.), поэтому они дешевле и их можно легко найти.

(По материалам CNews)