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On odd-periodic orbits in complex planar billiards

Alexey Glutsyuk ∗†‡§

September 10, 2013

Abstract

The famous conjecture of V.Ya.Ivrii (1978) says that in every bil-
liard with infinitely-smooth boundary in a Euclidean space the set of
periodic orbits has measure zero. In the present paper we study the
complex version of Ivrii’s conjecture for odd-periodic orbits in planar
billiards, with reflections from complex analytic curves. We prove pos-
itive answer in the following cases: 1) triangular orbits; 2) odd-periodic
orbits in the case, when the mirrors are algebraic curves avoiding two
special points at infinity, the so-called isotropic points. We provide im-
mediate applications to the real piecewise-algebraic Ivrii’s conjecture
and to its analogue in the invisibility theory.

1 Introduction

The famous V.Ya.Ivrii’s conjecture [6] says that in every billiard with infinitely-
smooth boundary in a Euclidean space of any dimension the set of periodic
orbits has measure zero. As it was shown by V.Ya.Ivrii [6], it implies the
famous H.Weyl’s conjecture on the two-term asymptotics of the spectrum of
Laplacian [15]. A brief historical survey of both conjectures with references
is presented in [5]. For triangular orbits Ivrii’s conjecture was proved in
[2, 10, 11, 14, 16]. For quadrilateral orbits it was proved in [4, 5].
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Remark 1.1 Ivrii’s conjecture is open already for piecewise-analytic bil-
liards, and we believe that this is its principal case. In the latter case Ivrii’s
conjecture is equivalent to the statement saying that for every k ∈ N the set
of k-periodic orbits has empty interior. In the case, when the boundary is
analytic, regular and convex, this was proved for arbitrary period in [13].

In the present paper we study a complexified version of Ivrii’s conjecture
in complex dimension two for odd periods. More precisely, we consider the
complex plane C

2 equipped with the complexified Euclidean metric, which
is the standard complex-bilinear quadratic form. This defines notion of
symmetry with respect to a complex line. Reflections of complex lines with
respect to complex analytic curves are defined by the same formula, as in the
real case. See [3, subsection 2.1] and Subsection 2.2 below for more detail.

Remark 1.2 Ivrii’s conjecture has an analogue in the invisibility theory,
see Subsection 1.2 and references therein. It appears that both conjectures
have the same complexification. Thus, results on the complexified Ivrii’s
conjecture have applications to both Ivrii’s conjecture and invisibility.

Main results and an application to the real Ivrii’s conjecture are stated
in Subsection 1.1. Corollary on the invisibility is stated and proved in Sub-
section 1.2.

1.1 Complex billiards, main results and plan of the paper.

Definition 1.3 A complex projective line l ⊂ CP
2 ⊃ C

2 is isotropic, if ei-
ther it coincides with the infinity line, or the complexified Euclidean quadratic
form on C

2 vanishes on l. Or equivalently, a line is isotropic, if it passes
through some of two points with homogeneous coordinates (1 : ±i : 0): the
isotropic points at infinity. In what follows we denote the latter points by

I1 = (1 : i : 0), I2 = (1 : −i : 0).

Definition 1.4 [3] A planar complex analytic (algebraic) billiard is a finite
collection of complex analytic (algebraic) curves-“mirrors” a1, . . . , ak. We
assume that no mirror aj is an isotropic line and set a0 = ak, ak+1 = a1.

Definition 1.5 [3] A k-periodic billiard orbit is a collection of points Aj ∈
aj , Ak+1 = A1, Ak = A0, such that for every j = 1, . . . , k one has Aj 6= Aj+1,
the tangent line TAj

aj is not isotropic and the complex lines Aj−1Aj and
AjAj+1 are transverse to it and symmetric with respect to it. (Properly
saying, we have to take points Aj together with prescribed branches of curves
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aj at Aj : this specifies the line TAj
aj in unique way, if Aj is a self-intersection

point of the curve aj .)

Remark 1.6 In a real billiard the reflection of a ray from the boundary
is uniquely defined: the reflection is made at the first point where the ray
meets the boundary. In the complex case, the reflection of lines with respect
to a complex analytic curve is a multivalued mapping (correspondence) of
the space of lines in CP

2: we do not have a canonical choice of intersection
point of a line with the curve. Moreover, the notion of interior domain does
not exist in the complex case, since the mirrors have real codimension two.

Definition 1.7 [3] A complex analytic billiard a1, . . . , ak is k-reflective, if
it has an open set of periodic orbits. In more detail this means that there
exists an open set of pairs (A1, A2) ∈ a1×a2 extendable to k-periodic orbits
A1 . . . Ak. (Then the latter property automatically holds for every other pair
of neighbor mirrors aj , aj+1.)

Problem (Complexified version of Ivrii’s conjecture) [3]. Classify
all the k-reflective complex analytic (algebraic) billiards.

It is known that there exist 4-reflective complex planar algebraic bil-
liards, see [12, p.59, corollary 4.6] and [3]. Their complete classification is
given in [3]. This implies existence of k-reflective algebraic billiards for all
k ≡ 0(mod4), see [3, remark 1.5].

Conjecture. There are no k-reflective complex analytic (algebraic) pla-
nar billiards for odd k.

The next two theorems partially confirm this conjecture.

Theorem 1.8 Every planar complex analytic billiard with three mirrors is
not 3-reflective.

Theorem 1.9 Let a planar complex algebraic billiard have odd number k of
mirrors, and let each mirror contain no isotropic point at infinity. Then the
billiard is not k-reflective.

Theorem 1.8 is the complexification of the above-mentioned results by
M.Rychlik et al on triangular orbits in real billiards, see [2, 10, 11, 14, 16].
Theorem 1.9 has immediate application to the real Ivrii’s conjecture.

Corollary 1.10 Consider a real planar billiard with piecewise-algebraic bound-
ary. Let the complexifications of its algebraic pieces contain no isotropic
point at infinity. Then the set of its odd-periodic orbits has measure zero.

3



The corollary follows immediately from Theorem 1.9 and Remark 1.1.
Theorem 1.9 is proved in Section 3. Theorem 1.8 is proved in Section 4.

Their proofs are based on the following elementary fact.

Proposition 1.11 The symmetry with respect to a non-isotropic line per-
mutes the isotropic directions: the image of an isotropic line through the
isotropic point I1 at infinity passes through the other isotropic point I2.

Proposition 1.11 follows from a proposition at the beginning of [3, sub-
section 2.1].

Corollary 1.12 Let a periodic orbit in complex planar analytic billiard have
finite vertices, and at least one of its edges (complex lines through neighbor
vertices) be isotropic. Then all the edges are isotropic, and their directions
(corresponding isotropic points at infinity) are intermittent, see Fig.1. In
particular, the period is even.

        2

I  =(1:i:0)

     2I   =(1:−i:0)

CP

a   1

A    1

a    2
   A   2

a  k

A     k

   1

Figure 1: A periodic orbit with isotropic edges of intermittent directions

We prove Theorem 1.9 by contradiction. Supposing the contrary, i.e.,
the existence of an open set of odd-periodic orbits, we show that it contains
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a finite orbit with an isotropic edge, as in the latter corollary. This is the
main technical part of the proof, and this is the place we use the second
technical assumption of Theorem 1.9. This together with Corollary 1.12
implies that the period should be even, – a contradiction.

For the proof of Theorem 1.8, supposing the contrary, we prove the exis-
tence of a one-dimensional family of orbits with one isotropic edge through
two variable vertices so that the third vertex is a fixed isotropic point at
infinity. We show that the existence of the latter family contradicts the
reflection law at the third vertex. In the proof we deal with the maximal
analytic extensions of mirrors and the closure of the open set of periodic
orbits in the product of the extended mirrors. The corresponding back-
ground material and basic facts about complex reflection law are contained
in Subsections 2.1 and 2.2 respectively and in [3, subsection 2.1].

1.2 Corollaries for the invisibility

This subsection is devoted to Plakhov’s Invisibility Conjecture: the ana-
logue of Ivrii’s conjecture in the invisibility theory [7, conjecture 8.2]. We
recall it below and show that it follows from a conjecture saying that no
finite collection of germs of smooth curves can form a k-reflective billiard
for appropriate “invisibility” reflection law. In the case, when the curves
are analytic, the invisibility reflection law is a real form of complex reflec-
tion law. This shows that both invisibility and Ivrii’s conjectures have the
same complexification. For simplicity we present this relation in dimension
two. We state and prove Corollaries 1.19 and 1.21 of our complex results
(Theorems 1.8 and 1.9) for planar Invisibility Conjecture.

Definition 1.13 Consider an arbitrary perfectly reflecting (may be discon-
nected) closed bounded body B in a Euclidean space. For every oriented line
R take its first intersection point A1 with the boundary ∂B and reflect R
from the tangent hyperplane TA1

∂B. The reflected ray goes from the point
A1 and defines a new oriented line. Then we repeat this procedure. Let
us assume that after a finite number of reflections the output oriented line
coincides with the input line R and will not hit the body any more. Then
we say that the body B is invisible in the direction R, see Fig.2. We call
R the invisibility direction, and the finite piecewise-linear curve bounded by
the first and last reflection points will be called its complete trajectory.

Invisibility Conjecture (A.Plakhov, [7, conjecture 8.2, p.274].) There
is no body with piecewise C∞ boundary for which the set of invisibility di-
rections has positive measure.
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Figure 2: A body invisible in one direction.

Remark 1.14 As is shown by A.Plakhov in his book [7, section 8], there
exist no body invisible in all directions. The same book contains a very
nice survey on invisibility, including examples of bodies invisible in a finite
number of (one-dimensional families of) directions. See also papers [1, 8, 9]
for more results. The Invisibility Conjecture is open even in dimension 2.
It is equivalent to the statement saying that there are no k-reflective bodies
for every k, see the next definition.

Definition 1.15 A body B with piecewise-smooth boundary is called k-
reflective, if the set of invisibility directions with k reflections has positive
measure.

Definition 1.16 Let a1, . . . , ak be a collection of (germs of) planar smooth
curves. A k-gon A1 . . . Ak with Aj ∈ aj , Ak+1 = A1, A0 = Ak is said to be
a k-invisible orbit, if

- Aj 6= Aj+1 for every j = 1, . . . , k;
- the tangent line TAj

aj is the exterior bisector of the angle ∠Aj−1AjAj+1

whenever j 6= 1, k, and it is its interior bisector for j = 1, k, see Fig.3.
We say that the collection a1, . . . , ak is a k-invisible billiard, if the set of

its k-invisible orbits has positive measure.
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Figure 3: A k-invisible k-gon: new, invisibility reflection law at A1 and Ak.

Proposition 1.17 Let k ∈ N and B ⊂ R
2 be a body such that no collection

of k germs of its boundary forms a k-invisible billiard. Then the body B is
not k-reflective.

Proposition 1.17 is implicitly contained in [7, section 8].

Proposition 1.18 Let a collection of k germs of planar analytic curves be
a k-invisible billiard. Then its complexification is a k-reflective billiard.

The proposition follows from definition and analyticity: both the usual
reflection law and the invisibility reflection law at A1 and Ak from the above
definition are two different real forms of the complex reflection law.

Corollary 1.19 There are no 3-reflective bodies in R
2 with piecewise-analytic

boundary.

Remark 1.20 Corollary 1.19 is known to specialists. As it is stated in
A.Plakhov’s book [7] (after conjecture 8.2), Corollary 1.19 can be proved by
adapting the proof of Ivrii’s conjecture for triangular orbits. A.Plakhov’s
unpublished proof of Corollary 1.19 follows [16].

Corollary 1.21 Let B ⊂ R
2 be a body with piecewise-algebraic boundary,

and let the complexifications of its algebraic pieces contain no isotropic point
at infinity. Then B is not k-reflective for every odd k.
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Corollaries 1.19 and 1.21 follow from Propositions 1.17, 1.18 and Theo-
rems 1.8 and 1.9, analogously to Corollary 1.10.

2 Maximal analytic extension and complex reflec-

tion law

2.1 Maximal analytic extension

Recall that a germ (a,A) ⊂ CP
n of analytic curve is irreducible, if it is the

image of a germ of analytic mapping (C, 0) → (a,A).

Definition 2.1 Consider two holomorphic mappings of Riemann surfaces
S1, S2 with base points s1 ∈ S1 and s2 ∈ S2 to CP

n, fj : Sj → CP
n, j = 1, 2,

f1(s1) = f2(s2). We say that f1 ≤ f2, if there exists a holomorphic mapping
h : S1 → S2, h(s1) = s2, such that f1 = f2 ◦ h. This defines a partial order
on the set of classes of Riemann surface mappings to CP

n up to conformal
reparametrization respecting base points.

Proposition 2.2 Every irreducible germ of analytic curve in CP
n has max-

imal analytic extension. In more detail, let (a,A) ⊂ CP
n be an irreducible

germ of analytic curve. There exists an abstract Riemann surface â with
base point Â ∈ â (the so-called maximal normalization of the germ a)
and a holomorphic mapping πa : â → CP

n, πa(Â) = A with the following
properties:

- the image of germ at Â of the mapping πa is contained in a;
- πa is the maximal mapping with the above property in the sense of

Definition 2.1.
Moreover, the mapping πa is unique up to composition with conformal

isomorphism of Riemann surfaces respecting base points.

Proof The proposition is classical, and some specialists believe it goes up
to Weierstrass. Let us give its proof for completeness of presentation. Let Ψ
denote the set of all the piecewise-analytic paths γ : [0, 1] → CP

n, γ(0) = A
with analytic pieces γ([tj−1, tj ]), 0 = t0 < t1 < · · · < tN = 1, that have the
following properties:

- the image of the germ at 0 of the mapping γ lies in the germ (a,A);
- if γ 6≡ const, then γ|[tj−1,tj ] 6≡ const for every j = 1, . . . , N ;
- for every j the images of germs at tj of both mappings γ|[tj−1,tj ] and

γ|[tj ,tj+1] lie in one and the same irreducible germ of analytic curve at γ(tj).
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Every path γ ∈ Ψ is contained in a unique irreducible germ Γ at γ([0, 1])
of analytic curve. In particular, for every γ ∈ Ψ, set g = γ(1), the germ
of the path γ at 1 is contained in a unique irreducible germ Γ1 of analytic
curve at g. We say that two paths γ1, γ2 ∈ Ψ are equivalent, if g1 = g2
and Γ1

1 = Γ1
2. Let â denote the set of all the equivalence classes of paths

from Ψ. The C0-topology on the space of paths [0, 1] → CP
n induces the

quotient topology on the set â. There is a natural projection πa : â→ CP
n:

γ 7→ γ(1).

Claim. The set â equipped with the induced topology admits a natural
structure of Riemann surface so that the projection πa is holomorphic.
Proof The space â is identified with an appropriate set of irreducible germs
of analytic curves in CP

n. For every path γ ∈ Ψ there exists an ε > 0 such
that every path in Ψ ε-close to γ lies in the analytic curve germ Γ ⊃ γ([0, 1]).
This follows from definition. Hence, each germ (Γ1, g) ∈ â admits a basis of
neighborhoods that are identified with neighborhoods of the marked point g
in the local analytic curve Γ1. In particular, the space â is Hausdorff. Now
for the proof of the claim it suffices to show that the space â has a countable
basis: then the Riemann surface structure and holomorphicity of projection
are immediate. Let us fix an affine chart C

n ⊂ CP
n with the origin at A.

Let L ⊂ CP
n be a coordinate line such that the coordinate projection of

the germ (a,A) to L is non-constant. Fix real coordinates (x, y) on L. Let
Λ denote the set of paths γ ∈ Ψ that are projected to “rational rectilinear
paths”: piecewise-linear paths in L with vertices having rational coordinates
and with edges being parallel to x and y axes. The countable subset Λ ⊂ Ψ
is dense: each path γ ∈ Ψ can be obviously approximated by liftings to Γ
of rational rectilinear paths. For every analytic curve in CP

n we measure
distances between its points in the intrinsic metric induced by the Fubini–
Studi metric of the projective space. For every γ ∈ Λ let us consider the
corresponding germ (Γ1, g) and take those 2−n-neighborhoods in Γ1 of the
point g that are relatively compact in the Riemann surface Γ1. They are
canonically identified with neighborhoods of the point [γ] ∈ â. Now let us
cover the projective space by a finite number of affine charts and construct
similar neighborhoods with respect to each chart. The neighborhoods thus
constructed form a countable basis of topology of the space â, which follows
immediately from definition and construction. This proves the claim. ✷

Thus, the set â is a Riemann surface, and the projection πa : â →
CP

n is an analytic extension of the germ a. Let us show that this is a
maximal analytic extension. Let φ : S → CP

n be a holomorphic mapping of
a Riemann surface S, and its germ at a base point s ∈ S parametrizes the
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germ (a,A) (not necessarily bijectively). Consider the mapping h = π−1
a ◦φ,

which is holomorphic and well-defined in a neighborhood of the point s. It
extends up to a holomorphic mapping h : S → â such that φ = πa◦h. Indeed,
it extends analytically along every locally-nonconstant piecewise-analytic
path α : [0, 1] → S starting at s, and one has φ ◦ α ∈ Ψ, by construction.
The result of analytic extension depends only on the end-point α(1), since
φ is holomorphic single-valued and by the definition of the space â. This
proves the maximality of the mapping πa. Let us prove that a maximal
mapping is unique up to composition with conformal isomorphism. Indeed,
let φ1 : S1 → CP

n and φ2 : S2 → CP
n be two maximal mappings, whose

germs at s1 ∈ S1 and s2 ∈ S2 parametrize the germ (a,A). It follows from
maximality that both latter local parametrizations are 1-to-1. Therefore,
there exists a unique germ h : (S1, s1) → (S2, s2) such that φ1 = φ2 ◦ h. It
should extend holomorphically to S1, by maximality of the mapping φ2, and
its inverse should extend to S2, by maximality of the mapping φ1. Thus,
h : S1 → S2 is a conformal isomorphism. Proposition 2.2 is proved. ✷

Example 2.3 The maximal normalization of a projective algebraic curve
is its usual normalization: a compact Riemann surface parametrizing the
curve bijectively, except for self-intersections.

2.2 Complex reflection law

The material presented in this subsection is contained in [3, subsection 2.1],
except for Corollary 2.10.

We fix an Euclidean metric on R
2 and consider its complexification:

the complex-bilinear quadratic form dz21 + dz22 on the complex affine plane
C
2 ⊂ CP

2. We denote the infinity line in CP
2 by C∞ = CP

2 \C2.

Definition 2.4 The symmetry C
2 → C

2 with respect to a non-isotropic
complex line L ⊂ CP

2 is the unique non-trivial complex-isometric involution
fixing the points of L. It extends to a projective transformation of the
ambient plane CP

2. For every x ∈ L it acts on the space Lx = CP
1 of lines

through x, and this action is called symmetry at x. If L is an isotropic line
through a finite point x, then a pair of lines through x is called symmetric
with respect to L, if it is a limit of symmetric pairs of lines with respect to
non-isotropic lines converging to L.

Lemma 2.5 Let L be an isotropic line through a finite point x. A pair of
lines (L1, L2) through x is symmetric with respect to L, if and only if some
of them coincides with L.

10



Convention 2.6 Everywhere below given an analytic curve a ⊂ CP
n and

A ∈ â, we set A′ = πa(A). By TAa we denote the tangent line at A′ to the
germ of curve πa : (â, A) → (a,A′).

Definition 2.7 Let a1, . . . , ak ⊂ CP
2 be an analytic (algebraic) billiard,

and let â1, . . . , âk be the maximal normalizations of its mirrors. The com-
pleted k-periodic set is the closure of the set of those k-gons A1 . . . Ak ∈
â1 × · · · × âk for which A′

1 . . . A
′
k is a k-periodic billiard orbit.

Proposition 2.8 The completed k-periodic set U is analytic (algebraic).
The billiard is k-reflective, if and only if the set U has at least one two-
dimensional irreducible component U0 ⊂ U (which will be called the k-
reflective component). For every point A1 . . . Ak ∈ U and every j such
that A′

j−1 6= A′
j and A′

j 6= A′
j+1 the complex reflection law holds:

- if the tangent line lj = TAj
aj is not isotropic, then the lines A′

j−1A
′
j

and A′
jA

′
j+1 are symmetric with respect to lj ;

- otherwise, if lj is isotropic (finite or infinite), then at least one of the
lines A′

j−1A
′
j or A′

jA
′
j+1 coincides with lj .

If the billiard is k-reflective, then each projection U0 → âj × âj+1 is a
submersion on an open dense subset (epimorphic, if the billiard is algebraic).

Definition 2.9 Let a1, . . . , ak be a complex planar analytic (algebraic) bil-
liard. A point P ∈ CP

2 is marked, if it is either a cusp, or an isotropic
tangency point of some mirror aj . A point P is double, if it is either a
self-intersection of a mirror, or an intersection point of two distinct mirrors.

Corollary 2.10 Let a1, . . . , ak be a k-reflective analytic billiard in CP
2. Let

A1 . . . Ak ∈ â1 × · · · × âk be a point of a k-reflective component, and let
A′

j = A′
j+1 for some j. Then we have one of the following possibilities:

(i) A′
j is either a marked, or a double point;

(ii) a1 = · · · = ak, A
′
1 = · · · = A′

k;
(iii) up to cyclic mirror renaming, there exists an s < j such that as+1 =

· · · = aj, A
′
s 6= A′

s+1 = · · · = A′
j , and the line A′

sA
′
j coincides with TAj

aj .

Proof Everywhere below we consider that the point A′
j is neither marked,

nor double: otherwise we have case (i). If A′
1 = · · · = A′

k, then a1 = · · · = ak,
since otherwise the latter point, which coincides with A′

j , would be double,
– a contradiction. Thus, in this case we have (ii). Let now there exist an
s ∈ {1, . . . , k} such that A′

s 6= A′
j. Without loss of generality we consider

that s < j (after a possible cyclic mirror renaming), and we take the maximal
s as above. One has as+1 = · · · = aj , as in the above argument, and
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A′
s+1 = · · · = A′

j . Let us show that A′
sA

′
j = TAj

aj. By definition, the point
A1 . . . Ak is a limit of points A1,n . . . Ak,n corresponding to k-periodic billiard
orbits, in particular, A′

i,n 6= A′
i+1,n for all i = 1, . . . , k. Thus, the distinct

points A′
s+1,n and A′

s+2,n of the curve aj collide to the same limit A′
j , which

is neither marked, nor double point, while A′
s,n and A′

s+1,n don’t collide in
the limit. Hence, A′

s+1,nA
′
s+2,n → TAj

aj. This together with the reflection
law implies that the limit line A′

sA
′
s+1 = A′

sA
′
j = lim(A′

s,nA
′
s+1,n) coincides

with TAj
aj . Thus, we have case (iii). This proves the corollary. ✷

3 Algebraic billiards: proof of Theorem 1.9

As it is shown below, Theorem 1.9 is implied by the following proposition.

Proposition 3.1 Let a1, . . . , ak be a k-reflective planar algebraic billiard
such that each mirror aj contains no isotropic point at infinity. Then it
has at least one finite k-periodic orbit with an isotropic edge. Moreover, the
latter orbit can be realized by a point of a k-reflective component.

Proof Let U ⊂ â1×· · ·×âk be a k-reflective component, see the Proposition
2.8. Let W12 ⊂ â1 × â2 denote the Zariski closure of the set of those pairs
of points (A1, A2) whose projections A′

1 and A′
2 are distinct, finite and for

which the line A′
1A

′
2 is an isotropic line through the isotropic point I1 at

infinity. We show that the pairs from a non-empty Zariski open subset in
W12 extend to orbits as in Proposition 3.1. This will prove the proposition.

Claim 1. The set W12 is non-empty, and hence, it is an algebraic curve.
Proof Suppose the contrary. Then each line through I1 intersects the
union a1∪a2 in at most one finite point. This together with the assumption
that I1 /∈ aj implies that a1 = a2 is a line. But in this case there would be
no k-periodic orbits at all. Indeed, in a k-periodic orbit A′

1 . . . A
′
k the line

A′
1A

′
2 should coincide with a1, and hence, it cannot be transverse to TA1

a1,
– a contradiction to Definition 1.5. The contradiction to k-reflectivity thus
obtained proves the claim. ✷

LetW ⊂ U denote the preimage in U of the curveW12 under the product
projection to â1 × â2. The projection W → W12 is epimorphic, by Propo-
sition 2.8. For every j = 2, . . . , k + 1 let Wj ⊂ W denote the set of points
A1 . . . Ak ∈W such that for every i ≤ j the point A′

i is finite, neither marked,
nor double, and A′

i 6= A′
i−1. By definition, one has W2 ⊃W3 ⊃ · · · ⊃Wk+1.

We show simultaneously by induction in j that
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A) the subset Wj ⊂W is Zariski open and non-empty;
B) the product projection Wj → âj+1 is locally non-constant.
The points of the set Wk+1 correspond to orbits as in Proposition 3.1.

This will prove the proposition.
Induction base. Statement A) for j = 2 follows from the above claim

and the obvious fact that the points A′
1 and A′

2 vary along the curve W12.
Let us prove statement B). Suppose the contrary: there exists an open
subset in W of points A1 . . . Ak that are projected to one and the same
point Q = A3 ∈ â3. Then there exists an open set of finite points A′

2 ∈ a2
such that the image of the isotropic line A2I1 under the symmetry with
respect to the tangent line TA2

a2 passes through one and the same point Q.
This follows by definition, Claim 1 and the epimorphicity of the projection
W → W12. On the other hand, the above image should pass through the
other isotropic point I2, by Proposition 1.11. Hence, Q = I2 ∈ a3, – a
contradiction to the assumption that the mirrors aj contain no isotropic
points at infinity. The induction base is proved.

Induction step. Let the statements A) and B) be proved for all j ≤ r ≤ k.
Let us prove them for j = r + 1. For the proof of statement A) it suffices
to show that the set of those points A1 . . . Ak ∈ Wr for which the point
A′

r+1 is finite, neither marked, nor double and distinct from A′
r is Zariski

open in Wr and non-empty. Indeed, on a non-empty Zariski open subset
W̃ ⊂Wr the points A′

r and A′
r+1 are finite and neither marked, nor double,

by statement B) for j = r−1, r (the induction hypothesis). The line A′
r−1A

′
r

is isotropic, being the image of an isotropic line A′
1A

′
2 under a finite number

of non-isotropic reflections. Its image under the reflection from the line
TAr

ar is the isotropic line L = A′
rA

′
r+1 through A′

r transverse to A′
r−1A

′
r.

One has L 6= TAr+1
ar+1 on the above subset W̃ , since the point A′

r+1 is
not marked. Therefore, A′

r 6= A′
r+1 on the same subset, by Corollary 2.10

and since Ar 6≡ const along W̃ (the induction hypothesis: statement B) for
j = r). This proves statement A). The proof of statement B) repeats the
argument from the induction base. The induction step is over. Statements
A) and B) are proved. Proposition 3.1 is proved. ✷

Let us now prove Theorem 1.9. Suppose the contrary: there exists a k-
reflective billiard a1, . . . , ak with odd k, whose mirrors contain no isotropic
points at infinity. Then it has a finite k-periodic orbit with at least one
isotropic edge (Proposition 3.1). But then k should be even by Corollary
1.12. The contradiction thus obtained proves Theorem 1.9.
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4 Triangular orbits: proof of Theorem 1.8

We prove Theorem 1.8 by contradiction. Suppose the contrary: there exists
a 3-reflective analytic billiard a, b, c in CP

2, let U ⊂ â × b̂ × ĉ be its
3-reflective component. First we show in the next proposition that the
correspondence ψb : (A,B) 7→ (B,C) defined by the triangles ABC ∈ U
induces a bimeromorphic isomorphism â× b̂→ b̂× ĉ. This implies (Corollary
4.3) that each mirror is either a rational curve, or a parabolic Riemann
surface. Afterwards we deduce that the mirrors are distinct (Proposition
4.4) and there exists a one-dimensional family of triangles ABC ∈ U with
isotropic edges A′B′. We then show that the existence of the latter triangle
family would contradict the complex reflection law satisfied by the points of
the set U . The contradiction thus obtained will prove Theorem 1.8.

Proposition 4.1 Let a, b, c, U and ψb be as above. The correspondence ψb

extends to a bimeromorphic1 isomorphism â× b̂→ b̂× ĉ.

Proof It suffices to show that the mapping ψb is meromorphic: the proof
of the meromorphicity of its inverse is analogous. Consider the auxiliary
mapping Qab : â × b̂ → CP

2 defined as follows. Take an arbitrary pair
(A,B) ∈ â× b̂ with A′ 6= B′ and such that the line A′B′ is neither tangent to
a at A′, nor tangent to b at B′. Set Qab(A,B) to be the point of intersection
of two lines: the images of the line A′B′ under the symmetries with respect to
the tangent lines TAa and TBb. The mapping Qab extends to a meromorphic
mapping â × b̂ → CP

2, by the algebraicity of the reflection law. (Possible
indeterminacies correspond to isolated points where either A′ = B′ is a
double point, or one of the tangent lines TAa or TBb is isotropic and coincides
with A′B′.) Note that Qab(A,B) ∈ πc(ĉ) for every (A,B) from the domain
of the mapping Qab: given two vertices A′ ∈ a and B′ ∈ b of a triangular
billard orbit, the third vertex is found as the intersection point of the above
symmetric images of the line A′B′. This implies that the mapping ψb extends
to a meromorphic mapping â× b̂→ b̂× ĉ by the formula ψb(A,B) = (B,π−1

c ◦
Qab(A,B)). The proposition is proved. ✷

Corollary 4.2 In Proposition 4.1 the projection U → â × b̂ is bimeromor-
phic. The complement to its image is contained in the indeterminacy set for
the mapping Qab, and hence, is at most discrete.

1Recall that a meromorphic mapping M → N between complex manifolds is a mapping
holomorphic on the complement of an analytic subset in M such that the closure of its
graph is an analytic subset in M ×N .
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Corollary 4.3 Let a, b, c be a 3-reflective analytic billiard in CP
2. Then

the maximal normalization of each its mirror is either parabolic (having
universal cover C), or conformally equivalent to the Riemann sphere.

Proof A Riemann surface has one of the two above types, if and only
if it admits a nontrivial holomorphic family of conformal automorphisms.
Thus, it suffices to show that the maximal normalization of each mirror
has a nontrivial holomorphic family of automorphisms, or equivalently, has
a nontrivial holomorphic family of conformal isomorphisms onto a given
Riemann surface. Fix a point B ∈ b̂ such that B′ is finite and not marked.
For every A ∈ â set φB(A) = π−1

c ◦ Qab(A,B) ∈ ĉ. This yields a family of
conformal isomorphisms φB : â → ĉ depending holomorphically on B ∈ b̂,
by bimeromorphicity (Proposition 4.1). In particular, the Riemann surfaces
â and ĉ are conformally equivalent. Similarly, S = â ≃ b̂ ≃ ĉ. If the family
φB is nontrivial (non-constant in B), then the Riemann surface S is either
parabolic, or the Riemann sphere, by the statement from the beginning of
the proof. We claim that in the contrary case, when φB is independent on B,
one has b ≃ C. Indeed, let φ = φB be independent on B. Fix an arbitrary
A ∈ â such that A′ is finite; set C = φ(A). Then for every B ∈ b̂ the lines
A′B′ and B′C ′ are symmetric with respect to the tangent line TBb. Hence,
b is either a line, or a conic. Thus, b ≃ C. This proves the corollary. ✷

Proposition 4.4 Let a, b, c be a 3-reflective analytic billiard in CP
2. Then

its mirrors are pairwise distinct: one is not analytic extension of another.

Proof Suppose the contrary, say, a = b. Let U be a k-reflective component.
Then U contains an analytic curve Γ consisting of those triples ABC for
which A′ = B′ (Corollary 4.2). Let us fix its irreducible component and
denote Γ the latter component. Let A′ ≡ B′ 6≡ C ′ on Γ. Then C ′ ∈ TAa ∩ c
for every ABC ∈ Γ (Corollary 2.10). This implies that C 6≡ const along
the curve Γ, and hence, it is neither marked, nor double outside a countable
subset in Γ. Thus, the curve Γ contains triples ABC such that C ′ 6= A′ = B′

and C ′ is neither marked, nor double point. This contradicts the second
proposition in [3, subsection 2.4]. In the case, when A′ ≡ B′ ≡ C ′ on
Γ, we similarly get a contradiction to the same proposition. This proves
Proposition 4.4. ✷

Proof of Theorem 1.8. Suppose the contrary: there exists a 3-reflective
billiard a, b, c. Let U be a 3-reflective component. Let us show that there
exists an analytic curve Γ ⊂ U consisting of triples ABC such that A′ 6= B′,
the points A′ and B′ are finite and the line A′B′ is isotropic through the
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point I1. As it is shown below, this curve Γ cannot exist. Consider the pro-
jections â, b̂ → CP

1: the compositions of the parametrizations πa, πb with
the projection from the isotropic point I1. Each of them is holomorphic and
takes all the values, except for at most two, since both maximal normaliza-
tions â, b̂ are either parabolic, or conformally equivalent to C (Corollary 4.3)
and by Picard’s Theorem. This together with Proposition 4.4 implies that
there exists a line through I1 that contains two distinct finite points A′ ∈ a
and B′ ∈ b. This together with Corollary 4.2 implies that the above-defined
set Γ is non-empty and is an analytic curve.

Note that both A and B are non-constant along the curve Γ, and for
every ABC ∈ Γ such that A′ and B′ are not marked points the lines A′C ′

and B′C ′ are isotropic lines through I2. The latter follows from reflection
law, Proposition 1.11 and the inclusion I1 ∈ A′B′. This implies that C ′ ≡ I2
on Γ. Thus, the point I2 is contained in (the maximal analytic extension of
the curve) c and by definition, the tangent line TI2c to any branch of the
curve c through I2 is isotropic. The reflection images A′I2, B

′I2 of the line
A′B′ with respect to the tangent lines TAa and TBb vary, as ABC ranges
along a component of the curve Γ, since A′ and B′ vary and the curves a,
b are not isotropic lines, see Fig.4. On the other hand, at least one of the
lines A′I2, B

′I2 should coincide with one and the same tangent line TI2c, by
Proposition 2.8 (reflection law), – a contradiction. The proof of Theorem
1.8 is complete. ✷

                  /
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b     c
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   I    1
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                                                        /                                    

       /
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Figure 4: A family of triangular orbits with isotropic edges A′B′
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