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a b s t r a c t

We propose a general scheme of constructing braided differential algebras via algebras
of ‘‘quantum exponentiated vector fields’’ and those of ‘‘quantum functions’’. We treat a
reflection equation algebra as a quantum analog of the algebra of vector fields. The role of
a quantum function algebra is played by a general quantummatrix algebra. As an example
we mention the so-called RTT algebra of quantized functions on the linear matrix group
GL(m). In this case our construction essentially coincides with the quantum differential
algebra introduced by S. Woronowicz. If the role of a quantum function algebra is played
by another copy of the reflection equation algebra we get two different braided differential
algebras. One of them is defined via a quantum analog of (co)adjoint vector fields, the other
algebra is defined via a quantum analog of right-invariant vector fields. We show that the
former algebra can be identified with a subalgebra of the latter one. Also, we show that
‘‘quantum adjoint vector fields’’ can be restricted to the so-called ‘‘braided orbits’’ which
are counterparts of genericGL(m)-orbits in gl∗(m). Such braided orbits endowedwith these
restricted vector fields constitute a new class of braided differential algebras.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the creation of the quantum group theory plenty of different quantum algebras related to R-matrices (i.e., solutions
of the quantum Yang–Baxter equation) have been introduced in the mathematical and physical literature. A remarkable
family of such algebras was introduced in [1] under the name of Heisenberg doubles.

As an associative algebra the Heisenberg double is generated by elements of two dual Hopf algebras H and H∗. In order
to define an associative product on the space H ⊗ H∗ one needs a permutation operator

H ⊗ H∗
→ H∗

⊗ H

transposing elements of two components. Such an operator can be defined via the pairing

H ⊗ H∗
→ K

putting the algebras H and H∗ in the duality (K is the ground field). Also, assuming one of these algebras to be the quantized
function algebra, namely, the famous RTT algebra, one can extract from the dual object a space of ‘‘quantum exponentiated
vector fields’’ via a construction similar to that of [2].
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A close approach to constructing a quantum version of differential calculus on a matrix pseudogroup was initiated by
Woronowicz [3]. In that paper the central object — quantum differential algebra — consists of three ingredients: a quantized
function algebra, an algebra of quantum exponentiated vector fields which is in fact the reflection equation (RE) algebra1
and an algebra of ‘‘quantum differential forms’’.

We would also refer the reader to the papers [6,7] where a different approach to the quantum calculus was suggested.
In particular, it was shown that the classical Leibnitz rule for the external differential must be modified.

In the present paper we disregard quantum differential forms and generalize the other components of this calculus as
follows.We always keep the RE algebra2 L(R) as an algebra of quantum exponentiated vector fields. However, we introduce
different candidates on the role of a quantum function algebra M, endowed with an appropriate action of the RE algebra.
For any of such a candidate the key point consists in constructing a permutation operator

R : L(R) ⊗ M → M ⊗ L(R) (1.1)

which enables us to endow the space L(R) ⊗ M with an associative product. We denote the resulting associative algebra
by B(L(R), M) and call it a braided differential (BD) algebra.

We emphasize that the operator (1.1) also enables us towrite down a sort of the Leibnitz rule for elements ofL(R). Having
defined an action of these elements on generators of the algebra M and extending this action to the higher components of
M via such a ‘‘Leibnitz rule’’, we get a representation of L(R) into the algebra M. Note that in this construction we have no
need of a bialgebra structure (usual or braided) of the algebra M. Instead, we use a braided bialgebra structure of L(R) in
order to apply its representation theory developed in [8].3

Now, describe in more detail different types of the quantum algebras M we are dealing with. First, we consider algebras
M generated by the basic objects V and V ∗ of the L(R) representation category constructed in [8]. Note that the free tensor
algebras T (V ) and T (V ∗), aswell as the ‘‘R-symmetric’’ and ‘‘R-skew-symmetric’’ algebras of the spaceV (orV ∗), are examples
of such algebras M.

Second, we consider quantum matrix algebras M, each constructed via a pair of compatible R-matrices (see definition
(2.11) in Section 2). As a particular case of such an algebra M we get the RTT algebra. In this case the resulting BD algebra
coincides with the Heisenberg double studied in [9]. If we take another copy of the RE algebra as M we get one more
example of a BD algebra. In this case two copies of the RE algebras are involved — one of them (denoted L(R)) plays the role
of quantum exponentiated vector fields, the other one (denoted M(R)) plays the role of a quantum function algebra.

The characteristic property of these two and other similar examples of BD algebras is that the elements of L(R) act on
the quantum matrix algebra M on the left side and are in a sense analogs of right-invariant exponentiated vector fields. In
what follows such BD algebras are denoted Br(L(R), M) where the subscript r means ‘‘right-invariant’’.

However, if the quantum matrix algebra M is just the RE algebra M(R) we can define another action of L(R) on
M(R), namely the ‘‘adjoint’’ action, which is an analog of the usual adjoint action of one copy of gl(m) onto another
one. The corresponding BD algebra is denoted Bad(L(R), M(R)). Thus, we have two versions of the BD algebra composed
from the algebras L(R) and M(R). One of them Br(L(R), M(R)) is based on the right-invariant action, the other one —
Bad(L(R), M(R)) — on the adjoint action. We show that the algebra Bad(L(R), M(R)) can be embedded into the properly
extended algebra Br(L(R), M(R)) as a subalgebra.

Similarly to the classical case the adjoint action of the algebra L(R) onto M(R) preserves central elements of the latter
algebra. Using this fact it is possible to reduce the quantum adjoint vector fields to ‘‘braided orbits’’, i.e. the quotients ofM(R)
which are quantum counterparts of generic GL(m) orbits in gl∗(m) (see [10,11] for detail). Thus, we get one more family of
BD algebras, in which the role of quantum function algebras is played by ‘‘braided orbits’’.

The paper is organized as follows. In the next Sectionwe recall some elements of ‘‘braided geometry’’ as presented in [12].
In particular, we exhibit a regular way of constructing a quantum matrix algebra via a pair of compatible R-matrices. In
Section 3 we concentrate ourselves on properties of the RE algebra including its representation category. This enables us
to construct some examples of the BD algebras considered in Section 4. In Section 5 we present a construction of the BD
algebra over a general quantummatrix algebra and exhibit thementioned relation between BD algebra based on two copies
of the RE algebra but equipped with different types of action. We complete the paper with an example of BD algebra on a
quantum hyperboloid.

2. GL(m)-type R-matrices and quantummatrix algebras

In this section we give a short list of definitions and notation to be used below. More details and proofs can be found in
the cited literature.

1 This algebrawas studied byMajid under the name of braidedmatrix algebra (see [4] and the references therein). The term ‘‘reflection equation algebra’’
was introduced by Kulish and his coauthors (see [5]).
2 The RE algebra is parameterized by an R-matrix R. Belowwe are dealing with R-matrices of GL(m)-type defined in Section 2. However, a big part of our

results can be generalized to algebras associated with R-matrices of a more general form.
3 In [8] we constructed a representation category for the so-called modified RE algebra which in fact coincides with the non-modified RE algebra but

written in another basis. All construction and results of [8] can be directly adapted to the non-modified form of the RE algebra. Below, we refer to this
paper without saying it each time.
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LetKdenote the field of complex or real numbers andV be a finite dimensional vector space over the fieldK: dimK V = N .
Given a linear operator X ∈ End(V⊗ k), ∀k ⩾ 1, we extend it up to different operators belonging to End(V⊗(k+p)), p ⩾ 0, in a
natural way

Xi...i+k−1 = I⊗(i−1)
V ⊗ X ⊗ I⊗(p−i+1)

V , 1 ⩽ i ⩽ p + 1, (2.1)

where IV stands for the identity operator on V . In what follows we shall abbreviate IV to I and simplify Xi i+1 to Xi for
X ∈ End(V⊗2). Hereafter, all tensor products are taken over the ground field K.

An invertible operator R ∈ Aut(V⊗2) is called an R-matrix if it satisfies the Yang–Baxter equation in End(V⊗3)

R1R2R1 − R2R1R2 = 0. (2.2)

In the present paper we are dealing with Hecke type R-matrices which obey the quadratic Hecke condition

(R − q I⊗2)(R + q−1 I⊗2) = 0, q ∈ K \ 0. (2.3)

A numerical parameter q is assumed to be generic, that is either q = 1 or qk ≠ 1, ∀ k ∈ N. In particular, for a generic value
of the parameter the q-analogs of integers

kq = qk−1
+ qk−3

+ · · · + q1−k
=

qk − q−k

q − q−1

are non-zero for any integer k ∈ Z.
An example of the Hecke type R-matrix for q = 1 is given by the flip (transposition operator):

P : V⊗2
→ V⊗2, P(v1 ⊗ v2) = v2 ⊗ v1. (2.4)

A well-known example for q ≠ 1 is the Drinfeld–Jimbo R-matrix

R(q) = q
N−
i=1

Eii ⊗ Eii +
N−
i≠j

Eij ⊗ Eji + (q − q−1)
−

1⩽i<j⩽N

Eii ⊗ Ejj, (2.5)

where Eij ∈ MatN(K) are the standardmatrix units. Note that R(q) is a continuousmatrix function in q and limq→1 R(q) = P .
There are known other Hecke type R-matrices which are continuousmatrix functions in q and turn into the flip P at the limit
q → 1. All such Hecke type R-matrices will be referred to as deformations of the flip P .

The Hecke type R-matrices are closely connectedwith the representation theory of the An−1 series Hecke algebrasHn(q),
n ⩾ 2. Recall, that the Hecke algebra Hn(q) is the quotient of the group algebra K[Bn] of the braid group Bn, n ⩾ 2,

Bn = ⟨{σ±

i }1⩽i⩽n−1 : σiσi+1σi = σi+1σiσi+1, σiσj = σjσi i ≠ j ± 1, σ±1
i σ∓1

i = 1B⟩

over the two sided ideal generated by the elements

σ−1
i − σi + (q − q−1)1B

where 1B stands for the unit element of the braid group.
At a generic value of q the algebra Hn(q) is known to be semisimple and isomorphic to the group algebra K[Sn] of the

n-th order permutation group. As a consequence, the primitive idempotents eaλ : eaλe
b
µ = δλµδabeaλ of the Hecke algebra

Hn(q) are labeled by partitions λ ⊢ n and by an integer index a : 1 ⩽ a ⩽ dλ where dλ equals to the number of standard
Young tableaux corresponding to the partition λ.

Any Hecke type R-matrix R realizes a so-called local R-matrix representation ρR of a Hecke algebra Hn(q) by the following
rule:

ρR : Hn(q) → End(V⊗n), ρR(σi) = Ri, 1 ⩽ i ⩽ n − 1. (2.6)

The detailed treatment of the Hecke algebra and its representations with a list of original papers can be found, e.g., in the
review [13].

We constrain ourselves to considering a subfamily of theHecke type R-matrices— so-called R-matrices of theGL(m)-type.
A Hecke type R-matrix R is said to be of the GL(m)-type if the operator

Am(R) = ρR(e(1m)(σ ))

is a rank one projector in End(V⊗m), while Am+1(R) ∈ End(V⊗(m+1)) is the zero operator (explicit formulae for Ak(R), k ⩾ 1,
can be found, for example, in [13]). Note, that theN2

×N2 Drinfeld–Jimbo R-matrix (2.5) is of the GL(N)-type, but for general
GL(m)-type R-matrix we havem ⩽ N (see [14] for examples).

Also, we need the following definition. An operator R ∈ End(V⊗2) is called skew-invertible provided that there exists an
operator ΨR ∈ End(V⊗2) such that

Tr(2)R12ΨR23 = P13 = Tr(2)ΨR12R23, (2.7)

where the subscript in the notation of the trace indicates the factor in the tensor product V⊗3, where the trace operation is
applied.
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The operators

BR = Tr(1)ΨR12, CR = Tr(2)ΨR12, (2.8)

possess the property

Tr(1)BR1R12 = I = Tr(2)CR2R12. (2.9)

A skew-invertible R-matrix is called strictly skew-invertible if the corresponding operator BR (or CR) is invertible.
As was shown in [14], any GL(m)-type R-matrix is skew-invertible. Moreover, the operators BR and CR are subject to the

relation [8]

BR · CR = q−2mI.

Consequently, any GL(m)-type R-matrix is strictly skew-invertible.
The operators BR and CR play an important role in the theory of quantummatrix algebras considered below. In particular,

the operator CR appears in definition of the R-trace TrR:

TrR : MatN(A) → A, TrR(X) = Tr(CRX), ∀X ∈ MatN(A), (2.10)

where A is a vector space over the field K and MatN(A) = MatN(K) ⊗K A.
Turn now to the definition of a quantummatrix algebra [15]. An ordered pair {R, F} of two R-matrices R, F ∈ Aut(V⊗2) is

called compatible if they satisfy the following relations (compatibility conditions):

R1F2F1 = F2F1R2, F1F2R1 = R2F1F2. (2.11)

Definition 1 ([15]). Given a compatible pair {R, F} of strictly skew-invertible R-matrices R, F ∈ Aut(V⊗2), dimK V = N , the
quantummatrix (QM) algebra M(R, F) is a unital associative algebra generated by a unit element 1M and by N2 entries of the
matrixM = ‖M j

i‖1⩽i, j⩽N subject to the relations

R1M1M2 − M1M2R1 = 0, (2.12)

where we use the notation

M1 = M1, Mk+1 = FkMk F
−1
k , k ⩾ 1, (2.13)

for the ‘‘copies’’ of the matrixM . In what follows the matrixM will be called a generating matrix of the QM algebra M(R, F).
(In the above formulae R1 and Fk, k ⩾ 1, are treated in the sense of formula (2.1).)

Also, observe that by fixing a basis {xi}1⩽i⩽N in the space V and the corresponding basis {xi ⊗ xj} in that V⊗2 we can
represent the operators R, F ∈ Aut(V⊗2) by numerical matrices ‖Rrs

ij ‖ and ‖F rs
ij ‖ where

R(xi ⊗ xj) = Rrs
ij xr ⊗ xs, F(xi ⊗ xj) = F rs

ij xr ⊗ xs. (2.14)

The defining relations (2.12) and compatibility conditions (2.11) imply the same type relations for consecutive pairs of
the copies ofM [15]

Rk MkMk+1 − MkMk+1 Rk = 0. (2.15)

It follows from Definition 1 that any QM algebra M(R, F) is a finitely generated quadratic (in the generators M j
i ) graded

algebra and consequently, it can be presented as a sum of homogeneous components

M(R, F) =

−
p⩾0

Mp(R, F), M0(R, F) ∼= K.

The widely known example of QM algebra is the quantized algebra of functions on the matrix algebra MN(K) [2]. This
algebra is associated with a compatible pair {R, P}, P being a flip (2.4). Let T = ‖T j

i ‖
N
1 be the generating matrix of M(R, P).

Then the relations (2.12) take the form

R1T1T2 − T1T2R1 = 0, (2.16)

since T2 = P12T1P12 = T2. We call the QM algebra M(R, P) the RTT algebra and denote it by T (R). At any choice of an
R-matrix R the RTT algebra T (R) is a bialgebra with the coproduct ∆ and counit ε

∆(T ) = T
.

⊗ T , ε(T ) = I. (2.17)

The symbol
.

⊗ stands for the following operation

(A
.

⊗ B)ji =

N−
k=1

Ak
i ⊗ Bj

k (2.18)

where A and B are arbitrary N1 × N and N × N2 matrices respectively.
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Note that for any R-matrix of GL(m)-type a quantum determinant detq T can be defined (see [14]). This enables us to
introduce an antipode and a Hopf algebra structure in the algebra T (R) extended by (detq T )−1. The resulting algebra is the
most popular quantum analog of the function algebra on GL(m) (see [2]).

Belowwe consider a family of the QMalgebras associatedwith a compatible pair {R, F}where R is aGL(m)-type R-matrix.
The corresponding algebra M(R, F) is referred to as a GL(m)-type QM algebra.

A useful tool for studying the structure of the GL(m)-type QM algebra is the characteristic subalgebra Char(M) ⊂

M(R, F) [15]. By definition, this is a linear span of the unit element and the following elements

x(hk) = TrR(1...k)(M1 . . .Mk ρR(hk)), k ∈ N,

where hk runs over all elements of the Hecke algebraHk(q) and ρR is the R-matrix representation (2.6) ofHk(q) in End(V⊗k).
Among all elements of the characteristic subalgebra we distinguish the following families:

• The power sums of the quantum matrix

p0(M) = 1MTrR(I), pk(M) = TrR(1...k)(M1M2̄ . . .Mk̄ρR(σk−1 . . . σ2σ1)), k ⩾ 1. (2.19)

• The elementary symmetric functions

a0(M) = 1M, ak(M) = TrR(1...k)(M1M2̄ . . .Mk̄ρR(e(1k))), 1 ⩽ k ⩽ m. (2.20)

The main properties of a GL(m)-type QM algebra to be used below are collected in the following proposition.

Proposition 2 ([15]). Let M(R, F) be a GL(m)-type quantum matrix algebra. Then the following statements hold true.

1. The characteristic subalgebra Char(M) is abelian.
2. The characteristic subalgebra is generated by the set of power sums {pk(M)}0⩽k⩽m or, equivalently, by the set of elementary

symmetric functions {ak(M)}0⩽k⩽m.
3. The power sums are related with elementary symmetric functions by the quantum Newton identities

(−1)k−1kqak(M) =

k−1−
i=0

(−q)ipk−i(M)ai(M), 1 ⩽ k ⩽ m. (2.21)

4. The generating matrix M satisfies the Cayley–Hamilton identity
m−

k=0

(−q)kMm−kak(M) = 0, (2.22)

where

M0
= 1MI, Mk

= TrR(2...k)(M1M2 . . .MkρR(σk−1σk−2 . . . σ1)).

3. RE algebra and its representation theory

In this sectionwe give a short review of a particular case of the QM algebra— the RE algebra [5,4].We discuss its structure
and the representation theory. Our exposition will mainly follow the paper [8] where the reader can find detailed proofs
and further references to the literature on the RE algebra.

The GL(m)-type RE algebra L(R) is associated with the compatible pair {R, R}, where R ∈ End(V⊗2) is a GL(m)-type
R-matrix (recall, that dimK V = N ⩾ m). Denoting the matrix of the generators of the RE algebra by L = ‖Lji‖

N
1 we rewrite

the general commutation relations (2.12) in the equivalent form:

R1L1R1L1 − L1R1L1R1 = 0. (3.1)

Note, that the algebra L(R) has the structure of the left coadjoint comodule over the RTT algebra T (R) defined by (2.16).
On the first order homogeneous component L1(R) (the linear span of the generators of the RE algebra) the coaction
δℓ : L(R) → T (R) ⊗ L(R) reads

δℓ(L
j
i) =

N−
k,p=1

T k
i S(T

j
p) ⊗ Lpk, (3.2)

where S(T ) stands for the antipodal mapping of the RTT Hopf algebra.
The main peculiarities of the RE algebra (comparing with a general QM algebra) are listed below.

1. The quantum matrix powers Lk, k ⩾ 1, (2.22) are simplified to the usual matrix products Lk = Lk = L · Lk−1, where
L0 = 1LI . Consequently, the power sums pk(L) (2.19) take the form pk(L) = TrR(Lk), k ⩾ 0.
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2. The power sums pk(L), k ⩾ 0 are central elements in L(R) [5]. As a consequence, the abelian characteristic subalgebra
Char(L) is central in the RE algebra L(R).

3. Due to the property 1 the Cayley–Hamilton identity (2.22) for the matrix L takes the usual form:
m−
i=0

(−q)iai(L)Lm−i
= 0. (3.3)

For the GL(m)-type RE algebra we introduce m spectral values µi, 1 ⩽ i ⩽ m, of the quantum matrix L considered as
elements of a central extension of the Char(L) (see [16] for more detail and a generalization to the case of GL(m|n)-type
R-matrix). These spectral values are defined by the following system of polynomial relations

ak(L) = q−k
−

1⩽i1<i2<···ik⩽m

µi1µi2 . . . µik , 1 ⩽ k ⩽ m. (3.4)

Then, any element of the characteristic subalgebra can be parameterized by a symmetric polynomial in spectral values.
In particular, the parameterization of power sums pk(L) reads [10]:

pk(L) =

m−
i=1

diµk
i , di = q−m

m∏
j≠i

qµi − q−1µj

µi − µj
.

Besides, (3.3) and (3.4) allow the Cayley–Hamilton identity (3.3) to be written in a factorized form
m∏
i=1

(L − µiI) = 0.

The next property of the RE algebra L(R) allows us to construct a category of its finite dimensional representations.
Namely, the RE algebra has a structure of a braided bialgebra [4,8]. To define this structure we need some more notation.

Introduce a finite dimensional vector spaceW (L):

W (L) = spanK{Lji, 1 ⩽ i, j ⩽ N}, dim
K

W (L) = N2, (3.5)

and consider the free tensor algebra TW (L) generated by the space W (L). In each homogeneous component W (L)⊗k
⊂

TW (L), k ⩾ 1, we take the basis, formed by entries of the Nk
× Nk matrix L1→k:

L1→k
def
= L1

.

⊗ L2
.

⊗ · · ·
.

⊗ Lk−1

.

⊗ Lk, Li+1 = RiLiR
−1
i . (3.6)

Another possible choice of the basis set inW (L)⊗k is given by elements of the matrix

Lk→1
def
= Lk

.

⊗ Lk−1
.

⊗ · · ·
.

⊗ L2
.

⊗ L1, Li+1 = R−1
i LiRi. (3.7)

The RE algebra L(R) is isomorphic to the quotient

L(R) ∼= TW (L)/⟨R1L1→2 − L1→2R1⟩,

where ⟨J⟩ denotes the two-sided ideal in the tensor algebra TW (L) generated by a subset J ⊂ TW (L). Being projected from
TW (L) to the algebra L(R), the sets (3.6) and (3.7) have coinciding images

L1L2 . . . Lk−1Lk = LkLk−1 . . . L2L1.

This can be provedwith the use of permutation relations (3.1) andYang–Baxter equation forR. The homogeneous component
Lk(R) is a linear span of matrix elements of the matrix

L1→k = L1L2 . . . Lk
where we keep the same notation as in (3.6).

The braided bialgebra structure of the RE algebraL(R) is defined by two homomorphicmaps: the coproduct ∆ : L(R) →

L(R) and the counit ε : L(R) → K. Here an associative unital algebra L(R) has the following structure [8]:

1. As a vector space over the field K the algebra L(R) is isomorphic to the tensor product of two copies of the RE algebra

L(R) ∼= L(R) ⊗ L(R).

2. The algebra L(R) is endowed with a vector space automorphism

R : L1(R) ⊗ L1(R) → L1(R) ⊗ L1(R)

where Lk(R) stands for the homogeneous component of degree k. On the basis elements of the space L1(R) ⊗ L1(R) the
automorphism is defined by the rule

R(L1
.

⊗ L2) = L2
.

⊗ L1. (3.8)
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It can be extended to the set of automorphisms

R(k,p) : Lk(R) ⊗ Lp(R) → Lp(R) ⊗ Lk(R), k ⩾ 0, p ⩾ 0

by the following relations

R(k,p)(L1→k

.

⊗ L(k+1)→(k+p)) = L(k+1)→(k+p)

.

⊗ L1→k. (3.9)

The subspace L0(R) generated by the unit element 1L commutes with any Lk(R).
3. Let a, d ∈ L(R) be arbitrary elements of the RE algebra and b ∈ Lk(R), c ∈ Lp(R) be arbitrary elements of homogeneous

components of L(R). Then by definition the product (a ⊗ b) ∗ (c ⊗ d) is given by the rule

(a ⊗ b) ∗ (c ⊗ d) = ac(1) ⊗ b(2)d, (3.10)

where ac(1) and b(2)d are products of elements of the RE algebra, while c(1) and b(2) are the Sweedler’s notation for the
image of the automorphism R(k,p):

R(k,p)(b ⊗ c) = c(1) ⊗ b(2) =

−
i

ci ⊗ bi, ci ∈ Lp(R), bi ∈ Lk(R).

The product of arbitrary elements of the algebra L(R) is obtained from the above definition by linearity.
The following proposition holds true [8] (in an equivalent form the proposition was proved in [4]).

Proposition 3. Consider two linear maps ∆ : L(R) → L(R) and ε : L(R) → K defined by the relations

∆(1L) = 1L ⊗ 1L, ∆(L1→k) = L1→k

.

⊗ L1→k, k ⩾ 1 (3.11)

and

ε(1L) = 1, ε(L1→k) = I12...k. (3.12)

Then the maps ∆ and ε are homomorphisms of associative unital algebras and they define a braided bialgebra structure on the
RE algebra L(R) with the coproduct ∆ and the counit ε.

The representation theory of the GL(m)-type RE algebra L(R) generated by N2 generators Lji can be developed in a
monoidal rigid quasitensor (provided q ≠ 1) category (see [17] for terminology) generated by an N-dimensional vector
space V , R ∈ Aut(V⊗2) ([18], see also [8] for generalization to GL(m|n) case). Following [8] we shall call this category the
Schur–Weyl category.

The term ‘‘quasitensor’’ means, that for any couple of objects U1 and U2 of the category the functorial commutativity
(iso)morphism R(U1,U2) : U1 ⊗U2 → U2 ⊗U1 is not involutive (unless one of the objects is the field K). The above mappings
R(k,p) give examples of such morphisms.

The rigidity means that for any object U its dual U∗ is also an object of the category and moreover, there exist a left
⟨U∗

⊗U⟩l → K and a right ⟨U ⊗U∗
⟩r → K pairings which are morphisms of the category (evaluationmorphisms). Besides,

there exist embeddings of the field K → U ⊗ U∗ and K → U∗
⊗ U which are also morphisms (co-evaluation morphisms).

Given a basis {xi}1⩽i⩽N (2.14) in the generating space V , then a basis {yi}1⩽i⩽N in the dual space V ∗ can be chosen in such
a way that

⟨xi, yj⟩r = δ
j
i, ⟨yi, xj⟩l = (BR)

i
j. (3.13)

The aforementioned co-evaluation morphisms in these basis sets read

K → V ⊗ V ∗
: 1 → (CR)

j
ixj ⊗ yi, K → V ∗

⊗ V : 1 → yi ⊗ xi.

In [8] itwas argued that the spaceW (L)defined in (3.5) can be treated as an object of the Schur–Weyl category isomorphic
to V ⊗ V ∗. This fact allows us to construct the categorical commutativity morphisms R (W (L),V⊗p) which play a crucial role in
extending the L(R)-module structure from the space V to any its tensor power. In particular, as minimal ‘‘building blocks’’
we have the following relations

R (W (L),V )(L2
.

⊗ x1) = x1 ⊗ L2, (3.14)

R (W (L),V∗)(L2 ⊗ y1) = y1
.

⊗ L2. (3.15)

For two copies of the spaceW (L) we get [8] (compare with (3.9))

R (W (L),W (L))(L1
.

⊗ L2) = L2
.

⊗ L1. (3.16)

Also, the isomorphismW (L) ∼= V ⊗V ∗ enables us to define the adjoint representation of the RE algebraL(R) on the space
W (L). Besides, the adjoint action sends to zero the ideal J generated by the left-hand side of relations (3.1). So, the adjoint
action, being extended to the whole algebra L(R) ∼= TW (L)/J via the braided coproduct (3.11) and the commutativity
morphism (3.16), respects the algebraic structure of the RE algebra.
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Now, we present some explicit formulae of the L(R) representations in various spaces. In the basis {xi}1⩽i⩽N (2.14) the
action ◃ of the linear operator Lji is defined as follows

Lji ◃ xp = δ
j
ixp − (q − q−1)(BR)

j
pxi

where (BR)
j
p =

∑
a(ΨR)

aj
ap according to (2.8). Using the property (2.9) one can easily show that the above action provides the

space V with the left L(R)-module structure. We rewrite the above action in an equivalent covariant matrix form

L1R1 ◃ x1 = R−1
1 x1. (3.17)

The compact formula (3.17) is a concise notation for the following expression
N−

a,b=1

(Lai1R
bj2
ai2

) ◃ xb =

N−
a=1

(R−1)
aj2
i1 i2

xa.

The representation (3.17) is irreducible provided that the matrix BR is nonsingular.

Remark 4. The RE algebra L(R) is defined by the quadratic relations (3.1), so it admits an evident rescaling automorphism
L → ηL, with arbitrary non-zero η ∈ K. As a consequence, the action

L1R1 ◃ x1 = η R−1
1 x1, η ∈ K \ 0 (3.18)

is also a representation of the algebra L(R).

To extend the L(R)-module structure to V⊗p, p ⩾ 2, we use the coproduct operation (3.11) and an inductive procedure.
Let spaces U andW be left L(R)-modules with the corresponding representations ρU : L(R) → End(U) and ρW : L(R) →

End(W ). To define the action of the RE algebra

L(R) ⊗ U ⊗ W → U ⊗ W : a ⊗ u ⊗ w → a ◃ (u ⊗ w),

where a ∈ L(R), u ⊗ w ∈ U ⊗ W , we apply the coproduct ∆(a) = a(1) ⊗ a(2) (in the Sweedler’s notation), then permute
a(2) with the vector u by means of the categorical commutativity morphism R(L(R),U):

R(L(R),U)(a(2) ⊗ u) = u(3) ⊗ a(23),

and, finally, apply the representations ρU(a(1)) and ρW (a(23)) to the corresponding modules:

a ⊗ u ⊗ w
∆

−→ a(1) ⊗ a(2) ⊗ u ⊗ w
RL(R),U
−→ a(1) ⊗ u(3) ⊗ a(23) ⊗ w

◃
−→ (a(1) ◃ u(3)) ⊗ (a(23) ◃ w). (3.19)

Below we shall use the following notation for a product of R-matrices:

R±1
i→j =


R±1
i R±1

i+1 . . . R±1
j i < j

R±1
i R±1

i−1 . . . R±1
j i > j.

Taking the linear combinations R1→px1 ⊗ · · · xp as the basis vectors of V⊗p and using (3.14), (3.18) and (3.19) we get

L1 ◃ R1→px1 ⊗ x2 ⊗ . . . xp = (L1 ◃ R1x1)
.

⊗ L2 ◃ (R2→px2 ⊗ . . . xp) = · · ·

= ηpR−1
1→px1 ⊗ x2 ⊗ . . . ⊗ xp. (3.20)

The chain (3.19) specialized to a = Lji, u = xk leads to an important consequence. Taking into account (3.14), we find for
any w ∈ W

L1R1 ◃ (x1 ⊗ w) = η R−1
1 x1

.

⊗ (L2 ◃ w),

or, omitting an arbitrary w, we come to the ‘‘permutation rule’’ of the operators Lji ◃ and basis vectors xp of the space V :

R1(L1 ◃)R1x1 = η x1(L2 ◃). (3.21)

This formula includes the action of L on V and the categorical commutativity morphism (3.14) and gives a simple way of
extending the module structure over the RE algebra to the tensor power V⊗p. It serves us as the key relation for definition
of the BD algebra (4.1) in the next section.

For the dual vector space V ∗ and its tensor powers the representation structure is as follows. The representation of the
RE algebra in V ∗ is given by the operators

Lji ◃ yk = η̃

N−
s=1

ys(R2)
kj
si

or, in a compact matrix form,

L2 ◃ y1 = η̃ y1R2
1, (3.22)

where η̃ is another (nonzero) numerical parameter.
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The categorical commutativity morphism (3.15) and the action (3.22) leads to the corresponding operator-vector
‘‘permutation rule’’ (analogous to (3.21))

(L2 ◃)y1 = η̃ y1R1(L1 ◃)R1. (3.23)

There exists a remarkable connection between the set of L(R)-submodules in V⊗p and the R-matrix representation of
the Hecke algebra Hp(q) in End(V⊗p).

Proposition 5. For any given p ⩾ 2 the L(R)-module V⊗p is reducible. The invariant subspaces Vλ ⊂ V⊗p, λ ⊢ p, are extracted
by the action of projection operators Pa

λ = ρR(eaλ), 1 ⩽ a ⩽ dλ, where eaλ(σ ) is the primitive idempotent of the Hecke algebra
Hp(q) corresponding to a standard Young tableau associated with a partition λ (there are dλ of such tableaux in all). Thus, we
have the following expansion:

V⊗p ∼=


λ⊢p

dλVλ, Vλ
∼= ImPa

λ, 1 ⩽ ∀a ⩽ dλ.

Here the coefficient dλ in the direct sum of vector spaces stands for the multiplicity of the module Vλ in the tensor power V⊗p. A
similar decomposition is true for an L(R)-module (V ∗)⊗p.

For more detailed treatment and technical results the reader is referred to [19].
To complete the section, we consider another particular module over the RE algebra, namely, the module V ⊗V ∗. As was

mentioned above, the corresponding representation can be treated as the action of the RE algebra L(R) on the generating
space W (L) and can be extended to the whole algebra L(R) while preserving the algebraic structure of the RE algebra. Due
to this reason we call this representation adjoint. Such a terminology is also justified by the classical limit q → 1 considered
below.

So, we consider the ‘‘second copy’’ of the space V ⊗ V ∗ and denote its basis elements as M j
i = xi ⊗ yj. Thus, the

space W (M) = spanK(M j
i ) is isomorphic to the space W (L) generating the RE algebra and plays the role of the adjoint

representation space for the RE algebra.
The commutativity morphism R(W (L),W (M)) is given by (3.16) with the corresponding change of notation for the second

factor:

R(W (L),W (M))(L1
.

⊗ M2) = M2

.

⊗ L1.

Then formulae (3.21) and (3.22) allow us to get the action of the RE algebra L(R) on the spaceW (M) = spanK{M j
i }

L1 ◃ M2 = ηη̃M2. (3.24)

Finally, the adjoint action (3.24) together with the above commutativity morphism leads to the ‘‘permutation rule’’ for the
operators L ◃ and the basis vectorsM of the representation spaceW (M):

(L1 ◃)M2 = ηη̃M2 (L1 ◃). (3.25)

This formula is consistent with the braided bialgebra structure of the RE algebra and the adjoint action on the spaceW (M).
It gives a way of extending the left module structure to the whole tensor algebra TW (M).

4. Braided differential algebras arising from the representation theory of RE algebra

In this section we consider the construction of unital associative algebras B(L(R), M), containing two subalgebras —
a GL(m)-type RE algebra L(R) and an L(R)-algebra M which (as a vector space) is the direct sum of some L(R)-modules.
The subalgebra M will be interpreted as a noncommutative function algebra endowed with an action of ‘‘exponentiated’’
differential operators which form the subalgebra L(R). Due to this reason, we call the algebras B(L(R), M) the braided
differential algebras (or BD algebras for short) inwhat follows. To clarify the reasons for using such a terminologywe consider
a classical limit (q → 1) of some algebrasB(L(R), M) and suggest the differential-geometric interpretation of constructions
obtained in this way.

In defining the associative algebra structure in B(L(R), M) a decisive role belongs to the permutation rule of elements
of L(R) and M. This should be an analog of the classical Leibnitz rule, since it embraces the action of a differential operator
on a function and their mutual permutation (see (3.21), (3.23) and (3.25) as examples). We shall refer to this rule as the
operator-function permutation (OFP) rule.

We impose two natural requirements on the OFP rule. First, it should respect the algebraic structures of L(R) and M as
subalgebras of the BD algebra. This means, that the subalgebra M is an L(R)-module and the action of the RE algebra L(R)
is compatible with the multiplication in M (that is M is an L(R)-algebra).

Second, the OFP relation must be compatible with possible additional symmetries of L(R) and M. As an example of such
a symmetry we can point out the coadjoint comodule structure of L(R) over the RTT algebra (see (3.2)). The ‘‘quantum
function‘‘algebra M can also bear coadjoint or (co)vector comodule structure over the RTT algebra.4

4 The last case was considered in the paper [9] devoted to the Heisenberg double over the quantum group.



1494 D. Gurevich et al. / Journal of Geometry and Physics 61 (2011) 1485–1501

It turns out that the first requirement restricts considerably possible forms of the OFP relation. Besides, the RE algebra
representation theory and the structure of the Schur–Weyl category allows one to find all possible OFP rules up to a
renormalization isomorphism.

Below we give several important examples of BD algebras. In the next section we use them in order to construct a BD
algebra involving general quantummatrix algebraM and the RE algebra acting onM by quantum right-invariant differential
operators.

Example 1. Let an N-dimensional vector space V be a left L(R)-module with the action (3.18) of the L(R) generators on a
given basis set {xi}1⩽i⩽N of the space V . Consider a unital associative K-algebra X(V ) freely generated by elements xi:

X(V ) = K⟨x1, x2, . . . , xN⟩

and its p-th order homogeneous component Xp(V ) ≃ V⊗p. The L(R)-module structure is introduced by an analog of the
relation (3.21). This formula is the key point for constructing the BD algebra B(L(R), X(V )) — it leads to the OFP relation
we need.

Definition 6. Let X(V ) = K⟨xi⟩1⩽i⩽N be an algebra of noncommutative polynomials freely generated by elements xi, L(R)
be the RE algebra generated byN2 elements Lji subject tomultiplication rules (3.1) with a GL(m)-type R-matrix. Then the free
braided differential algebra is the unital associative algebraB(L(R), X(V )) generated by {xi} and {Lji} subject to the additional
permutation rule

R1L1R1x1 = η x1L2, η ∈ K \ 0. (4.1)

In order to provide the subalgebra X(V ) with the structure of a module over the RE algebra, we should only define an
action of L generators on the unit element 1B . Since this action should realize a one-dimensional representation of the RE
algebra, we naturally set

L ◃ 1B = ε(L) 1B . (4.2)

ThenOFP relation (4.1) togetherwith (4.2) allows us to get the action of L on any homogeneousmonomial in xi: we should
move the element L to the most right position and then apply (4.2). For example, for a p-th order homogeneous monomial
we find

(Rp→1L1R1→p) ◃ (x1x2 . . . xp) ≡ (Rp→1L1R1→p x1x2 . . . xp) ◃ 1B

= (Rp→2(R1L1R1x1)R2→p x2 . . . xp) ◃ 1B

(4.1)
= ηx1(Rp→3(R2L2R2x2)R3→p x3 . . . xp) ◃ 1B

= · · · = ηpx1x2 . . . xp(Lp+1 ◃ 1B)
(4.2)
= ηpx1x2 . . . xp Ip+1.

Clearly, this is the same action as (3.20) in full agreement with the isomorphism Xp(V ) ≃ V⊗p.
It is evident, that the free BD algebra B(L(R), X(V )) contains all the L(R)-modules Vλ, λ ⊢ p ⩾ 1. Any such a module is

a subspace of the corresponding homogeneous component Xp(V ):

Vλ
∼= Im(ρR(eaλ)) ⊂ Xp(V ), λ ⊢ p, 1 ⩽ a ⩽ dλ

with the multiplicity dλ (see Proposition 5).
We can decrease the size of the free BD algebra by passing to a quotient

XJ(V ) = X(V )/⟨J⟩, J ⊂ X(V ).

Recall, that ⟨J⟩ stands for the two-sided ideal, generated by a subset J . Assuming the ideal ⟨J⟩ to be invariant w.r.t. the action
of L(R) we can define its action on the quotient XJ(V ).

A systematic way to get a set of relations on xi with the desired properties consists in choosing J to be equal to the image
of a central idempotent eλ(σ ) ∈ Hp(q) for some p ⩾ 2:

Jλ = Im(ρR(eλ)) ⊂ Xp(V ), λ ⊢ p.

Basing on the properties of idempotents eλ one can show that at the canonical projection πλ : X(V ) → XJλ(V ) all the
L(R)-submodules Vµ ∈ X(V ) corresponding to partitions µ ⊃ λ are mapped to zero:

πλ(Vµ) = 0, ∀µ ⊃ λ.

For example, if we want to impose quadratic relations on the generators xi we have only two possibilities: to annihilate
the q-antisymmetric component

J(12) ⊂ X2(V ) : J(12) = Im((q − R)) (4.3)

or q-symmetric component

J(2) ⊂ X2(V ) : J(2) = Im((q−1
+ R)). (4.4)
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The choice (4.3) gives rise to a BD algebra B(L(R), Xs(V )) of the RE algebra L(R) over the ‘‘quantum plane’’ Xs(V ) [2]

R1x1x2 − qx1x2 = 0
R1L1R1L1 − L1R1L1R1 = 0
R1L1R1x1 = η x1L2.

(4.5)

The action L(R) ◃ Xs(V ) is induced by (4.2) together with the third relation in system (4.5). The BD algebra (4.5) contains
only the L(R)-submodules isomorphic to V(p), where (p) is a single row partition of an integer p ⩾ 1.

The BD algebra B(L(R), Xs(V )) is covariant with respect to the left coaction of the RTT bialgebra

δℓ(L
j
i) =

N−
k,p=1

T k
i S(T

j
p) ⊗ Lpk, δℓ(xi) =

N−
k=1

T k
i ⊗ xk.

S being the antipodal map in the RTT algebra. In practical calculations it is convenient to use a loose notation δℓ(L1) =

T1L1S(T1) and δℓ(x1) = T1x1 and treat Ta to be commutative with Lb and xc if a ≠ b and a ≠ c .
Let us verify the covariance of the OFP rule in the system (4.5). We get

δℓ(R1L1R1x1) = R1T1L1S(T1)R1T1x1 = R1T1L1T2R1S(T2)x1 = R1T1T2L1R1x1S(T2)
= T1T2R1L1R1x1S(T2) = η T1x1T2L2S(T2) = δℓ(η x1L2).

Assuming a given R-matrix of GL(m)-type to be a deformation of the usual flip P (then m = N = dimK V ), consider the
classical limit q → 1 of the BD algebra B(L(R), Xs(V )) (4.5). For this purpose we pass to a different set {K j

i }1⩽i, j,⩽N of the
RE algebra generators:

L = I − (q − q−1)K , K = ‖K j
i ‖. (4.6)

Taking into account the Hecke condition (2.3), we rewrite the defining relations (3.1) in terms of the new generators

R1K1R1K1 − K1R1K1R1 = R1K1 − K1R1. (4.7)

The bialgebra structure now reads

∆(K) = 1 ⊗ K + K ⊗ 1 − (q − q−1)K ⊗ K , ε(K) = 0. (4.8)

Then, according to the first line of (4.5), the generators xi of the subalgebra Xs(V ) turn into commutative elements

x2x1 − x1x2 = 0. (4.9)

So, at q → 1 we have Xs(V ) = K[V ∗
].

The multiplication rules (4.7) turns into defining relations of the universal enveloping algebra U(gl(m))

κ1κ2 − κ2κ1 = κ1P12 − P12κ1, (4.10)

where the matrix κ = ‖κ
j
i‖ is the limit of generating matrix K at q → 1.

In order to get the limit of the RE algebra action (the third relation in (4.5))we additionally suppose the following behavior
of the parameter η = 1 − (q − q−1)η0 + o(q2 − 1). Under this assumption the OFP relation in (4.5) gives rise to

κ2x1 − x1κ2 = η0x1 + P12x1. (4.11)

Together with the commutation relations (4.10) this formula allows us to interpret the generators κ
j
i as the following vector

fields on the K[V ∗
]:

κ
j
i = xi∂ j

x + η0δ
j
i (x · ∂x), (4.12)

where we denote

∂k
x =

∂

∂xk
, (x · ∂x) =

m−
k=1

xk∂k
x .

If V is the left fundamental vector GL(m)-module

xi → xjM
j
i, M = ‖M j

i‖ ∈ GL(m)

then the fields κ
j
i in (4.12) are invariant with respect to the GL(m) action on the right side.

Remark 7. In considering the classical limit q → 1 it is convenient to parameterize q = e
τ
2 and treat the classical limit as

τ → 0. In this limit the shift formula (4.6) turns into L = I − τκ + o(τ 2). Together with the group-like coproduct (3.11) for
L generators and their ‘‘Weyl-type’’ commutation with the generators xi (the third relation in system (4.5)) it allows us to
interpret the generators Lji as exponentiated quantized differential operators κ (4.12).
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Note, that x ·∂ = Tr κ is a central element of the Lie algebra gl(m). Therefore, on adding to κ
j
i (4.12) a term proportional to

this central element, we can specialize the parameter η0 in (4.11) to any given value (for example, we can get η0 = 0). Such
an operation changes the multiplicative parameter η in the OFP relation of (4.5). This is another evidence of exponential-
like dependence of quantum differential operators L on classical differential operators κ: a linear shift of κ leads to a
multiplicative renormalization of L.

Consider now the choice (4.4) for the permutation rules on xi. We come to the BD algebra B(L(R), Xa(V )) with the
following relations on the generators

R1x1x2 + q−1x1x2 = 0
R1L1R1L1 − L1R1L1R1 = 0
R1L1R1x1 = η x1L2.

(4.13)

This algebra has the same RTT-comodule property as the algebra B(L(R), Xs(V )) considered above. But contrary to the
BD algebra (4.5), now we have only a finite number of the L(R)-submodules in B(L(R), Xa(V )). Namely, the vector space
Xa(V ) is isomorphic to the direct sum of the modules V(1p), 1 ⩽ p ⩽ m.

Again, assuming a given R-matrix R to be a deformation of the flip P and applying the shift (4.6) we get at the classical
limit q → 1 the following system of relations

x1x2 + x2x1 = 0
κ1κ2 − κ2κ1 = κ1P12 − P12κ1

κ2x1 − x1κ2 = η0x1 + P12x1.
The classical algebra defined by the above relations on the generators has a transparent geometrical interpretation. The

elements xi generate an external subalgebra and are treated as one-forms— the differentials of coordinate functions ofK[V ∗
]

xi = dyi, 1 ⩽ i ⩽ m,

while κ
j
i is of the form

κ
j
i = L

j
i + η0 δ

j
i

m−
k=1

Lk
k,

where L
j
i is the Lie derivative along the vector field yi∂

j
y.

Example 2. We can start from a more interesting module V ⊗ V ∗ (called adjoint) with the linear basis M j
i = xi ⊗ yj. The

action of the RE algebra is given by (3.24). Formula (3.25) provides a recipe for extending the module’s structure on tensor
powers of the adjoint module V ⊗ V ∗. In analogy with constructions of Example 1, we consider a unital associative algebra
M, generated by N2 free elementsM j

i and define the algebra B(L(R), M) by imposing the following multiplication rules of
the free generatorsM j

i and RE algebra generators Lji

L1M2 = M2L1. (4.14)

This formula stems from the relation (3.25) which is defined by the RE algebra representation theory. Then the subalgebra
M ⊂ B(L(R), M) can be given the structure of a module over the RE algebra by relation (4.2). Note, that the requirement
(4.2) fixes the constant η̃ as η η̃ = 1.

We can restrict the algebra B(L(R), M) by setting some relations on the generators M j
i which are consistent with the

OFP relation (4.14). We consider the case of quadratic relations. In [8] a pair of orthogonal projectors Aq, Sq : M(2)
→ M(2)

was constructed. Here M(2) is the subspace of M spanned by the quadratic monomials in generators M j
i . The projectors

Aq and Sq have the natural interpretation as a q-antisymmetrizer and a q-symmetrizer on the space M(2). The images of
these operators are invariant subspaces with respect to the RE algebra action. So, a consistent quadratic relation on the free
generatorsM j

i can be chosen as ImAq = 0 or Im Sq = 0.
Consider the first case. It can be shown that the requirement ImAq = 0 is equivalent to the RE algebra type relations on

the generatorsM j
i . So, we come to the BD algebra defined by the following relations on generators

R1M1R1M1 − M1R1M1R1 = 0
R1L1R1L1 − L1R1L1R1 = 0
R1L1R1M1 = M1R1L1R1.

(4.15)

We denote this BD algebra Bad(L(R), M(R)). Both the RE algebras L(R) and M(R) are subalgebras of Bad(L(R), M(R)), the
subalgebra M(R) is endowed with a L(R)-module structure by means of (4.2) and by the third relation of the above system.
Besides, the algebra Bad(L(R), M(R)) has the left coadjoint comodule structure over the RTT algebra (2.16).

The algebraic properties of this BD algebra will be considered in more detail in the next section. Here we only point out
that the R-traces TrRMk, k ⩾ 0, are central in the whole BD algebra Bad(L(R), M(R)) (not only in the RE subalgebra M(R))
and therefore are invariant under the action of the subalgebraL(R). Thismeans that this action can be restricted to quotients
of M(R) over ideals generated by relations TrRMk

= ck, 1 ⩽ k ⩽ m, where ck are fixed constants. Recall, that in [10,20] such



D. Gurevich et al. / Journal of Geometry and Physics 61 (2011) 1485–1501 1497

like quotients were interpreted as quantum (braided) analogs of GL(m) orbits in gl∗(m). Therefore, the subalgebra L(R) in
the BD algebra Bad(L(R), M(R)) can be treated as the quantized algebra of differential operators generated by the vector
fields tangential to the mentioned orbits.

To justify this interpretation we consider the classical limit q → 1 of the BD algebra (4.15) by assuming R to be a
deformation of the flip P .

Making the shift (4.6) for L and passing to the limit q → 1 in the BD algebra (4.15) we come to the following permutation
rules for the generatorsmj

i = limq→1 M
j
i and κ

j
i = limq→1 K

j
i :

m1m2 − m2m1 = 0
κ1κ2 − κ2κ1 = κ1P12 − P12κ1

κ2m1 − m1κ2 = P12m1 − m1P12.

The two last lines in this system of permutation rules show that κ
j
i are coadjoint vector fields on the space gl∗(m):

κ
j
i = ms

i
∂

∂ms
j
− mj

s
∂

∂mi
s
, (4.16)

where the summation over the index s is understood. As is well known, the vector fields (4.16) are tangent to the GL(m)
orbits in the linear space gl∗(m).

5. The braided differential algebra over QM algebra

In the preceding section we gave an example (4.15) of a BD algebra over a quantum matrix algebra. In the classical
limit the RE algebra generators turned into the adjoint vector fields (4.16). In the example (4.15) the algebra of ‘‘quantum
functions’’ was taken to be the second copy of RE algebra.

Now we are going to define the braided differential algebra Br(L(R), M) of the GL(m)-type RE algebra L(R) over an
arbitrary quantummatrix algebra M(R, F). Therefore, we should supply the BD algebra with the OFP relation similar to the
third relation in (4.5). The construction is presented in the following definition.

Definition 8. LetL(R) be the RE algebra associatedwith aGL(m)-type R-matrix R andM(R, F) be theQMalgebra, associated
with a compatible pair of R-matrices {R, F} (see Section 2). Define a unital associative algebra Br(L(R), M) over the field
K generated by the elements Lji of the RE algebra and by elements M j

i of the QM algebra subject to the following system of
relations

R1M1M2 − M1M2R1 = 0
R1L1R1L1 − L1R1L1R1 = 0
R1L1R1M1 = ηM1L2, (5.1)

where the ‘‘matrix copies’’M2 and L2 are produced by the R-matrix F in accordance with (2.13):

L2 = F1L1F−1
1 , M2 = F1M1F−1

1 .

The nonzero number η is a parameter of the algebra.
We introduce an action of the RE algebra generators on the unit element 1B by the rule

a ◃ 1B = ε(a)1B, ∀a ∈ L(R), (5.2)

where ε is the counit map of the braided bialgebra L(R): ε(L) = I (see (3.12)).

Note, that the Heisenberg double, considered in [9] corresponds to the pair {R, P} of the compatible R-matrices, where R
is a GL(m)-type R-matrix. In this case the QM algebra M(R, P) turns into the Hopf algebra of quantum functions on GL(m).

Remark 9. Let us shortly explain how one can get the OFP relation (5.1) in the above definition. As we mentioned in
Section 3, the RE algebra generators can be treated as basis elements of the space V ⊗V ∗ of the Schur–Weyl category SW(V)
(the category of finite dimensional modules over the RE algebra): Lji = xi ⊗ yj, {xi}1⩽i⩽N and {yj}1⩽j⩽N being the respective
basis (3.13) of V and V ∗. In order to get the RE algebra action on generators M j

i which would be not the adjoint one (as in
(4.15)) but rather similar to (4.5) we proceed as follows.

Let us enlarge the class of objects of the category SW(V) by another pair of N dimensional vector spaces

U = spanK(ti)1⩽i⩽N , U∗
= spanK(z i)1⩽i⩽N

dual to each other. Then the matrix elements M j
i are taken to be the basis elements of V ⊗ U∗: M j

i = xi ⊗ z j. In order to get
the OFP relation among Lji andMs

r we have to take into account the (known) OFP relation among L and x and the categorical
permutation morphism of L (treated as V ⊗ V ∗) and U∗ in accordance with our general recipe described in (3.19).
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The commutativity morphism F : V ⊗ U∗
→ U∗

⊗ V is defined via the operator F :

F(xi ⊗ z j) = zk ⊗ xsF
sj
ki .

This gives rise to F appearing in (5.1) in the formula for L2.
Note also, that there exists another choice of the ‘‘function algebra’’. Namely,we could take as the basis of function algebra

the elementsM j
i = ti ⊗ yj ∈ U ⊗ V ∗. Such a choice would give rise to another form of the OFP relation (compare with (5.1))

L2M1 = η̃M1R1L1R1. (5.3)

Actually, we can get the corresponding BD algebra starting from (5.1). If we introduce the matrix L̂ = M−1LM and the
new R-matrix R̂ = F−1R−1F , then the system of relations (5.1) leads to

R̂1M2M1 − M2M1R̂1 = 0

R̂1L̂1R̂1L̂1 − L̂1R̂1L̂1R̂1 = 0

L̂2M1 = ηM1R̂1L̂1R̂1,

where M2 = F−1M1F . The OFP relation standing in the third line of the above system coincides with (5.3) (up to the
nonessential change F → F−1).

Strictly speaking, the BD algebra generated by L̂ and M is not a subalgebra of the algebra (5.1) since we have to use the
inversematrixM−1 in passing from L to L̂. As follows from the Cayley–Hamilton identity (2.22) this requires some extension
of the initial algebra, namely, we have to demand the invertibility of the element am(M) (see [9] for more detail).

From the viewpoint of the representation theory of the RE algebra, the BD algebra introduced in Definition 8 consists of
the direct sum of modules over the RE algebra isomorphic to those of the BD algebra (4.5). To be more precise, the following
proposition holds true.

Proposition 10. Relation (5.2) allows us to define the L(R)-module structure on the subalgebra M(R, F) of the BD algebra
Br(L(R), M) introduced in Definition 8. The action of the RE algebra generators Lji on the basis vectors of the p-th order
homogeneous component Mp(R, F) reads

L1 ◃ R(1→p)M1M2 . . .Mp = ηpR−1
(1→p)M1M2 . . .Mp, (5.4)

where Mk = Fk−1Mk−1F
−1
k−1.

Proof. The proof consists in direct calculations. First of all, using the compatibility conditions (2.11) we can transform
relation (5.1) to

RkLkRkMk = ηMkLk+1, ∀k ⩾ 1,

where the copies Lk and Mk are defined with the help of the R-matrix F in accordance with (2.13). Then we get

L1 ◃ (R(1→p)M1 . . .Mp) = ηp R−1
(1→p)M1 . . .Mp(Lp+1 ◃ 1B).

Since Lp+1 ◃ 1B = ε(Lp+1)1B = I12...p+11B , the result (5.4) follows. This should be compared with (3.20).
In a similar manner one can prove that the RE algebra action respects the algebraic structure of the QM algebra M(R, F),

that is

a ◃ (RkMkMk+1 − MkMk+1Rk) = 0, ∀a ∈ L(R), ∀k ⩾ 1. �

Now, we consider the case of the BD algebra over the RE algebra in more detail. This means that we put F = R. Note, that
we do not come to the algebra (4.15) since the OFP relation (5.1) takes the form

R1L1R1M1 = ηM1R1L1R−1
1 (5.5)

which differs from the third relation of the BD algebra (4.15) by the inverse R in the last place. As a consequence, the traces
TrRMk are not central in the BD algebra (5.5), and the action of the braided differential operators from the subalgebra L(R)
does not preserve the quantum orbits which are quotients of the RE algebra M(R) over the ideals generated by conditions
on these traces [10]. It is not a surprise, since as can be easily seen from the classical limit q → 1, the relation (5.5) defines
the right-invariant vector fields on the gl∗(m):

L = I − (q − q−1)K , K j
i

q→1
−→ ma

i
∂

∂ma
j
.

Here we neglect the possible central term proportional to η0 (see (4.12)).
The BD algebra (4.15) consisting of the quantum differential operators generated by coadjoint vector fields can be

subtracted as a subalgebra of the algebraBr(L(R), M(R))with theOFP relation (5.5). (More precisely,we extend this algebra
by L−1 and M−1.)
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Let us introduce the matrices

Q = LM−1L−1M, N = M−1Q . (5.6)

Here we have to impose the invertibility condition on the elements am(L) and am(M) (the polynomial am is defined in (2.20))
and extend our algebra by the elements a−1

m (L) and a−1
m (M). Then, the Cayley–Hamilton identities (3.3) for L andM guarantee

the invertibility of the matrices involved. The following proposition is a direct consequence of the multiplication rule (5.5).

Proposition 11. The matrix elements of Q and M satisfy the following multiplication rules

R1M1R1M1 − M1R1M1R1 = 0
R1Q1R1Q1 − Q1R1Q1R1 = 0
R1Q1R1M1 − M1R1Q1R1 = 0.

(5.7)

For the pair M and N we have

R1M1R1M1 − M1R1M1R1 = 0
R1N1R1N1 − N1R1N1R1 = 0
R−1
1 N1R1M1 − M1R−1

1 N1R1 = 0.
(5.8)

It is clear from the above proposition that theQ andM generate a subalgebra in the BD algebraBr(L, M) (5.1).Moreover,
we can calculate the action of the generatorsQ j

i on the unit element 1B and turn the above subalgebra into a newBD algebra.

Proposition 12. Given the action (4.2) of the generators L, for the elements Q defined in (5.6) one gets:

Q1 ◃ 1B = ξ I11B, ξ = η−1q2m. (5.9)

We call the BD algebra, generated by Q andM subject to the system of relations (5.7) and the action (5.9) the adjoint BD
algebra and denote it as Bad(Q, M). Note, that OFP relation in the adjoint BD algebra does not depend on the parameter η

entering the OFP relation in the algebra (5.1). This parameter appears only in the action of the adjoint generators Q j
i on the

unit element in (5.9).
It is evident that the BD algebra Bad(Q, M) defined by relations (5.7) differs from the algebra Bad(L(R), M(R)) of

example (4.15) only by notation and general normalization (the parameter ξ ) of the L(R)-action.
Based on this result, we can reveal the structure of the Bad(Q, M) as a module over the RE algebra.

Proposition 13. Given the adjoint BD algebra Bad(Q, M) defined by relations (5.7) and (5.9), the subalgebra M(R) generated
by M j

i is endowed with the Q(R)-module structure with the following action of the basis elements of Q(R) on basis elements of
p-th order homogeneous component Mp(R)

(Q1Q2 . . .Qk) ◃ (Mk+1Mk+2 . . .Mk+p) = ξ k(Mk+1Mk+2 . . .Mk+p), ∀k, p ⩾ 1. (5.10)

Recall, that in the above formula the copies of matrices are defined via the R-matrix R:

Mk = Rk−1Mk−1R
−1
k−1, Mk = R−1

k−1Mk−1Rk−1.

Now, assuming R to be a deformation of the flip P , we discuss the restriction of the adjoint BD algebra to some quotients
of the RE algebra M(R) which can be interpreted as a quantization of the coordinate algebra of GL(m) orbits in gl∗(m)
[10,11]. Such a quantum (braided) orbit is defined by an ideal J{c}, generated by elements

TrR(Mk) − ck, 1 ⩽ k ⩽ m.

(In order to get analogs of regular orbits we have to impose some restrictions on the parameters ci, see [10].)
The systems of relations (5.8) allow us to conclude, that the elements TrR(Mk) and TrR(Nk) are central in the adjoint BD

algebra. This is a consequence of the following property of the trace

TrR(2)(R±1
1 X1R∓1

1 ) = TrR(X) I1,

valid for an arbitrary N × N matrix X . Therefore, the quantum orbits are preserved by the action of the RE algebra Q(R).
Having restricted the adjoint BD algebra Bad(Q, M) on the orbit M(R)/J{c} we get the nontrivial relations on the differential
operators. They appear as the corresponding fixation of another set of central elements — TrR(Nk) = TrR((M−1Q )k).

Definition 14. A restriction of the adjoint BD algebra (5.7) on a quantum orbit M(R)/J{c} is the quotient of Bad(Q, M) over
the ideal generated by the relations

TrR(Mk) = ck, TrR((M−1Q )k) = TrR((M−1Q ◃)k)1B |J{c} , 1 ⩽ k ⩽ m, (5.11)

where in the last relation we assume that traces ofM should be specified to corresponding constants ci after calculating the
action of Q .
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Remark 15. The restriction 1 ⩽ k ⩽ m in the above definition is due to the fact that for a GL(m)-type R-matrix the quantum
matricesM andM−1Q satisfy the Cayley–Hamilton identity. The order of the Cayley–Hamilton polynomial ism, so all traces
TrR(Mp) and TrR((M−1Q )p) with p > m can be expressed in terms of the firstm traces.

Note also, that the restriction on central elements TrR((M−1Q )k) given in (5.11) is compatible with the operator action
of Q , presented in (5.10). Namely, one can show, that TrR((M−1Q ◃)k) is a scalar operator on any homogeneous component
Mp(R). For example,

TrR(M−1Q ◃)M1M2 . . .Mp = ξ TrR(M−1)M1M2 . . .Mp.

At the classical level the corresponding restrictions have rather simple form Tr(MkK) = 0. These relations mean that
the gl∗(m)-module generated by infinitesimal vector fields arising from the GL(m) action on gl∗(m) is a quotient of a free
gl∗(m)-module. (However, its restriction to a generic orbit is projective.) The more complex formulae (5.11) are due to the
‘‘exponentiated character’’ of quantum differential operators Q .

Consider a simple example, corresponding to a GL(2)-type R-matrix. Besides, we take the generating matrices M and L
to be of 2 × 2 size.

The Cayley–Hamilton identity (3.3) for the matrix M reads

M2
− qa1(M)M + q2a2(M)I = 0,

where

a1(M) = TrR(M), 2qa2(M) = q(TrR(M))2 − TrR(M2)

in accordance with (2.21).
Let us consider the ‘‘braided orbit’’ O(r) defined by the following values of the parameters ck, k = 1, 2:

TrR(M) = 0, TrR(M2) = −
2q

q2
r2, (5.12)

where r is a nonzero real number. Then the Cayley–Hamilton identity gives us the inverse matrixM−1 in the form

M−1
= c M, c = −r−2.

According to the definition (5.11), we can calculate the restriction conditions for differential operators. The first condition
is as follows

TrR(M−1Q ) = TrR(M−1Q ◃)1B|O(r) = ξTrR(M−1)|O(r) = ξc TrR(M)|O(r) = 0, (5.13)

where we used (5.9) for the action of Q operator and the above explicit form ofM−1 on the orbit O(r). Passing to the shifted
set of generators Q j

i = 1Bδ
j
i − (q − q−1)K j

i we rewrite restriction (5.13) in the form

TrR(MK) = 0. (5.14)

At the classical limit q → 1 the entries of thematrix K become generators of the Lie algebra sl(2). We pass to the compact
form of this algebra by introducing new generators in the matricesM and K . Namely, we put

M =


ix3 ix1 − x2

ix1 + x2 −ix3


.

Also we have

x21 + x22 + x23 = r2 (5.15)

as a consequence of the above equation TrR(M2) = −2qq−2r2.
Since at the limit q → 1 Tr(K) is a central element, we can also take the matrix K to be traceless and parameterize its

matrix elements as follows

K =


iX3 iX1 − X2

iX1 + X2 −iX3


.

As follows from (5.7) the operators Xi satisfy the su(2) commutation relations:

[Xi, Xj] = εijkXk.

εijk being the completely antisymmetric tensor.
Taking into account the relations among xi and Xi

[xi, Xj] = −εijkxk
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(which can also be extracted as a classical limit of the third equation in (5.7)) we interpret generators Xi as adjoint vector
fields Xi = εijkxj∂k, tangent to the sphere of radius r described by the condition (5.15). At the classical limit the condition
(5.14) leads to the equality

x1X1 + x2X2 + x3X3 = 0.

This is the well-known identity which is satisfied by the tangent vector fields Xi.
We emphasize that all higher order relations following from (5.11) are satisfied automatically at the classical limit.

Indeed, calculating the second restriction for TrR((M−1Q )2) at the condition ξ = 1 we get:

TrR(M−1KM−1
+ M−2K − (q − q−1)M−1KM−1K) = TrR(M−2)TrR(I) − (TrR(M−1))2.

On the orbit O(r) we have TrR(M−1) = c TrR(M) = 0,M−2
= c I . So, at the classical limit we find:

Tr(MKM) = 2 Tr(M2),

or, using our parameterization for the matricesM and K :−
i,j,k

εijkxiXjxk = −2
−

i

x2i .

The above relation indeed turns into an identity with the choice Xi = εijkxj∂k.
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