

Общероссийский математический портал

В. З. Гринес, Е. Я. Гуревич, В. С. Медведев, О. В. Починка, О включении диффеоморфизмов Морса—Смейла на 3-многообразии в топологический поток, $Mamem.\ c6.$, 2012, том 203, номер 12, 81–104

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 93.120.192.92

25 февраля 2015 г., 00:08:09

УДК 517.938

В. З. Гринес, Е. Я. Гуревич, В. С. Медведев, О. В. Починка

О включении диффеоморфизмов Морса-Смейла на 3-многообразии в топологический поток

В настоящей работе для многообразий размерности 3 решена проблема Дж. Палиса о нахождении необходимых и достаточных условий включения каскада Морса—Смейла в топологический поток. Множество таких потоков открыто в пространстве всех диффеоморфизмов, в то время как множество произвольных диффеоморфизмов, включающихся в гладкий поток, является нигде не плотным. Кроме того, в работе выделен класс диффеоморфизмов, включающихся в топологический поток, для которых полным топологическим инвариантом является граф, аналогичный схеме Е. А. Андроновой, А. Г. Майера и графу М. Пейкшото.

Библиография: 26 названий.

Ключевые слова: диффеоморфизм Морса—Смейла, каскад Морса—Смейла, включение в поток, динамические системы на многообразиях.

§ 1. Введение и формулировка результатов

Пусть M^n – гладкое связное замкнутое многообразие размерности n. C^m -no-moком $(m\geqslant 0)$ на многообразии M^n называется непрерывно зависящее от $t\in\mathbb{R}$ семейство C^m -диффеоморфизмов $X^t\colon M^n\to M^n$, удовлетворяющее следующим условиям:

- 1) $X^{0}(x) = x$ для любой точки $x \in M^{n}$;
- 2) $X^t(X^s(x)) = X^{t+s}(x)$ для любых $s, t \in \mathbb{R}, x \in M^n$.

 C^0 -поток еще называют *топологическим потоком*.

Будем говорить, что диффеоморфизм $f\colon M^n\to M^n$ включается в C^m -поток, если f является сдвигом на единицу времени вдоль траекторий некоторого C^m -потока X^t ($f=X^1$).

Основным объектом рассмотрения являются $\partial u \phi \phi e o mop \phi u s m u Mop ca$ — $C m e \ddot{u}$ - $n a f: M^n \to M^n$, которые определяются следующим образом:

- неблуждающее множество Ω_f конечно и состоит из гиперболических периодических точек;
- устойчивые и неустойчивые многообразия периодических точек пересекаются трансверсально.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 11-01-12056-офи-м-2011, № 12-01-00672), гранта правительства Российской Федерации 11.G34.31.0039 и гранта Минобрнауки РФ в рамках государственного задания на оказание услуг в 2012—2014 гг. подведомственными высшими учебными заведениями (шифр заявки 1.1907.2011).

Везде далее рассматривается класс $MS(M^n)$ сохраняющих ориентацию диффеоморфизмов Морса–Смейла на ориентируемых многообразиях.

Проблема включения диффеоморфизма в поток является классической. Детальный обзор результатов, полученных в этой области, изложен в [1]. В работе [2] доказано, что множество C^r -диффеоморфизмов $(r \ge 1)$, включающихся в C^1 -поток, является подмножеством первой категории в $\mathrm{Diff}^r(M^n)$. В [3] показано, что любая окрестность $U \in \mathrm{Diff}^r(M^n)$ тождественного диффеоморфизма содержит открытое множество V диффеоморфизмов, не включающихся в топологический поток. Согласно [4] множество C^2 -диффеоморфизмов, включающихся в C^1 -гладкий поток, нигде не плотно в пространстве диффеоморфизмов Морса–Смейла. В то же время, из работ [3], [5], в которых доказана структурная устойчивость диффеоморфизмов Морса–Смейла, следует, что для любого многообразия M^n существует открытое в $\mathrm{Diff}^1(M^n)$ множество диффеоморфизмов Морса–Смейла, включающихся в топологический поток.

В работе [3] также найдены следующие необходимые условия включения диффеоморфизма $f \in \mathrm{MS}(M^n)$ в топологический поток:

- 1) неблуждающее множество Ω_f совпадает с множеством неподвижных точек Fix_f ;
- 2) ограничение диффеоморфизма f на каждое инвариантное многообразие любой неподвижной точки $p \in \Omega_f$ сохраняет его ориентацию;
- 3) если для различных седловых точек $p,q \in \Omega_f$ пересечение $W_p^s \cap W_q^u$ непусто (такое пересечение называется *гетероклиническим*), то оно не содержит компактных компонент связности.

В дальнейшем условия 1)—3) будем называть условиями Палиса. В работе [3] также показано, что при n=2 эти условия являются достаточными и поставлена задача обобщения этого результата на случай большей размерности. Как оказалось, в размерности n=3 дополнительным препятствием для включения диффеоморфизма Морса—Смейла в топологический поток является возможность дикого вложения сепаратрис седловых точек (компонент связности инвариантных многообразий этих точек без самих точек). Поясним, что понимается под диким вложением сепаратрис.

Пусть α — источниковая точка диффеоморфизма $f \in \mathrm{MS}(M^3)$. Будем обозначать через L_{α} объединение всех одномерных устойчивых сепаратрис седловых точек диффеоморфизма f, принадлежащих W^u_{α} . Положим $F_{\alpha} = L_{\alpha} \cup \alpha$ и назовем F_{α} пучком одномерных устойчивых сепаратрис. Из гиперболичности источника α следует, что W^u_{α} гомеоморфно пространству \mathbb{R}^3 , при этом пучки одномерных сепаратрис гомеоморфны стандартному одномерному пучку в смысле следующего определения.

Определение 1. Множество $\mathbb{F} \subset \mathbb{R}^3$ будем называть *стандартным одномерным пучком*, если оно состоит из конечного числа прямолинейных лучей с началом в точке O(0,0,0). Подмножество $F \subset \mathbb{R}^3$, снабженное индуцированной топологией и гомеоморфное \mathbb{F} , будем называть *одномерным пучком*. При этом пучок F будем называть *ручным*, если существует гомеоморфизм $H \colon \mathbb{R}^3 \to \mathbb{R}^3$ такой, что $H(F) = \mathbb{F}$; в противном случае пучок F будем называть $\partial u \kappa u \omega \omega$.

Частным случаем одномерного пучка является дуга. Первые примеры диких дуг были построены Е. Артином и Р. Фоксом в 1948 г. Отметим, что ручность

каждого из элементов, входящих в пучок $F \subset \mathbb{R}^3$, еще не является гарантией того, что пучок в целом будет ручным. Например, в работе [6] построен пример так называемого *умеренно дикого одномерного пучка*, т.е. такого дикого пучка, что любой содержащийся в нем пучок из меньшего числа дуг является ручным.

Определение 2. Пучок одномерных устойчивых сепаратрис F_{α} назовем ручным, если существует гомеоморфизм $h_{\alpha}\colon W_{\alpha}^u \to \mathbb{R}^3$, отображающий F_{α} на стандартный одномерный пучок. В противном случае будем говорить, что пучок сепаратрис F_{α} является диким. Если ручной (дикий) пучок F_{α} содержит только одну сепаратрису, то будем называть эту сепаратрису ручной (дикой).

Аналогично определяется ручной (дикий) пучок одномерных неустойчивых сепаратрис F_{ω} , состоящий из стоковой точки ω и всех одномерных неустойчивых сепаратрис L_{ω} седловых точек диффеоморфизма f, принадлежащих W_{ω}^{s} .

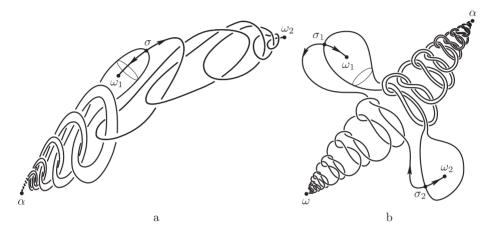


Рис. 1. Диффеоморфизмы с дико вложенными сепаратрисами

В работах [7], [8] построены примеры диффеоморфизмов из класса $MS(\mathbb{S}^3)$, имеющих дико вложенную одномерную сепаратрису седла, а в работе [9] в том же классе построены диффеоморфизмы, одномерные сепаратрисы которых образуют умеренно дикие пучки. Фазовые портреты этих диффеоморфизмов приведены на рис. 1, а) и 1, b) соответственно. Как будет следовать из леммы 1.1 ниже, такие диффеоморфизмы не включаются ни в какие потоки¹. Как оказалось, необходимое условие включения диффеоморфизма $f \in MS(M^3)$ в поток заключается даже в более сильном, нежели ручность, требовании, использующем линейное растяжение евклидова пространства \mathbb{R}^3 , определяемое формулой $A(x_1, x_2, x_3) = (2x_1, 2x_2, 2x_3)$.

Определение 3. Пучок одномерных сепаратрис F_{α} называется *тривиальным*, если существует гомеоморфизм $H_{\alpha}\colon W_{\alpha}^u\to\mathbb{R}^3$ такой, что

$$f|_{W^u_\alpha} = H^{-1}_\alpha A H_\alpha|_{W^u_\alpha}$$

и $H_{\alpha}(F_{\alpha})$ – стандартный одномерный пучок.

 $^{^{1}}$ Заметим, что в силу результатов работы К. Куперберг [10], дикая дуга может быть траекторией некоторого топологического потока на 3-многообразии.

Аналогично определяется тривиальный пучок одномерных сепаратрис F_{ω} .

ЛЕММА 1.1. Пусть диффеоморфизм f из класса $MS(M^3)$ включается в топологический поток. Тогда все пучки его одномерных сепаратрис являются тривиальными.

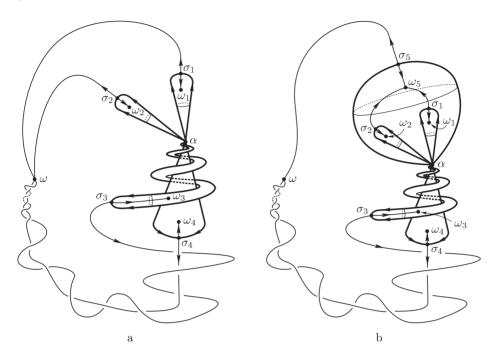


Рис. 2. Фазовые портреты диффеоморфизмов из класса $MS(\mathbb{S}^3)$, не включающихся ни в какие топологические потоки: а) диффеоморфизм, все пучки одномерных сепаратрис которого являются ручными, но пучок F_{ω} не является тривиальным; b) диффеоморфизм, все пучки одномерных сепаратрис которого являются тривиальными

В § 4 построен диффеоморфизм из класса $MS(\mathbb{S}^3)$, все пучки одномерных сепаратрис которого являются ручными, но среди них есть пучок, не являющийся тривиальным (см. рис. 2,а)). Сюрпризом оказался тот факт, что добавление к списку Палиса условия тривиальности всех пучков одномерных сепаратрис седловых точек диффеоморфизма $f \in MS(M^3)$ не приводит к достаточным условиям его включения в топологический поток. Иллюстрирующий этот факт пример также построен в § 4, а на рис. 2, b) изображен его фазовый портрет. В действительности ключом к решению проблемы Палиса о включении диффеоморфизма Морса-Смейла $f \colon M^3 \to M^3$ в поток является схема диффеоморфизма f, введенная в работах [11]–[13] и определяемая следующим образом.

Пусть $q \in \{0,1,2,3\}$ и Ω_q — множество периодических точек p диффеоморфизма $f \in \mathrm{MS}(M^3)$ таких, что $\dim W^u_p = q$. Положим $A_f = W^u_{\Omega_0 \cup \Omega_1}$, $R_f = W^s_{\Omega_2 \cup \Omega_3}$ и $V_f = M^3 \setminus (A_f \cup R_f)$. Оказывается, что объемлющее многообразие является объединением трех попарно непересекающихся множеств:

 $M^3 = R_f \cup V_f \cup A_f$. При этом множества A_f и R_f являются связными аттрактором и репеллером² соответственно, множество V_f также является связным и состоит из блуждающих точек таких, что для α - и ω -предельных множеств любой точки $x \in V_f$ выполняются условия $\alpha(x) \subset R_f$, $\omega(x) \subset A_f$.

Установлено, что пространство орбит $\widehat{V}_f = V_f/f$ действия f на V_f является простым многообразием 3 , а естественная проекция $p_f\colon V_f\to \widehat{V}_f$ является накрытием. При этом накрытие p_f индуцирует эпиморфизм $\eta_f\colon \pi_1(\widehat{V}_f)\to \mathbb{Z}$, ставящий в соответствие гомотопическому классу $[c]\in \pi_1(\widehat{V}_f)$ целое число n такое, что поднятие кривой c на V_f соединяет точку x с точкой $f^n(x)$. Обозначим через L_f^u (L_f^s) объединение всех неустойчивых (устойчивых) двумерных сепаратрис седловых точек. Положим

$$\widehat{L}_f^s = p_f(L_f^s \setminus A_f), \qquad \widehat{L}_f^u = p_f(L_f^u \setminus R_f).$$

Определение 4. Набор $S_f=(\widehat{V}_f,\eta_f,\widehat{L}_f^s,\widehat{L}_f^u)$ называется $\mathit{cxemoй}$ диффеоморфизма $f\in \mathrm{MS}(M^3).$

Определение 5. Схемы S_f и $S_{f'}$ диффеоморфизмов $f, f' \in \mathrm{MS}(M^3)$ называются эквивалентными, если существует гомеоморфизм $\widehat{\varphi} \colon \widehat{V}_f \to \widehat{V}_{f'}$ со следующими свойствами:

- 1) $\eta_f = \eta_{f'} \widehat{\varphi}_*;$
- 2) $\widehat{\varphi}(\widehat{L}_f^s) = \widehat{L}_{f'}^s$ и $\widehat{\varphi}(\widehat{L}_f^u) = \widehat{L}_{f'}^u$.

В работах [11]-[13] также доказано следующее

Утверждение 1.1. Диффеоморфизмы $f, f' \in MS(M^3)$ топологически сопряжены тогда и только тогда, когда их схемы эквивалентны.

Положим $g_f=(|\Omega_1\cup\Omega_2|-|\Omega_0\cup\Omega_3|+2)/2$, где |P| означает мощность множества P. Обозначим через \mathbb{S}_{g_f} ориентируемую замкнутую поверхность рода g_f . Положим $\widehat{\mathbb{V}}_{g_f}=\mathbb{S}_{g_f}\times\mathbb{S}^1$. Множество $\widehat{\lambda}=c_{\widehat{\lambda}}\times\mathbb{S}^1$, где $c_{\widehat{\lambda}}$ – простая гладкая замкнутая кривая на поверхности \mathbb{S}_{g_f} , назовем *тривиальным тором* на многообразии $\widehat{\mathbb{V}}_{g_f}$.

Определение 6. Схему S_f диффеоморфизма $f\in \mathrm{MS}(M^3)$ назовем mpusu-anьnoй, если существует гомеоморфизм $\widehat{\psi}_f\colon \widehat{V}_f\to \widehat{\mathbb{V}}_{g_f}$ такой, что каждая компонента связности множеств $\widehat{\psi}_f(\widehat{L}_f^s)$ и $\widehat{\psi}_f(\widehat{L}_f^u)$ является тривиальным тором на многообразии $\widehat{\mathbb{V}}_{g_f}$.

Основной результат настоящей работы заключается в следующей теореме.

ТЕОРЕМА 1. Диффеоморфизм $f \in MS(M^3)$ включается в топологический поток тогда и только тогда, когда его схема является тривиальной.

Топологический поток, в который включается диффеоморфизм Морса-Смейла на 3-многообразии, близок по своим свойствам к градиентно-подобному

 $^{^2}$ Компактное множество $A\subset M^n$ называется аттрактором диффеоморфизма $f\colon M^n\to M^n$, если существует окрестность U множества A такая, что $f(U)\subset \operatorname{int} U$ и $A=\bigcap_{n\in\mathbb{N}}f^n(U)$, окрестность U при этом называется захватывающей. Множество $R\subset M^n$ называется репеллером для f, если оно является аттрактором для f^{-1} .

 $^{^3}$ Гладкое связное замкнутое ориентируемое 3-многообразие называется *простым*, если оно гомеоморфно $\mathbb{S}^2 \times \mathbb{S}^1$ или неприводимо (любая гладко вложенная 2-сфера ограничивает в нем 3-шар).

потоку (потоку Морса-Смейла без периодических орбит). В 1971 г. М. Пейкшото [14] доказал, что для потоков Морса-Смейла на поверхностях полным топологическим инвариантом является класс изоморфности ориентируемого графа, вершины которого находятся во взаимно однозначном соответствии с состояниями равновесия и замкнутыми траекториями, а ребра соответствуют некоторым компонентам связности инвариантных многообразий состояний равновесия и замкнутых траекторий, при этом изоморфность графов включает в себя сохранение выделенных специальным образом подграфов (различающих множеств)⁴. Непосредственное обобщение этого инварианта на трехмерный случай не решает проблему топологической классификации в общем случае. Однако в работе [16] показано, что в некотором подмножестве потоков на n-многообразиях (n > 2) изоморфность графов является необходимым и достаточным условием их топологической эквивалентности. Мы покажем, что аналогичный результат имеет место для диффеоморфизмов, включающихся в топологические потоки. Именно, рассмотрим класс $G_k(M^n)$ (n > 2) сохраняющих ориентацию диффеоморфизмов Морса-Смейла таких, что для любого $f \in G_k(M^n)$ выполняются следующие условия:

- 1) $\Omega_f = \operatorname{Fix}_f$;
- 2) множество седловых точек состоит в точности из k>0 седловых неподвижных точек⁵, причем устойчивое многообразие W^s_{σ} любой седловой неподвижной точки $\sigma \in \Omega_f$ имеет размерность n-1;
- 3) для любых двух различных седловых точек $p,q\in\Omega_f$ пересечение $W_p^s\cap W_q^u$ пусто.

В п. 3.1 (см. теорему 4) показано, что из условий, выделяющих класс $G_k(M^n)$, следует, что неблуждающее множество любого диффеоморфизма $f \in G_k(M^n)$ содержит в точности 1 источник и k+1 стоковую точку, а несущее многообразие M^n диффеоморфно n-сфере. Γ рафом Γ_f диффеоморфизма $f \in G_k(M^n)$ назовем ориентированный граф, вершины которого находятся во взаимно однозначном соответствии с неподвижными точками, а ребра — во взаимно однозначном соответствии с сепаратрисами седловых точек диффеоморфизма f. В работах [17], [18] доказано, что при n>3 класс изоморфности графа Γ_f диффеоморфизма $f \in G_k(M^n)$ является полным топологическим инвариантом, а также выделено множество допустимых графов, по каждому из которых построен диффеоморфизм из $G_k(M^n)$, включающийся в топологический поток. При этом множество построенных диффеоморфизмов имеет непустое пересечение с каждым классом топологической сопряженности в $G_k(M^n)$. Отсюда непосредственно получается следующая

ТЕОРЕМА 2. Пусть $f \in G_k(M^n)$ и n > 3. Тогда диффеоморфизм f включается в топологический поток.

То, что аналогичная теорема не имеет места для n=3, следует из примеров не включающихся в поток диффеоморфизмов из классов $G_4(M^3)$, $G_5(M^3)$, построенных в § 4 (см. также рис. 2). Также из этих примеров становится

⁴В работе [15] была замечена неточность инварианта Пейкшото, связанная с тем, что изоморфизм графов не различает неэквивалентного расслоения на траектории областей, ограниченных двумя периодическими орбитами.

 $^{^5}$ Если k=0, то Ω_f состоит в точности из одного стока и одного источника, все диффеоморфизмы с таким неблуждающим множеством включаются в топологический поток.

понятным, что класс изоморфности графа не есть полный топологический инвариант для диффеоморфизмов множества $G_k(M^3)$. Однако в подмножестве диффеоморфизмов, включающихся в топологический поток, этот факт удается доказать.

ТЕОРЕМА 3. Пусть диффеоморфизмы $f, f' \in G_k(M^3)$ включаются в топологические потоки. Тогда диффеоморфизмы f, f' топологически сопряжены тогда и только тогда, когда их графы $\Gamma_f, \Gamma_{f'}$ изоморфны.

Авторы благодарят Φ . Лауденбаха за чрезвычайно полезные и плодотворные обсуждения.

§ 2. Необходимые и достаточные условия включения диффеоморфизма $f \in \mathrm{MS}(M^3)$ в топологический поток

Этот параграф посвящен доказательству леммы 1.1 и теоремы 1. Необходимость условий теоремы 1 будет следовать из леммы 2.1, достаточность – из леммы 2.2. В доказательствах мы будем использовать поток $A_{g_f}^t$ на многообразии $\mathbb{V}_{g_f} = \mathbb{S}_{g_f} \times \mathbb{R}$, заданный формулой $A_{g_f}^t(s,r) = (s,r+t)$, а также свойства группы преобразований, действующей разрывно на некотором гладком многообразии.

2.1. Разрывные действия групп преобразований. Пусть $g\colon X\to X$ – диффеоморфизм, заданный на гладком связном многообразии X такой, что группа $\mathscr{G}=\{g^k,k\in\mathbb{Z}\}$ действует на X разрывно⁶. Будем обозначать через X/g пространство орбит этого действия и через $p_g\colon X\to X/g$ естественную проекцию. В силу [19; теорема 3.5.7] естественная проекция $p_g\colon X\to X/g$ является накрывающим отображением, а пространство X/g является гладким многообразием.

Предположим, что многообразие X/g является связным (в противном случае все рассуждения можно провести для каждой компоненты связности), и обозначим через $\eta_g \colon \pi_1(X/g) \to \mathbb{Z}$ гомоморфизм, определенный следующим образом. Пусть $\widehat{c} \in X/g$ — петля в X/g и $[\widehat{c}] \in \pi_1(X/g)$ — ее класс гомотопической эквивалентности. Выберем произвольную точку $\widehat{x} \in \widehat{c}$, обозначим через $p_g^{-1}(\widehat{x})$ полный прообраз точки \widehat{x} и зафиксируем точку $x \in p_g^{-1}(\widehat{x})$. Так как p_g — накрытие, то существует единственный путь c(t) с началом в точке x (c(0) = x), накрывающий петлю \widehat{c} (т.е. такой, что $p_g(c) = \widehat{c}$). Поэтому существует элемент $k \in \mathbb{Z}$ такой, что $c(1) = g^k(x)$. Положим $\eta_g([\widehat{c}]) = k$. Из [20; гл. 18] следует, что отображение η_g является гомоморфизмом. Следующее утверждение доказано в работе [12].

УТВЕРЖДЕНИЕ 2.1. Пусть X, X' — связные гладкие многообразия u $g: X \to X, g': X' \to X'$ — диффеоморфизмы такие, что группы $\mathscr{G} = \{g^k, k \in \mathbb{Z}\}, \mathscr{G}' = \{g'^k, k \in \mathbb{Z}\}$ действуют разрывно на X, X' соответственно. Тогда:

 $^{^6\}Gamma$ руппа H действует на многообразии X, если задано отображение $\zeta\colon H\times X\to X$, обладающее следующими свойствами:

¹⁾ $\zeta(e,x)=x$ для всех $x\in X$, где e – нейтральный (единичный) элемент группы H;

²⁾ $\zeta(g,\zeta(h,x))=\zeta(gh,x)$ для всех $x\in X$ и $g,h\in H.$

Группа H действует *разрывно* на многообразии X, если для каждого компактного подмножества $K \subset X$ множество элементов $h \in H$ таких, что $\zeta(h,K) \cap K \neq \emptyset$, конечно.

- 1) если $\varphi \colon X \to X'$ гомеоморфизм (диффеоморфизм), сопрягающий диффеоморфизмы g и g', то отображение $\widehat{\varphi} \colon X/g \to X'/g'$, заданное формулой $\widehat{\varphi} = p_{g'} \varphi p_g^{-1}$, является гомеоморфизмом (диффеоморфизмом); кроме того, $\eta_g = \eta_{g'} \widehat{\varphi}_*$, где $\widehat{\varphi}_* \colon \pi_1(X/g) \to \pi_1(X'/g')$ гомеоморфизм, индуцированный отображением $\widehat{\varphi}$;
- 2) если $\widehat{\varphi}$: $X/g \to X'/g'$ гомеоморфизм (диффеоморфизм) такой, что $\eta_g = \eta_{g'} \widehat{\varphi}_*$, $\widehat{x} \in X/g$, $x \in p_g^{-1}(\widehat{x})$, $\widehat{x}' = \widehat{\varphi}(\widehat{x}')$ и $x' \in p_{g'}^{-1}(\widehat{x}')$, то существует единственный гомеоморфизм (диффеоморфизм) φ : $X \to X'$, сопрягающий диффеоморфизмы g и g' и такой, что $\varphi(x) = x'$.
- **2.2.** Доказательство леммы 1.1. Докажем, что все пучки одномерных сепаратрис диффеоморфизма $f \in \mathrm{MS}(M^3)$, включающегося в топологический поток, являются тривиально вложенными.

Доказательство. Если диффеоморфизм f включается в некоторый топологический поток X^t ($f=X^1$), то неблуждающее множество Ω_f диффеоморфизма f совпадает с множеством состояний равновесия потока X^t , при этом устойчивое (неустойчивое) многообразие любой неподвижной точки $p\in\Omega_f$ совпадает с устойчивым (неустойчивым) многообразием соответствующего состояния равновесия потока X^t . Покажем, что любой пучок F_α одномерных устойчивых сепаратрис диффеоморфизма f тривиален (доказательство тривиальности любого пучка F_ω одномерных неустойчивых сепаратрис проводится аналогично).

Обозначим через X^t_{α} ограничение потока X^t на множество $V_{\alpha}=W^u_{\alpha}\setminus \alpha$. Поскольку диффеоморфизм $f|_{V_{\alpha}}$ топологически сопряжен с линейным растяжением, то для любых различных точек $p,q\in V_{\alpha}$ существуют окрестности $U_p,U_q\subset V_{\alpha}$ и константа T>0 такие, что $X^t_{\alpha}(U_p)\cap U_q=\varnothing$ для любого |t|>T. Это означает согласно определению, данному в работе [21; ч. I, §1], что поток X^t_{α} является дисперсивным. Тогда из [21; теорема 3] следует, что поток X^t_{α} является параллелизуемым, т.е. существуют множество $\Sigma_{\alpha}\subset V_{\alpha}$ и гомеоморфизм $\xi_{\alpha}\colon V_{\alpha}\to \Sigma_{\alpha}\times \mathbb{R}$ такие, что $\bigcup_{t\in\mathbb{R}}X^t_{\alpha}(\Sigma_{\alpha})=V_{\alpha}$ и $\xi_{\alpha}(X^t_{\alpha}(z))=(z,t)$ для любых $z\in \Sigma_{\alpha},\,t\in\mathbb{R}$.

Из [22; теорема III.4, теорема IV.3] следует, что топологическая размерность Σ_{α} равна двум. Тогда в силу [23; теорема 2] Σ_{α} является многообразием без края. Таким образом, Σ_{α} – замкнутая ориентируемая поверхность. Согласно [21; лемма 1] множество Σ_{α} является деформационным ретрактом многообразия V_{α} . Поскольку V_{α} односвязно, то Σ_{α} – 2-сфера.

Поскольку каждая одномерная сепаратриса l множества L_{α} является траекторией потока X_{α}^t , то существует точка $\gamma_l \in \Sigma_{\alpha}$ такая, что $\xi_{\alpha}(l) = \gamma_l \times \mathbb{R}$. Пусть $g_{\alpha} \colon \Sigma_{\alpha} \to \mathbb{S}^2$ — произвольный сохраняющий ориентацию гомеоморфизм. Положим $c_l = g_{\alpha}(\gamma_l)$. Определим гомеоморфизм $G_{\alpha} \colon V_{\alpha} \to \mathbb{V}_0$ соотношением $G_{\alpha}(X_{\alpha}^t(z)) = A_0^t(g_{\alpha}(z))$. По построению гомеоморфизм G_{α} сопрягает потоки X_{α}^t и A_0^t , а следовательно, и их сдвиги на единицу времени. При этом $G_{\alpha}(l) = c_l \times \mathbb{R}$.

Определим гомеоморфизм $q: \mathbb{S}^2 \times \mathbb{R} \to \mathbb{R}^3 \setminus O$, поставив в соответствие каждой точке $(s,t) \in \mathbb{S}^2 \times \mathbb{R}$, $s = (x_1,x_2,x_3): x_1^2 + x_2^2 + x_3^2 = 1$, точку $q(s,t) = (2^t x_1, 2^t x_2, 2^t x_3)$. Наконец, определим гомеоморфизм $H_{\alpha}: W_{\alpha}^u \to \mathbb{R}^3$ соотношениями $H_{\alpha}(\alpha) = O$, $H_{\alpha}(x) = q(G_{\alpha}(x))$, где $x \in W_{\alpha}^u \setminus \alpha$. Непосредственно

проверяется, что гомеоморфизм H_{α} сопрягает диффеоморфизм $f|_{W^u_{\alpha}}$ с диффеоморфизмом A и отображает пучок одномерных сепаратрис F_{α} на стандартный одномерный пучок, следовательно, пучок F_{α} тривиален.

2.3. Критерий включения диффеоморфизма из класса $\mathrm{MS}(M^3)$ в топологический поток.

ЛЕММА 2.1. Схема S_f диффеоморфизма $f \in MS(M^3)$, включающегося в топологический поток, является тривиальной.

Доказательство. Если диффеоморфизм f включается в некоторый топологический поток X^t ($f=X^1$), то неблуждающее множество Ω_f диффеоморфизма f совпадает с множеством состояний равновесия потока X^t , при этом устойчивое (неустойчивое) многообразие любой неподвижной точки $p\in\Omega_f$ совпадает с устойчивым (неустойчивым) многообразием соответствующего состояния равновесия потока X^t .

Обозначим через X_f^t ограничение потока X^t на множество V_f . Из построения множества V_f следует, что для любой точки $x \in V_f$ имеют место включения $\lim_{t \to +\infty} X_f^t(x) \in A_f$ и $\lim_{t \to -\infty} X_f^t(x) \in R_f$. Таким образом, для любых точек $p,q \in V_f$ существуют окрестности $U_p,U_q \subset V_f$ и константа T>0 такие, что $X_f^t(U_p) \cap U_q = \varnothing$ для любого |t| > T. Как и в доказательстве леммы 1.1, это означает, что поток X_f^t является дисперсивным и, следовательно, существуют ориентируемая замкнутая поверхность $\Sigma_f \subset V_f$ и гомеоморфизм $\xi_f \colon V_f \to \Sigma_f \times \mathbb{R}$ такие, что $\bigcup_{t \in \mathbb{R}} X_f^t(\Sigma_f) = V_f$ и $\xi_f(X_f^t(z)) = (z,t)$ для любых $z \in \Sigma_f, t \in \mathbb{R}$. Обозначим через ρ_f род этой поверхности. Покажем теперь, что $\rho_f = g_f$.

По построению поверхность Σ_f делит многообразие на две части, замыкания которых обозначим через $P_{A_f},\ P_{R_f},\$ полагая, что $A_f\subset$ int $P_{A_f},\ R_f\subset$ int $P_{R_f}.$ Более того, аттрактор A_f является деформационным ретрактом P_{A_f} и, следовательно, они имеют одинаковый гомотопический тип, а значит и эйлерову характеристику. При этом $\chi(P_{A_f})=1-\rho_f$, поскольку $P_{A_f}-3$ -многообразие с краем Σ_f , и $\chi(A_f)=|\Omega_0|-|\Omega_1|$, поскольку A_f – клеточный комплекс, состоящий из $|\Omega_0|$ нульмерных и $|\Omega_1|$ одномерных клеток. Таким образом, $|\Omega_0|-|\Omega_1|=1-\rho_f$. Из аналогичных рассуждений для аттрактора получаем, что $|\Omega_3|-|\Omega_1|=1-\rho_f$. Складывая два последних равенства, получаем, что

$$|\Omega_0| - |\Omega_1| + |\Omega_3| - |\Omega_2| = 2 - 2\rho_f.$$

Откуда $\rho_f = (|\Omega_1 \cup \Omega_2| - |\Omega_0 \cup \Omega_3| + 2)/2$ и, следовательно, $\rho_f = g_f$.

Поскольку каждая двумерная сепаратриса λ диффеоморфизма f является объединением траекторий потока X_f^t , гомеоморфным $\mathbb{S}^1 \times \mathbb{R}$, то существует простая замкнутая кривая $\gamma_\lambda \subset \Sigma_f$ такая, что $\xi_f(\lambda) = \gamma_\lambda \times \mathbb{R}$. Тогда существует гомеоморфизм $h_f \colon \Sigma_f \to \mathbb{S}_{g_f}$ такой, что $c_\lambda = h_f(\gamma_\lambda)$ – простая гладкая замкнутая кривая для любой двумерной сепаратрисы λ . Определим гомеоморфизм $\psi_f \colon V_f \to \mathbb{V}_{g_f}$ соотношением $\psi_f(X_f^t(z)) = A_{g_f}^t(h_f(z))$. По построению гомеоморфизм ψ_f сопрягает потоки X_f^t и $A_{g_f}^t$, а следовательно, и их сдвиги на единицу времени. При этом $\psi_f(\lambda) = c_\lambda \times \mathbb{R}$. По построению $\widehat{\mathbb{V}}_{g_f} = \mathbb{V}_{g_f}/A_{g_f}^1$. Тогда в силу утверждения 2.1 гомеоморфизм $\widehat{\psi}_f = p_{g_f}\psi_f p_f^{-1} \colon \widehat{V}_f \to \widehat{\mathbb{V}}_{g_f}$ удовлетворяет условию определения 6. Таким образом, схема S_f является тривиальной.

ЛЕММА 2.2. Если схема диффеоморфизма $f \in MS(M^3)$ является тривиальной, то диффеоморфизм f включается в топологический поток.

Доказательство. Доказательство леммы состоит в построении топологического потока \widetilde{X}^t на многообразии M^3 , сдвиг на единицу времени которого топологически сопряжен с диффеоморфизмом f посредством некоторого гомеоморфизма $h\colon M^3\to M^3$. Откуда будет следовать, что диффеоморфизм f включается в топологический поток $X^t=h\widetilde{X}^th^{-1}$.

Построение топологического потока \widetilde{X}^t . Идея построения потока аналогична идее, предложенной в работе [11] (см. также [12] для деталей), поэтому некоторые утверждения этих работ используются без доказательства. Разобъем построение на шаги.

Шаг 1. Из определения тривиальной схемы и утверждения 2.1 следует, что существует гомеоморфизм $\psi_f\colon V_f\to \mathbb{V}_{g_f}$ такой, что:

- 1) $f|_{V_f}=\psi_f^{-1}A_{g_f}^1\psi_f$, где $A_{g_f}^1$ сдвиг на единицу времени потока $A_{g_f}^t$; 2) для любой двумерной сепаратрисы λ диффеоморфизма f существует
- 2) для любой двумерной сепаратрисы λ диффеоморфизма f существует простая гладкая замкнутая кривая c_{λ} на поверхности \mathbb{S}_{g_f} такая, что $\psi_f(\lambda) = c_{\lambda} \times \mathbb{R}$.

Напомним, что L_f^s , L_f^u – объединение всех устойчивых, неустойчивых соответственно двумерных сепаратрис диффеоморфизма f. Положим $\mathbb{L}^s = H_f(L_f^s)$ и $\mathbb{L}^u = H_f(L_f^u)$. Для множества цилиндров $\mathbb{L}^\delta = \lambda_1^\delta \cup \dots \cup \lambda_{l^\delta}^\delta$, $\delta \in \{s,u\}$ обозначим через $N(\mathbb{L}^\delta) = N(\lambda_1^\delta) \cup \dots \cup N(\lambda_{l^\delta}^\delta)$ множество их попарно непересекающихся гладких трубчатых окрестностей таких, что $N(\lambda_i^\delta) = K_i^\delta \times \mathbb{R}$, где $K_i^\delta \subset \mathbb{S}_{g_f}$ – гладкое двумерное кольцо для каждого $i=1,\dots,l^\delta$.

В пространстве \mathbb{R}^3 рассмотрим подмножество

$$N = \{(x_1, x_2, x_3) : (x_1^2 + x_2^2)x_3^2 < 1\}$$

и зададим на нем поток B^t формулой $B^t(x_1,x_2,x_3)=(2^{-t}x_1,2^{-t}x_2,2^tx_3).$ Положим $\widehat{N}^s=(N\setminus Ox_3)/B^1.$ По построению многообразие \widehat{N}^s диффеоморфно $K\times \mathbb{R}$, где K стандартное двумерное кольцо. Тогда существует диффеоморфизм $\mu_i^s\colon N(\lambda_i^s)\to (N\setminus Ox_3),$ сопрягающий потоки $A_{g_f}^t|_{N(\lambda_i^s)}$ и $B^t|_{N\setminus Ox_3}.$ Обозначим через $\mu^s\colon N(\mathbb{L}^s)\to (N\setminus Ox_3)\times \mathbb{Z}_{l^s}$ диффеоморфизм, составленный из диффеоморфизмов $\mu_1^s,\dots,\mu_{l^s}^s.$ Положим $Q^s=\mathbb{V}_{g_f}\cup_{\mu^s}(N\times \mathbb{Z}_{l^s}).$ Тогда топологическое пространство Q^s является гладким связным ориентируемым 3-многообразием без края.

Положим $\overline{Q}^s=\mathbb{V}_{g_f}\cup (N\times\mathbb{Z}_{l^s})$ и обозначим через $p_s\colon \overline{Q}^s\to Q^s$ естественную проекцию. Положим $p_{s,1}=p_s|_{\mathbb{V}_{g_f}},\ p_{s,2}=p_s|_{N\times\mathbb{Z}_{l^s}}.$ Тогда поток \widetilde{Y}_s^t на многообразии Q^s определяется формулой

$$\widetilde{Y}_s^t(x) = \begin{cases} p_{s,1}(A_{g_f}^t(p_{s,1}^{-1}(x))), & x \in p_{s,1}(\mathbb{V}_{g_f}), \\ p_{s,2}(B^t(p_{s,2}^{-1}(x))), & x \in p_{s,2}(N \times \{i\}), & i \in \mathbb{Z}_{l^s}. \end{cases}$$

По построению неблуждающее множество потока \widetilde{Y}_s^t состоит из l^s седловых неподвижных гиперболических точек с индексом Морса равным единице.

Шаг 2. Снова обозначим через \mathbb{L}^u , $N(\mathbb{L}^u)$ образы этих множеств относительно проекции p_s . Положим $\widehat{N}^u = (N \setminus Ox_3)/(B^1)^{-1}$. Тогда существует диффеоморфизм $\mu_i^u \colon N(\lambda_i^u) \to (N \setminus Ox_3)$, сопрягающий потоки $X_s^t|_{N(\lambda_i^u)}$ и $B^{-t}|_{N\setminus Ox_3}$

для любого $i=1,\ldots,l^u$. Обозначим через $\mu^u\colon N(\mathbb{L}^u)\to (N\setminus Ox_3)\times \mathbb{Z}_{l^u}$ диффеоморфизм, составленный из диффеоморфизмов $\mu^u_1,\ldots,\mu^u_{l^u}$. Положим $Q^u=Q^s\cup_{\mu^u}(N\times\mathbb{Z}_{l^u})$. Тогда топологическое пространство Q^u является гладким связным ориентируемым 3-многообразием без края.

Положим $\overline{Q}^u=Q^s\cup (N\times \mathbb{Z}_{l^u})$ и обозначим через $p_u\colon \overline{Q}^u\to Q^u$ естественную проекцию. Положим $p_{u,1}=p_u|_{Q^s},\ p_{u,2}=p_u|_{N\times \mathbb{Z}_{l^u}}.$ Тогда поток \widetilde{Y}^t_u на многообразии Q^u определяется формулой

$$\widetilde{Y}_{u}^{t}(x) = \begin{cases} p_{u,1}(\widetilde{Y}_{s}^{t}(p_{u,1}^{-1}(x))), & x \in p_{u,1}(Q^{s}), \\ p_{u,2}(B^{-t}(p_{u,2}^{-1}(x))), & x \in p_{u,2}(N \times \{i\}), & i \in \mathbb{Z}_{l^{u}}. \end{cases}$$

По построению неблуждающее множество потока \widetilde{Y}_u^t состоит из l^s седловых неподвижных гиперболических точек с индексом Морса равным единице и l^u седловых неподвижных гиперболических точек с индексом Морса равным двум.

Шаг 3. Положим $R^s=Q^u\setminus W^s_{\Omega_{\widetilde{Y}^t_u}}$ и обозначим через $\rho^s_1,\dots,\rho^s_{n^s}$ компоненты связности множества R^s . Определим на многообразии \mathbb{R}^3 топологический поток D^t формулой $D^t(x_1,x_2,x_3)=(2^{-t}x_1,2^{-t}x_2,2^{-t}x_3)$. Тогда каждая компонента ρ^s_i диффеоморфна $\mathbb{S}^2\times\mathbb{R}$ и поток $\widetilde{Y}^t_u|_{\rho^s_i}$ гладко сопряжен с потоком $D^t|_{\mathbb{R}^3\setminus O}$ посредством некоторого диффеоморфизма ν^s_i . Обозначим через $\nu^s\colon R^s\to (\mathbb{R}^3\setminus Ox_3)\times\mathbb{Z}_{n^s}$ диффеоморфизм, составленный из диффеоморфизмов $\mu^s_1,\dots,\mu^s_{n^s}$. Положим $M^s=Q^u\cup_{\nu^s}(\mathbb{R}^3\times\mathbb{Z}_{n^s})$. Тогда топологическое пространство M^s является гладким связным ориентируемым 3-многообразием без края.

Положим $\overline{M}^s=Q^u\cup(\mathbb{R}^3\times\mathbb{Z}_{n^s})$ и обозначим через $q_s\colon\overline{M}^s\to M^s$ естественную проекцию. Положим $q_{s,1}=q_s|_{Q^u},\ q_{s,2}=q_s|_{\mathbb{R}^3\times\mathbb{Z}_{n^s}}.$ Тогда поток \widetilde{X}^t_s на многообразии M^s определяется формулой

$$\widetilde{X}_s^t(x) = \begin{cases} q_{s,1}(\widetilde{Y}_u^t(q_{s,1}^{-1}(x))), & x \in q_{s,1}(Q^u), \\ q_{s,2}(B^{-t}(q_{s,2}^{-1}(x))), & x \in q_{s,2}(\mathbb{R}^3 \times \{i\}), & i \in \mathbb{Z}_{n^s}. \end{cases}$$

По построению неблуждающее множество потока \tilde{X}^t_s состоит из l^s седловых неподвижных гиперболических точек с индексом Морса равным единице, l^u седловых неподвижных гиперболических точек с индексом Морса равным двум и n^s стоковых неподвижных гиперболических точек.

Шаг 4. Положим $R^u=M^s\setminus W^u_{\Omega_{\widetilde{X}^t_s}}$ и обозначим через $\rho^u_1,\dots,\rho^u_{n^u}$ компоненты связности множества R^u . Тогда каждая компонента ρ^u_i диффеоморфна $\mathbb{S}^2\times\mathbb{R}$ и поток $\widetilde{X}^t_s|_{\rho^u_i}$ гладко сопряжен с потоком $D^{-t}|_{\mathbb{R}^3\setminus O}$ посредством некоторого диффеоморфизма ν^u_i . Обозначим через $\nu^u\colon R^u\to (\mathbb{R}^3\setminus Ox_3)\times\mathbb{Z}_{n^u}$ диффеоморфизм, составленный из диффеоморфизмов $\mu^u_1,\dots,\mu^u_{n^u}$. Положим $M^u=M^s\cup_{\nu^u}(\mathbb{R}^3\times\mathbb{Z}_{n^u})$. Тогда топологическое пространство M^u является гладким связным замкнутым ориентируемым 3-многообразием.

Положим $\overline{M}^u=M^s\cup(\mathbb{R}^3\times\mathbb{Z}_{n^u})$ и обозначим через $q_u\colon\overline{M}^u\to M^u$ естественную проекцию. Положим $q_{u,1}=q_u|_{M^s},\ q_{u,2}=q_u|_{\mathbb{R}^3\times\mathbb{Z}_{n^u}}.$ Тогда поток \widetilde{X}_u^t на многообразии M^u определяется формулой

$$\widetilde{X}_u^t(x) = \begin{cases} q_{u,1}(\widetilde{X}_s^t(q_{u,1}^{-1}(x))), & x \in q_{u,1}(M^s), \\ q_{u,2}(B^{-t}(q_{u,2}^{-1}(x))), & x \in q_{u,2}(\mathbb{R}^3 \times \{i\}), & i \in \mathbb{Z}_{n^u}. \end{cases}$$

По построению неблуждающее множество потока \widetilde{X}_u^t состоит из l^s седловых неподвижных гиперболических точек с индексом Морса равным единице, l^u седловых неподвижных гиперболических точек с индексом Морса равным двум, n^s стоковых неподвижных гиперболических точек и n^u источниковых неподвижных гиперболических точек.

Шаг 5. Положим $\widetilde{f}=\widetilde{X}^1_u$. По построению диффеоморфизм \widetilde{f} является диффеоморфизмом Морса–Смейла на многообразии M^u и его ограничение $\widetilde{f}|_{V_{\widetilde{f}}}$ топологически сопряжено с диффеоморфизмом $f|_{V_f}$ посредством гомеоморфизма, переводящего двумерные сепаратрисы диффеоморфизма \widetilde{f} в двумерные сепаратрисы диффеоморфизма f с сохранением устойчивости. Согласно утверждениям 2.1 и 1.1 диффеоморфизмы \widetilde{f} и f топологически сопряжены. Следовательно, $M^u=M^3$ и $\widetilde{X}^t=\widetilde{X}^t_u$ – искомый поток.

§ 3. Включающиеся в поток диффеоморфизмы, для которых граф – полный инвариант

В этом параграфе рассмотрен класс $G_k(M^3)$ сохраняющих ориентацию диффеоморфизмов Морса–Смейла таких, что для любого $f \in G_k(M^3)$ выполняются следующие условия:

- 1) $\Omega_f = \operatorname{Fix}_f$;
- 2) множество седловых точек состоит в точности из k>0 седловых неподвижных точек⁷, причем устойчивое многообразие W^s_{σ} любой седловой неподвижной точки $\sigma \in \Omega_f$ имеет размерность 2;
- 3) для любых двух различных седловых точек $p,q\in\Omega_f$ пересечение $W_p^s\cap W_q^u$ пусто.
- **3.1.** Структура несущего многообразия и динамика диффеоморфизмов из класса $G_k(M^3)$. В этом пункте мы приводим ряд свойств диффеоморфизмов из класса $G_k(M^3)$, играющих важную роль в доказательстве теоремы 3. Для n>3 аналогичные результаты следуют из [17].

Нижеприведенное утверждение следует из [24].

УТВЕРЖДЕНИЕ 3.1. Для любой точки $\sigma \in \Omega_1$ диффеоморфизма $f \in G_k(M^3)$ замыкание $\operatorname{cl} l \ (\operatorname{cl} \Sigma)$ неустойчивой (устойчивой) сепаратрисы $l \ (\Sigma)$ является компактной дугой (2-сферой), состоящей из объединения сепаратрисы $l \ (\Sigma)$, точки σ и единственной точки $\omega \in \Omega_0 \ (\alpha \in \Omega_3)$.

Поскольку множество Ω_2 является пустым для любого диффеоморфизма $f \in G_k(M^3)$ и все компоненты разложения объемлющего многообразия $M^3 = A_f \cup V_f \cup R_f$ являются связными, то репеллер R_f состоит из одной источниковой точки α и $V_f = W_\alpha^u \setminus \alpha$. Более детальную информацию дает следующая

ТЕОРЕМА 4. Неблуждающее множество любого диффеоморфизма f из класса $G_k(M^3)$ содержит в точности 1 источник и k+1 стоковую точку, а несущее многообразие M^3 диффеоморфно 3-сфере.

 $^{^7}$ Если k=0, то Ω_f состоит в точности из одного стока и одного источника, все диффеоморфизмы с таким неблуждающим множеством вкладываются в топологический поток.

Доказательство. Для каждой седловой точки σ диффеоморфизма f сфера $\Sigma=\operatorname{cl} W^s_\sigma$ является топологическим репеллером, следовательно, существуют окрестность $U(\Sigma)\in M^3$ и целое положительное число $r(\Sigma)$ такое, что $U(\Sigma)\subset \operatorname{int} f^{r(\Sigma)}(U(\Sigma))$. Не уменьшая общности, можно считать, что $r(\Sigma)=1$ для любого σ (в противном случае перейдем к некоторой степени диффеоморфизма f, при этом многообразие M^3 останется прежним).

Из [25; предложение 0.1] следует, что для каждой седловой точки σ диффеоморфизма f существует замкнутая окрестность $V(\Sigma) \subset U(\Sigma)$ сферы Σ , ограниченная гладко вложенными сферами S_1^2 , S_2^2 и гомеоморфная прямому произведению $\mathbb{S}^2 \times [-1,1]$. Обозначим через l_1 и l_2 неустойчивые сепаратрисы точки σ , через ω_1 и ω_2 — стоковые точки, принадлежащие замыканиям l_1 и l_2 соответственно (возможно, $\omega_1 = \omega_2$). Из локальной сопряженности диффеоморфизма f с линейным отображением следует, что дуги $\mathrm{cl}\, l_1 \cap V(\Sigma)$ и $\mathrm{cl}\, l_2 \cap V(\Sigma)$ лежат в разных компонентах связности множества $V(\Sigma) \setminus \Sigma$.

Удалим из многообразия M^3 внутренность окрестности $V(\Sigma)$. Многообразие $M^3\setminus \operatorname{int} V(\Sigma)$ является гладким компактным многообразием с краем, состоящим из сфер $S_1^2,\,S_2^2$. Обозначим через M_1^3 компактное многообразие без края, полученное из многообразия $M^3\setminus \operatorname{int} V(\Sigma)$ приклеиванием вдоль его края двух замкнутых шаров B_1^3 и B_2^3 . Зададим диффеоморфизм $\widetilde{f_1}\colon M_1^3\to M_1^3$ таким образом, что:

- 1) $\widetilde{f}_1|_{M_1^3\setminus (B_1^3\cup B_2^3)} = \widetilde{f}|_{M_1^3\setminus (B_1^3\cup B_2^3)};$
- 2) $\widetilde{f}_1|_{B^3_1\cup B^3_2}$ имеет только две неподвижные точки $\alpha_1\in B^3_1,\,\alpha_2\in B^3_2,$ каждая из которых является отталкивающей.

Неблуждающее множество $\Omega_{\widetilde{f}_1}$ диффеоморфизма \widetilde{f}_1 содержит в точности две отталкивающие точки и k-1 седловую точку, при этом общее количество неподвижных точек диффеоморфизма \widetilde{f}_1 совпадает с числом неподвижных точек диффеоморфизма f. Так как неблуждающее множество $\Omega_{\widetilde{f}_1}$ содержит два источника, то многообразие M_1^3 состоит из двух компонент связности N_1^3 и N_2^3 . Так как сl $l_i \setminus U_{\Sigma} \subset N_i^3$, то $\omega_i \subset N_i^3$, i=1,2.

Проделаем описанную процедуру еще k-1 раз. В результате получим компактное многообразие без края M_k^3 и диффеоморфизм $\widetilde{f}_k\colon M_k^3\to M_k^3$ со следующими свойствами. Многообразие M_k^3 состоит из k+1 компоненты связности N_1^3,\dots,N_{k+1}^3 , каждая из которых содержит 1 источник и 1 сток диффеоморфизма \widetilde{f}_k . Следовательно, каждое многообразие N_i^3 гомеоморфно 3-сфере, а многообразие M^3 является связной суммой k+1 экземпляра 3-сфер 8 . Поэтому M^3 гомеоморфно 3-сфере.

Неблуждающее множество диффеоморфизма \tilde{f}_k содержит только притягивающие и отталкивающие неподвижные точки, и их общее количество равно числу неподвижных точек диффеоморфизма f. Следовательно, неблуждающее множество диффеоморфизма f содержит 2k+2 точки: 1 источник, k седловых точек и k+1 сток.

Для любого диффеоморфизма $f \in G_k(M^3)$ аттрактор A_f состоит из замыканий неустойчивых одномерных сепаратрис и в силу утверждения 3.1 является

⁸Связной суммой $M_1^3 \sharp M_2^3$ двух ориентируемых связных 3-многообразий M_1^3, M_2^3 называется многообразие $M_1^3 \sharp M_2^3$, полученное удалением из M_1^3, M_2^3 шаров $B_1^3 \subset M_3^1, B_2^3 \subset M_2^3$ и склеиванием оставшихся многообразий с краем при помощи гомеоморфизма $\phi \colon \partial B_1^3 \to \partial B_2^3,$ обращающего естественную ориентацию $\partial B_1^3.$

связным одномерным клеточным комплексом. Следующая лемма уточняет его топологическую структуру.

ЛЕММА 3.1. Аттрактор A_f не содержит подмножеств, гомеоморфных окружности.

Доказательство. Предположим противное: пусть множество $s\subset A_f$ гомеоморфно окружности. Обозначим через σ седловую неподвижную точку, принадлежащую s. Сфера сl W^s_σ делит многообразие M^3 на две компоненты связности. Тогда существует точка $x\neq \sigma$, принадлежащая пересечению $s\cap \operatorname{cl} W^s_\sigma$. Точка x не может быть стоковой или седловой точкой, так как замыкание $\operatorname{cl} W^s_\sigma$ является объединением устойчивого многообразия W^s_σ и источниковой точки α . Следовательно, точка x принадлежит неустойчивому многообразию некоторой седловой точки $\widetilde{\sigma}$ (возможно, совпадающей с σ). Получили противоречие, так как в силу условий, определяющих класс $G_k(M^3)$, $W^s_\sigma\cap W^s_\sigma=\sigma$ и $W^s_\sigma\cap W^s_\alpha=\varnothing$ для любых точек $\sigma\neq\widetilde{\sigma}$.

Обозначим через ξ_f изоморфизм между неблуждающим множеством Ω_f диффеоморфизма $f \in G_k(M^3)$ и множеством вершин графа Γ_f . Напомним, что маршрутом, соединяющим вершины b_0, b_s графа Γ_f , называется последовательность ребер $(b_0, b_1), (b_1, b_2), \ldots, (b_{s-1}, b_s)$. Маршрут называется простым, если все его ребра попарно различны. Будем обозначать через $\Gamma_f \setminus a$ граф, полученный из графа Γ_f удалением вершины a и всех инцидентных ей ребер.

Следующее утверждение является элементарным следствием теоремы 4 и леммы 3.1.

Следствие 3.1. Для любой седловой точки σ диффеоморфизма $f \in G_k(M^3)$ многообразие $\mathrm{cl}\,W_\sigma^s$ делит 3-сферу M^3 на две компоненты связности $B_1^3,\,B_2^3$ такие, что любые неподвижные точки $p,q \in (\Omega_f \setminus (\sigma \cup \alpha))$ принадлежат одной и той же компоненте связности B_1^3 (B_2^3) тогда и только тогда, когда вершины $\xi_f(p),\,\xi_f(q)$ графа Γ_f можно соединить простым маршрутом из ребер, принадлежащих графу ($\Gamma_f \setminus \xi_f(\alpha)$) $\setminus \xi_f(\sigma)$.

- 3.2. Необходимые и достаточные условия топологической сопряженности диффеоморфизмов из класса $G_k(M^3)$. Этот пункт посвящен доказательству теоремы 3, утверждающей, что класс изоморфности графа диффеоморфизма $f \in G_k(M^3)$, включающегося в топологический поток, является полным топологическим инвариантом. Необходимость условий теоремы следует непосредственно из определения топологической сопряженности и определения графа диффеоморфизма, достаточность из леммы 3.2.
- ЛЕММА 3.2. Пусть диффеоморфизмы $f, f' \in G_k(M^3)$ включаются в топологические потоки и их графы Γ_f , $\Gamma_{f'}$ изоморфны. Тогда диффеоморфизмы f, f' топологически сопряжены.

Доказательство. В силу утверждений 2.1 и 1.1 для доказательства леммы достаточно показать, что ограничения $f|_{V_f},\ f'|_{V_{f'}}$ топологически сопряжены посредством гомеоморфизма φ , переводящего двумерные сепаратрисы диффеоморфизма f'.

Представим множество L_f^s в виде объединения двумерных сепаратрис седловых точек $L_f^s = \lambda_1 \cup \cdots \cup \lambda_k$. Из теоремы 4 следует, что для диффеоморфизма $f \in G_k(M^3)$ имеет место равенство $g_f = 0$. Так как диффеоморфизм f

включается в топологический поток, то в силу теоремы 1 его схема S_f является тривиальной. Тогда согласно утверждению 2.1 существует гомеоморфизм $\psi_f: V_f \to \mathbb{S}^2 \times \mathbb{R}$ такой, что для любого $i=1,\ldots,k$ существует простая гладкая замкнутая кривая c_i на сфере \mathbb{S}^2 такая, что $\psi_f(\lambda_i) = c_i \times \mathbb{R}$ и $f|_{V_f} = \psi_f^{-1} A_0^1 \psi_f$. Аналогичные обозначения со штрихом введем для диффеоморфизма f'.

Обозначим через π_f , $(\pi_{f'})$ взаимно однозначное соответствие между неподвижными точками, сепаратрисами диффеоморфизма f (f') и вершинами, ребрами его графа Γ_f ($\Gamma_{f'}$) и через ζ изоморфизм графов Γ_f , $\Gamma_{f'}$. Не уменьшая общности, предположим, что нумерация сепаратрис множества $L^s_{f'}$ выбрана таким образом, что $\lambda_i' = \pi_{f'}^{-1}(\zeta(\pi_f(\lambda_i))), i=1,\ldots,k$. Покажем, что существует сохраняющий ориентацию гомеоморфизм $\phi\colon \mathbb{S}^2\to \mathbb{S}^2$ такой, что $\phi(c_i)=c_i'$ для любого $i=1,\ldots,k$. Тогда искомый гомеоморфизм $\varphi\colon V_f\to V_{f'}$ определяется формулой $\varphi=\psi_{f'}^{-1}\Phi\psi_f$, где $\Phi\colon \mathbb{S}^2\times \mathbb{R}\to \mathbb{S}^2\times \mathbb{R}$ – гомеоморфизм такой, что $\Phi(s,t)=(\phi(s),t)$. Докажем требуемое утверждение индукцией по числу $l\leqslant k$.

Для l=1 утверждение является следствием теоремы Шенфлиса (см., например, [26; введение, раздел A, утверждение 4]). Предположим, что для любого $1\leqslant l < k$ существует гомеоморфизм $\phi_l\colon \mathbb{S}^2\to \mathbb{S}^2$ такой, что $\phi_l(c_i)=c_i'$ для $i=1,\ldots,l$, и докажем, что существует гомеоморфизм $\phi_{l+1}\colon \mathbb{S}^2\to \mathbb{S}^2$ такой, что $\varphi_{l+1}(c_i)=c_i'$ для $i=1,\ldots,l+1$.

В силу следствия 3.1 дуга c_{l+1} (c'_{l+1}) делит сферу \mathbb{S}^2 на два диска D_1 , D_2 (D'_1 , D'_2) такие, что дуги c_i , c_j (c'_i , c'_j) принадлежат одному и тому же диску, если соответствующие им вершины графа $\Gamma(f)$ ($\Gamma(f')$) можно соединить маршрутом, составленным из ребер графа $\Gamma(f)\setminus (\xi_f(\alpha)\cup \xi_f(\sigma_{l+1}))$ ($\Gamma(f')\setminus (\xi_{f'}(\alpha')\cup \xi_{f'}(\sigma'_{l+1}))$). Так как графы $\Gamma(f)$, $\Gamma(f')$ изоморфны, то (с точностью до обозначения дисков D'_1 , D'_2) выполняется следующее условие: если для некоторого $i=1,\ldots,l$ $c_i\subset D_1$ ($c_i\subset D_2$), то $c'_i\subset D'_1$ ($c'_i\subset D'_2$).

Так как ϕ_l – гомеоморфизм, то существуют диски $\widetilde{D}_1\subset D_1',\ \widetilde{D}_2\subset D_2'$ такие, что

$$(\widetilde{D}_1 \cup \widetilde{D}_2) \cap (c'_{l+1} \cup \varphi(c_{l+1})) = \varnothing$$

и если $c_i' \in D_1'$ ($c_i' \in D_2'$), то $c_i' \in \widetilde{D}_1$ ($c_i' \in \widetilde{D}_2$), $i=1,\ldots,l$. Обозначим через $U \subset \mathbb{S}^2$ множество, ограниченное дугами $\partial \widetilde{D}_1$, $\partial \widetilde{D}_2$. Из двумерной теоремы о кольце следует, что множество U гомеоморфно кольцу $\mathbb{S}^1 \times [0,1]$ и существует гомеоморфизм $g_U \colon \mathbb{S}^2 \to \mathbb{S}^2$, тождественный вне U и такой, что $g_U(\phi_l(c_{l+1})) = c_{l+1}'$ (см. для справки, например, [26; введение, раздел A, утверждения 10 и 11]). Тогда $\phi_{l+1} = g_U \phi_l$ является искомым гомеоморфизмом.

§ 4. Построение диффеоморфизмов из класса $G_k(M^3)$ с различными типами вложения пучков сепаратрис

Цель этого параграфа – доказательство предложений 1 и 2.

ПРЕДЛОЖЕНИЕ 1. Существует диффеоморфизм $f \in G_4(S^3)$, все пучки одномерных сепаратрис которого являются ручными, но среди них есть нетривиальный пучок.

ПРЕДЛОЖЕНИЕ 2. Существует не включающийся в поток диффеоморфизм $f \in G_5(S^3)$, все пучки одномерных сепаратрис которого являются тривиальными.

Построение анонсированных диффеоморфизмов существенно опирается на некоторые алгебраические инварианты замкнутых кривых на торе.

4.1. Вспомогательные сведения из гомологической теории кривых на торе. Пусть \widehat{Q} – многообразие, гомеоморфное $\mathbb{T}^2 \times [-1,1]$, $Q = \mathbb{R}^2 \times [-1,1]$ – универсальное накрытие и $p \colon Q \to \widehat{Q}$ – естественная проекция. Каждой петле $\widehat{l} \colon [0,1] \to \widehat{Q}$ поставим в соответствие пару целых чисел $\langle a_l,b_l \rangle$ таких, что если $\widetilde{x} = (x_1,x_2,x_3), \ (x_1,x_2) \in \mathbb{R}^2, \ x_3 \in [-1,1],$ – фиксированная точка такая, что $p(\widetilde{x}) = \widehat{l}(0)$, и \widetilde{l} – поднятие петли l с началом в точке \widetilde{x} , то $\widetilde{l}(1) = (x_1+a_l,x_2+b_l,x_3)$. Из [20; гл. 19, 29] следует, что пара $\langle a_l,b_l \rangle$ не зависит от выбора точки \widetilde{x} и определяет гомологический класс петли l.

Пусть \widehat{Q} , \widehat{Q}' – многообразия, гомеоморфные $\mathbb{T}^2 \times [-1,1]$. Любой гомеоморфизм $h\colon \widehat{Q} \to \widehat{Q}'$ индуцирует изоморфизм $h_*\colon H_1(\widehat{Q}) \to H_1(\widehat{Q}')$, заданный целочисленной унимодулярной матрицей

$$H_* = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}.$$

Напомним, что многообразие V называется заполненным тором, если существует гомеоморфизм $\psi\colon V\to \mathbb{B}^2\times \mathbb{S}^1$. Будем называть cpedneŭ линией заполненного тора V замкнутую кривую $\widehat{l}=\psi^{-1}(\{O\}\times \mathbb{S}^1)$.

Пусть $V_1, V_2 \in \widehat{Q}$, $(V'_1, V'_2 \in \widehat{Q}')$ – непересекающиеся заполненные торы и \widehat{l}_i (\widehat{l}'_i) – средняя линия тора V_i (V'_i) , i=1,2. Кривая \widehat{l}_i (\widehat{l}'_i) , оснащенная некоторой ориентацией, представляет петлю в \widehat{Q} , которой поставим в соответствие ее гомологический класс $\langle a_i, b_i \rangle$ $(\langle a'_i, b'_i \rangle)$. Отметим, что при смене ориентации кривой \widehat{l}_i пара $\langle a_i, b_i \rangle$ переходит в пару $-\langle a_i, b_i \rangle = \langle -a_i, -b_i \rangle$.

Утверждение 4.1. Если существует гомеоморфизм $h\colon \widehat{Q}\to \widehat{Q}'$ такой, что $h(V_i)=V_i',\ i=1,2,\ mo$

$$\begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} a_i \\ b_i \end{pmatrix} = \pm \begin{pmatrix} a_i' \\ b_i' \end{pmatrix}, \qquad i = 1, 2.$$

Доказательство. Справедливость утверждения следует из того, что при соответствующем выборе ориентации петли $h(\hat{l}_i), \hat{l}'_i$ гомологичны в V'_i и, следовательно, в \hat{Q}' .

Следствие 4.1. Если существует гомеоморфизм $h\colon \widehat{Q}\to \widehat{Q}'$ такой, что $h(V_i)=V_i',\ i=1,2,\ u$ кривые $\widehat{l}_1,\ \widehat{l}_2$ гомологичны в $\widehat{Q},\ mo$ кривые $\widehat{l}_1',\ \widehat{l}_2'$ гомологичны в \widehat{Q}' .

4.2. Доказательство предложения 1. Доказательство предложения 1 ведется по шагам и представляет из себя реализацию пучка дуг в \mathbb{R}^3 пучком одномерных сепаратрис диффеоморфизма с помощью конструкции Черри.

Шаг 1. Определение модельного пучка дуг. Пусть $\rho \in (0, +\infty)$, $\varphi \in [0, 2\pi)$, $\theta \in [0, \pi]$ – сферические координаты в \mathbb{R}^3 . Положим

$$\gamma_i^0 = \left\{ (\rho, \varphi, \theta) \in \mathbb{R}^3 \mid \rho \in (0, +\infty), \ \varphi = 0, \ \theta = \frac{\pi(i - 1)}{3} \right\}, \qquad i = 1, \dots, 4,$$
$$\gamma_i = \gamma_i^0, \qquad i = 1, 2, 4,$$
$$\gamma_3 = \left\{ (\rho, \varphi, \theta) \in \mathbb{R}^3 \mid \rho \in (0, +\infty), \ \varphi = 2\pi(\log_2 \rho \mod 1), \ \theta = \frac{2\pi}{3} \right\}.$$

Ориентируем дуги γ_i^0 , γ_i в направлении возрастания ρ , $i=1,\ldots,4$. На рис. 3 изображены фундаментальные области пучков $F_O^0=(\bigcup_{i=1}^4 \gamma_i^0)\cup\{O\}$ и $F_O=(\bigcup_{i=1}^4 \gamma_i)\cup\{O\}$.

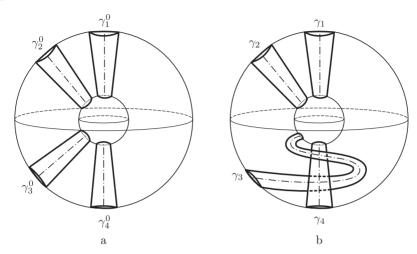


Рис. 3. Фундаментальные области пучков F_O^0 и F_O

Выберем окрестности Γ_i^0 , Γ_i дуг γ_i^0 , γ_i соответственно следующим образом. Положим

$$\Gamma_1^0 = \left\{ (\rho, \varphi, \theta) \in \mathbb{R}^3 \mid \rho \in (0, +\infty), \ \varphi \in [0, 2\pi), \ |\theta| \leqslant \frac{\pi}{12} \right\}, \qquad \Gamma_i^0 = r_i(\Gamma_1^0),$$

где $r_i \colon \mathbb{R}^3 \to \mathbb{R}^3$ – вращение на угол $\pi(i-1)/3$ с осью вращения

$$\left\{(\rho,\varphi,\theta)\;\middle|\;\rho\in[0,+\infty),\;\varphi\in\left\{\frac{\pi}{2},\frac{3\pi}{2}\right\},\;\theta=\frac{\pi}{2}\right\},\qquad i=2,3,4.$$

Определим $\Gamma_1, \ldots, \Gamma_4$ следующим образом: $\Gamma_i = \Gamma_i^0$ для i = 1, 2, 4, а $\Gamma_3 = \chi(\Gamma_3^0)$, где $\chi \colon \Gamma_3^0 \to \mathbb{R}^3$ – топологическое вложение, определенное формулой $\chi(\rho, \varphi, \theta) = (\rho, \varphi + 2\pi(\log_2 \rho \mod 1), \theta)$.

Шаг 2. Построение диффеоморфизма $\overline{f}\colon \mathbb{R}^3\to\mathbb{R}^3$. По построению множество $\Gamma_i,\ i=1,\ldots,4$, является A^{-1} -инвариантной окрестностью кривой γ_i , гомеоморфной $\mathbb{R}\times\mathbb{D}^2$, и Γ_i/A^{-1} — заполненный тор. Представим $\mathbb{S}^1\times\mathbb{D}^2$ как пространство орбит действия группы $G=\{g^n,n\in\mathbb{Z}\}$ на многообразии $\Gamma=\{(x_1,x_2,x_3)\in\mathbb{R}^3:x_2^2+x_3^2\leqslant 1\}$, где $g\colon\Gamma\to\Gamma$ — диффеоморфизм, заданный формулой $g(x_1,(x_2,x_3))=(x_1-1,(x_2,x_3))$. Согласно утверждению 2.1 существует диффеоморфизм $\zeta_i\colon\Gamma_i\to\Gamma$, сопрягающий диффеоморфизмы $A^{-1}|_{\Gamma_i},g$ и переводящий кривую γ_i в прямую Ox_1 .

Положим

$$B_1 = \{(x_1, x_2, x_3) \in C : |x_1| \le 1\},$$

$$B_2 = \left\{(x_1, x_2, x_3) \in C : x_1^2 + x_2^2 + x_3^2 \le \frac{1}{16}\right\},$$

$$B_3 = \left\{(x_1, x_2, x_3) \in C : |x_1| \le \frac{1}{2}, x_2^2 + x_3^2 \le \frac{1}{4}\right\}.$$

4 Математический сборник, т. 203, вып. 12

Модифицируем диффеоморфизм q следующим образом.

Пусть $\psi_1 \colon C \to \mathbb{R}$ – гладкая функция такая, что:

- (a) $\psi_1(x_1, x_2, x_3) = -1$ для любой точки $(x_1, x_2, x_3) \in (C \setminus \text{int } B_1);$
- (b) $\psi_1(x_1, x_2, x_3) < 0$ для любой точки $(x_1, x_2, x_3) \in (B_1 \setminus B_2)$;
- (c) $\psi_1(x_1, x_2, x_3) > 0$ для любой точки $(x_1, x_2, x_3) \in \text{int } B_2$;
- (d) $\frac{\partial \psi_1}{\partial x_1}(\pm \frac{1}{4}, 0, 0) \neq 0.$

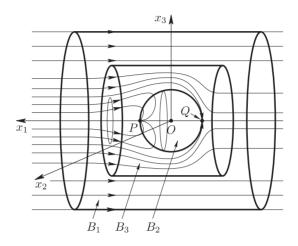


Рис. 4. Траектории потока ϕ^t

Пусть $\psi_2 \colon C \to \mathbb{R}$ – гладкая функция, удовлетворяющая следующим условиям:

- (a) $\psi_2(x_1, x_2, x_3) = 0$ для любой точки $(x_1, x_2, x_3) \in (C \setminus \text{int } B_1);$
- (b) $\psi_2(x_1, x_2, x_3) < 0$ для любой точки $(x_1, x_2, x_3) \in \text{int } B_1$;
- (c) $\psi_2(x_1, x_2, x_3) = -1$ для любой точки $(x_1, x_2, x_3) \in B_3$.

Определим на C поток ϕ^t следующей системой дифференциальных уравнений:

$$\begin{cases} \dot{x}_1 = & \psi_1(x_1, x_2, x_3), \\ \dot{x}_2 = & x_2 \psi_2(x_1, x_2, x_3), \\ \dot{x}_3 = & x_3 \psi_3(x_1, x_2, x_3). \end{cases}$$

Поток ϕ^t имеет в точности две неподвижные точки: сток P(1/4,0,0) и седло Q(-1/4,0,0) (см. рис. 4). Обе точки являются гиперболическими. Неустойчивые сепаратрисы точки Q совпадают с интервалом $(-1/4,1/4)\times\{(0,0)\}$, принадлежащим бассейну стока P, и с полупрямой $(-\infty,-1/4)\times\{(0,0)\}$.

Пусть ϕ – сдвиг на единицу времени потока ϕ^t . По построению ϕ совпадает с диффеоморфизмом g вне B_1 . Определим диффеоморфизм $\overline{f}:\mathbb{R}^3\to\mathbb{R}^3$ так, что \overline{f} совпадает с A^{-1} вне Γ_i и для каждого $i=1,\ldots,4$ совпадает с $\zeta_i^{-1}\phi\zeta_i$ на Γ_i . Тогда диффеоморфизм \overline{f} имеет в Γ_i в точности две неподвижные точки: сток $w_i=\zeta_i^{-1}(P)$ и седло $s_i=\zeta_i^{-1}(Q)$. Обе точки являются гиперболическими и неустойчивые сепаратрисы точки s_i лежат на кривой γ_i . Таким образом, неблуждающее множество $\Omega_{\overline{f}}$ состоит в точности из девяти гиперболических неподвижных точек: стока w, находящегося в начале координат, четырех седловых точек s_1,\ldots,s_4 и четырех стоковых точек w_1,\ldots,w_4 .

Шаг 3. Построение диффеоморфизма $f \in G_4(M^3)$. Отождествим пространство \mathbb{R}^3 с гиперплоскостью $x_4=0$ в пространстве \mathbb{R}^4 . Напомним, что стереографическая проекция $\vartheta_+ \colon \mathbb{S}^3 \setminus (0,0,0,1) \to \mathbb{R}^3$ определяется формулой

$$\vartheta_+(x_1, x_2, x_3, x_4) = \left(\frac{x_1}{1 - x_4}, \frac{x_2}{1 - x_4}, \frac{x_3}{1 - x_4}\right).$$

Определим диффеоморфизм $f\colon \mathbb{S}^3 \to \mathbb{S}^3$ соотношениями

$$f(x) = \begin{cases} (0,0,0,1), & \text{если } x = (0,0,0,1), \\ \vartheta_+^{-1}(\overline{f}(\vartheta_+(x))), & \text{если } x \neq (0,0,0,1). \end{cases}$$

По построению ограничение диффеоморфизма f на множество $\mathbb{S}^3 \setminus (0,0,0,1)$ топологически сопряжено с диффеоморфизмом \overline{f} , а точка (0,0,0,1) является для диффеоморфизма f гиперболическии источником. Обозначим этот источник α и для $i=1,\ldots,4$ положим $\omega=\vartheta_+^{-1}(w),\ \omega_i=\vartheta_+^{-1}(w_i)$ и $\sigma_i=\vartheta_+^{-1}(s_i)$. Фазовый портрет диффеоморфизма f приведен на рис. 2, а).

Шаг 4. Покажем, что для построенного диффеоморфизма f пучки $F_{\omega_1},\ldots,F_{\omega_4}$ одномерных неустойчивых сепаратрис являются тривиальными, а пучок F_{ω} является ручным, но не является тривиальным.

Так как диффеоморфизм $f|_{\mathbb{S}^3\setminus\alpha}$ топологически сопряжен с диффеоморфизмом \overline{f} , то достаточно доказать аналогичное утверждение для пучков F_{w_1},\ldots,F_{w_4} и F_w .

Для $i=1,\ldots,4$ пучок F_{w_i} состоит из одномерной сепаратрисы l_i^+ седловой точки s_i . При этом диффеоморфизм \overline{f} в окрестности стока w_i гладко сопряжен с диффеоморфизмом ϕ посредством диффеоморфизма ζ_i , который переводит дугу l_i^+ в интервал на оси Ox_1 . Это означает, что сепаратриса l_i^+ является ручной, а следовательно, и тривиальной.

Для доказательства ручности пучка сепаратрис F_w заметим, что диффеоморфизмы \overline{f} и A^{-1} имеют общую фундаментальную область в бассейне точки w=O и совпадают на ней. Тогда из утверждения 2.1 следует существование гомеоморфизма $b\colon W^s_\omega\to\mathbb{R}^3$, сопрягающего диффеоморфизмы $\overline{f}|_{W^s_w}$ и A^{-1} и переводящего пучок F_w в пучок F_o . Поэтому достаточно доказать ручность и нетривиальность последнего. Для этого положим

$$\Lambda = \left\{ (\rho, \varphi, \theta) : \left| \theta - \frac{2\pi}{3} \right| < \frac{\pi}{6} \right\}.$$

Тогда $(\gamma_3^0 \cup \gamma_3) \subset \Lambda$ и $\gamma_i \cap \Lambda = \emptyset$ для всех i=1,2,4. Пусть $\tau \colon \mathbb{R} \to \mathbb{R}$ – гладкая функция такая, что $\tau(\theta) = 1$ при $|\theta - 2\pi/3| \leqslant \pi/12$, $\tau(\theta) = 0$ при $|\theta - 2\pi/3| \geqslant \pi/6$ и τ монотонно возрастает (убывает) при $-\pi/6 < \theta - 2\pi/3 < -\pi/12$ ($\pi/12 < \theta - 2\pi/3 < \pi/6$). Определим гомеоморфизм $\Psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ следующим образом:

$$\Psi(\rho,\varphi,\theta) = \begin{cases} (\rho,\varphi,\theta), & \text{если } (\rho,\varphi,\theta) \in (\mathbb{R}^3 \setminus \Lambda) \cup \{O\}, \\ (\rho,\varphi-2\pi\tau(\theta)(\log_2\rho \mod 1),\theta), & \text{если } (\rho,\varphi,\theta) \in \Lambda. \end{cases}$$

Непосредственно проверяется, что $\Psi(\gamma_i)=\gamma_i^0$ для каждого $i=1,\dots,4$. Поскольку пучок F_O^0 является стандартным, то F_O – ручной пучок.

Покажем, что пучок F_O не является тривиальным.

Предположим противное. Тогда существует гомеоморфизм $H: \mathbb{R}^3 \to \mathbb{R}^3$, коммутирующий с диффеоморфизмом A^{-1} и такой, что $H(F_O^0) = F_O$. Обозначим через $j_1, \ldots, j_4 \in \{1, \ldots, 4\}$ индексы такие, что $H(\gamma_{j_i}^0) = \gamma_i$. Не уменьшая общности, будем считать, что $H(\Gamma_{j_i}^0) = \Gamma_i$.

Положим $\widehat{W}=(\mathbb{R}^3\setminus O)/A$ и обозначим через $p_{\widehat{W}}\colon\mathbb{R}^3\setminus O\to \widehat{W}$ естественную проекцию. Положим $\widehat{\gamma}_i^0=p_{\widehat{W}}(\gamma_i^0),\ \widehat{\gamma}_i=p_{\widehat{W}}(\gamma_i),\ \widehat{\Gamma}_i^0=p_{\widehat{W}}(\Gamma_i^0),\ \widehat{\Gamma}_i=p_{\widehat{W}}(\Gamma_i).$ Тогда в силу результатов п. 2.1 пространство \widehat{W} является гладким 3-многообразием, проекция $p_{\widehat{W}}$ является накрытием и отображение $\widehat{H}=p_{\widehat{W}}Hp_{\widehat{W}}^{-1}\colon\widehat{W}\to\widehat{W}$ является гомеоморфизмом таким, что $\widehat{H}(\widehat{\Gamma}_{j_i}^0)=\widehat{\Gamma}_i,\ \widehat{H}(\widehat{\Gamma}_{j_i}^0)=\widehat{\Gamma}_i.$ Более того, \widehat{W} получается из трехмерного кольца на рис. 3 отождествлением граничных сфер в силу диффеоморфизма A^{-1} . Следовательно, \widehat{W} гомеоморфно $\mathbb{S}^2\times\mathbb{S}^1,\ \widehat{\gamma}_i^0$ ($\widehat{\gamma}_i$) гомеоморфно окружности и $\widehat{\Gamma}_i^0$ ($\widehat{\Gamma}_i$) является ее трубчатой окрестностью, гомеоморфной заполненному тору.

Положим

$$\widehat{Q} = \widehat{W} \setminus (\operatorname{int} \widehat{\Gamma}_1 \cup \operatorname{int} \widehat{\Gamma}_4), \qquad \widehat{Q}^0 = \widehat{W} \setminus (\operatorname{int} \widehat{\Gamma}_{i_1}^0 \cup \operatorname{int} \widehat{\Gamma}_{i_4}^0).$$

В силу выбора полноториев $\widehat{\Gamma}_1$, $\widehat{\Gamma}_4$ многообразие \widehat{Q} гомеоморфно прямому произведению $\mathbb{T}^2 \times [-1,1]$. Тогда и \widehat{Q}^0 гомеоморфно прямому произведению $\mathbb{T}^2 \times [-1,1]$, при этом $\widehat{H}(\widehat{Q}^0) = \widehat{Q}$. Так как все полнотории $\widehat{\Gamma}_1^0,\dots,\widehat{\Gamma}_4^0$ вложены в \widehat{W}_A стандартным образом, то существует заполненный тор $V \in \widehat{Q}^0$ такой, что $\widehat{\Gamma}_{j_2}^0 \cup \widehat{\Gamma}_{j_3}^0 \subset \operatorname{int} V$, причем $e_* \colon \pi_1(V) \to \pi_1(\widehat{W})$ – изоморфизм, где $e \colon V \to \widehat{W}$ – отображение включения. Отсюда следует, что петли $\widehat{\gamma}_{j_2}^0, \widehat{\gamma}_{j_3}^0$ гомологичны в \widehat{Q}^0 . Вычислим гомологические классы петель $\widehat{\gamma}_2, \widehat{\gamma}_3$. Для этого определим гомеоморфизм $\zeta \colon \mathbb{R}^2 \times [-1,1] \to p_{\widehat{W}}^{-1}(\widehat{Q})$ и накрытие $p \colon \mathbb{R}^2 \times [-1,1] \to \widehat{Q}$ формулами

$$\begin{split} \zeta(x_1,x_2,x_3) &= (\rho,\varphi,\theta),\\ \rho &= 2^{x_1}, \qquad \varphi = 2\pi (x_2 \mod 1), \qquad \theta = \frac{\pi}{2} \bigg(\frac{5x_3}{6} + 1\bigg), \qquad p = p_{\widehat{W}} \zeta. \end{split}$$

Петля $\widehat{\gamma}_2$ накрывается путем в $\mathbb{R}^2 \times [-1,1]$ с началом в точке (0,0,-2/5) и концом в точке (1,0,-2/5), поэтому $[\widehat{\gamma}_2] = \langle 1,0 \rangle$; петля $\widehat{\gamma}_3$ накрывается путем в $\mathbb{T}^2 \times [-1,1]$ с началом в точке (0,0,2/5) и концом в точке (1,1,2/5), поэтому $[\widehat{\gamma}_3] = \langle 1,1 \rangle$. В силу следствия 4.1 получаем противоречие.

4.3. Доказательство предложения **2.** Идея доказательства аналогична идее доказательства предложения 1, поэтому мы приводим только основные его штрихи, опуская детали.

Шаг 1. Построение диффеоморфизма $f\in G_5(M^3)$. Начнем с модельного пучка $\widetilde{F}_O=\gamma_1\cup\gamma_3\cup\gamma_4\cup O$. Затем заменим гомеоморфизм $A^{-1}|_{\Gamma_i},\ i=3,4,$ гомеоморфизмом $\zeta_i^{-1}\phi\zeta_i$, а гомеоморфизм $A^{-1}|_{\Gamma_1}$ гомеоморфизмом $\zeta_i^{-1}\widetilde{\phi}\zeta_i$, где $\widetilde{\phi}$ – сдвиг на единицу времени потока $\widetilde{\phi}^t$ на Γ , фазовый портрет которого изображен на рис. 5. После этого мы получим диффеоморфизм $\widetilde{f}\colon\mathbb{R}^3\to\mathbb{R}^3$. Далее, определим диффеоморфизм $f\colon S^3\to S^3$ соотношениями

$$f(x) = \begin{cases} (0,0,0,1), & \text{если } x = (0,0,0,1), \\ \vartheta_+^{-1}(\widetilde{f}(\vartheta_+(x))), & \text{если } x \neq (0,0,0,1). \end{cases}$$

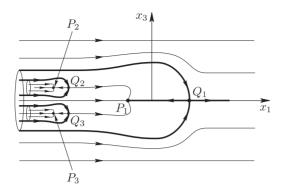


Рис. 5. Поток $\widetilde{\phi}^t$

Неблуждающее множество Ω_f состоит в точности из 12 гиперболических неподвижных точек: источника $\alpha = (0,0,0,1)$, пяти седловых точек $\sigma_1, \ldots, \sigma_5$ и шести стоковых точек $\omega_1, \ldots, \omega_5, \omega$, причем $\omega = (0,0,0,-1)$ (см. рис. 2, b)).

Шаг 2. Доказательство тривиальности одномерных пучков сепаратрис диффеоморфизма f. Для $i=1,\ldots,4$ пучок F_{ω_i} состоит из одной сепаратрисы седловой точки σ_i , пучок F_{ω_5} (F_{ω}) состоит из трех неустойчивых сепаратрис седловых точек $\sigma_1,\ \sigma_2,\ \sigma_5$ ($\sigma_3,\ \sigma_4,\ \sigma_5$). Для $i=1,\ldots,4$ тривиальность пучка F_{ω_i} доказывается так же, как и тривиальность одноименного пучка в шаге 4 доказательства предложения 1.

Пучок F_{ω_5} состоит из трех одномерных сепаратрис седловых точек $\sigma_1, \sigma_2, \sigma_5$. По определению диффеоморфизм $f|_{W^s_{\omega_5}}$ топологически сопряжен со сдвигом $\widetilde{\phi}^1$ на единицу времени вдоль траекторий потока $\widetilde{\phi}^t|_{W^s_{P_1}}$, следовательно, в силу леммы 1.1 является тривиальным.

Пучок F_{ω} состоит из трех одномерных сепаратрис седловых точек σ_3 , σ_4 , σ_5 . Как и в шаге 4 доказательства предложения 1 показывается, что тривиальность пучка F_{ω} равносильна тривиальности пучка \widetilde{F}_O . Докажем, что пучок \widetilde{F}_O тривиален, построив гомеоморфизм $\widehat{H}\colon \widehat{W} \to \widehat{W}$ такой, что $\widehat{H}(\widehat{\gamma}_i^0) = \widehat{\gamma}_i$ для i=1,2,4.

Положим

$$\widehat{Q} = \widehat{W} \setminus (\operatorname{int} \widehat{\Gamma}_1 \cup \operatorname{int} \widehat{\Gamma}_4).$$

Тогда \widehat{Q} гомеоморфно прямому произведению $\mathbb{T}^2 \times [-1,1]$. При этом $\widehat{\gamma}_3^0 \subset \widehat{Q}$, $\widehat{\gamma}_3 \subset \widehat{Q}$ и гомологические классы петель $\widehat{\gamma}_3^0$, $\widehat{\gamma}_3$ имеют вид $\langle 1,0 \rangle$, $\langle 1,1 \rangle$, соответственно. Пусть $\widehat{H} \colon \widehat{Q} \to \widehat{Q}$ гомеоморфизм такой, что $\widehat{H}(\widehat{\gamma}_3^0) = \widehat{\gamma}_3$. Тогда \widehat{H} переводит меридиан тора $\widehat{\Gamma}_i$, i=1,4, в меридиан того же тора и, следовательно, продолжается до искомого гомеоморфизма \widehat{H} .

Шаг 3. Доказательство нетривиальности схемы S_f . По построению схема построенного диффеоморфизма f получается из трехмерного кольца на рис. 6, b) отождествлением граничных сфер в силу диффеоморфизма A^{-1} , при этом она содержит пять торов $\widehat{L}_1,\ldots,\widehat{L}_5$. На рис. 6, a) изображена тривиальная схема с пятью торами $\widehat{L}_1^0,\ldots,\widehat{L}_5^0$. При этом $\widehat{L}_i^0=\widehat{L}_i=\partial\widehat{\Gamma}_i$ для $i=1,2,4,\ \widehat{L}_3^0=\partial\widehat{\Gamma}_3^0$ и $\widehat{L}_3=\partial\widehat{\Gamma}_3$.

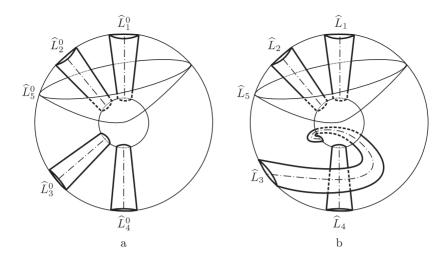


Рис. 6. Схема диффеоморфизма f и тривиальная схема

Предположив, что схема S_f является тривиальной, мы приходим к существованию гомеоморфизма $\widehat{H}: \widehat{W} \to \widehat{W}$ такого, что $\widehat{H}(\widehat{L}_1^0 \cup \dots \cup \widehat{L}_5^0) = \widehat{L}_1 \cup \dots \cup \widehat{L}_5$. Тор \widehat{L}_5^0 делит многообразие \widehat{W} на два полнотория, каждый из которых содержит пару непересекающихся полноториев из множества $\widehat{\Gamma}_1^0, \dots, \widehat{\Gamma}_4^0$ ($\widehat{\Gamma}_1, \dots, \widehat{\Gamma}_4$). Поэтому $\widehat{H}(\widehat{L}_5^0) = T_5$. Возможны два случая:

- 1) $\widehat{H}(\widehat{\Gamma}_1^0 \cup \widehat{\Gamma}_2^0) = \widehat{\Gamma}_1 \cup \widehat{\Gamma}_2;$
- 2) $\widehat{H}(\widehat{\Gamma}_1^0 \cup \widehat{\Gamma}_2^0) = \widehat{\Gamma}_3 \cup \widehat{\Gamma}_4$.

Рассмотрим случай 1) (в случае 2) рассуждения аналогичны). Обозначим через j_1,\dots,j_4 индексы такие, что $\widehat{H}(\widehat{\Gamma}^0_{i_i})=\widehat{\Gamma}_i,\,i=1,\dots,4$. Положим

$$\widehat{Q}_1^0 = \widehat{\Gamma}_5^0 \setminus \operatorname{int} \widehat{\Gamma}_1^0, \qquad \widehat{Q}_2^0 = \widehat{W} \setminus \operatorname{int}(\widehat{\Gamma}_5^0 \cup \widehat{\Gamma}_4^0), \qquad \widehat{Q}_1 = \widehat{H}(\widehat{Q}_1^0), \qquad \widehat{Q}_2 = \widehat{H}(\widehat{Q}_2^0).$$

Многообразия \widehat{Q}_m^0 , \widehat{Q}_m гомеоморфны многообразию $\mathbb{T}^2 \times [-1,1]$, m=1,2. Аналогично вычислениям гомологических классов дуг на шаге 4 доказательства предложения 1 можно показать, что $[\widehat{\gamma}_2^0] = [\widehat{\gamma}_2] = [\widehat{\gamma}_3^0] = \langle 1,0 \rangle$, $[\widehat{\gamma}_3] = \langle 1,1 \rangle$. Отсюда и из утверждения 4.1 следует, что ограничение гомеоморфизма \widehat{H} на \widehat{Q}_1^0 индуцирует гомоморфизм $h_*^1 \colon H_1(\widehat{Q}_1^0) \to H_1(\widehat{Q}_1)$, определяемый единичной матрицей. Так как T_5 — деформационный ретракт многообразий \widehat{Q}_1^0 и \widehat{Q}_2^0 , то гомоморфизм $h_*^2 \colon H_1(\widehat{Q}_2^0) \to H_1(\widehat{Q}_2)$, индуцированный ограничением гомеоморфизма \widehat{H} на множество \widehat{Q}_2^0 , также задается единичной матрицей. Применяя утверждение 4.1 к полноториям $\widehat{\Gamma}_{i_3}^0 \in \widehat{Q}_2^0$, $\widehat{\Gamma}_3 \in \widehat{Q}_2$, получаем противоречие.

Список литературы

- [1] W. R. Utz, "The embedding of homeomorphisms in continuous flows", *Topology Proc.*, **6**:1 (1982), 159–177.
- [2] J. Palis, "Vector fields generate few diffeomorphisms", Bull. Amer. Math. Soc., 80 (1977), 503-505.

- [3] J. Palis, "On Morse-Smale dynamical systems", Topology, 8:4 (1969), 385-404.
- [4] М. И. Брин, "О включении диффеоморфизма в поток", Изв. вузов. Матем., 1972, № 8, 19–25.
- [5] Дж. Палис, С. Смейл, "Теоремы структурной устойчивости", *Mamemamuka. C6. nep.*, **13**:2 (1969), 145–155; пер. с англ.: J. Palis, S. Smale, "Structural stability theorems", *Global analysis* (Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970, 223–231.
- [6] H. Debrunner, R. Fox, "A mildly wild imbedding of an n-frame", Duke Math. J., 27:3 (1960), 425–429.
- [7] D. Pixton, "Wild unstable manifolds", Topology, 16:2 (1977), 167–172.
- [8] C. Bonatti, V. Grines, "Knots as topological invariants for gradient-like diffeomorphisms of the sphere S^3 ", J. Dynam. Control Systems, **6**:4 (2000), 579–602.
- [9] O. Pochinka, "Diffeomorphisms with mildly wild frame of separatrices", Univ. Iagel. Acta Math., 2009, № 47, 149–154.
- [10] K. Kuperberg, "2-wild trajectories", Discrete Contin. Dyn. Syst., 2005, suppl. vol., 518–523.
- [11] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, "Topological classification of gradient-like diffeomorphisms on 3-manifolds", Topology, 43:2 (2004), 369–391.
- [12] Х. Бонатти, В.З. Гринес, О.В. Починка, "Классификация диффеоморфизмов Морса—Смейла с конечным множеством гетероклинических орбит на 3-много-образиях", Дифференциальные уравнения и динамические системы, Тр. МИАН, 250, Наука, М., 2005, 5–53; англ. пер.: С. Bonatti, V. Z. Grines, O. V. Pochinka, "Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds", Proc. Steklov Inst. Math., 250 (2005), 1–46.
- [13] О. Починка, "Классификация диффеоморфизмов Морса—Смейла на 3-многообразиях", Докл. PAH, 440:6 (2011), 747–750; англ. пер.: О. V. Pochinka, "Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds", Proc. Steklov Inst. Math., 84:2 (2011), 722–725.
- [14] M. M. Peixoto, "On the classification of flows on 2-manifolds", Dynamical systems (Salvador, Brasil, 1971), Academic Press, New York, 1973, 389–419.
- [15] А. А. Ошемков, В. В. Шарко, "О классификации потоков Морса-Смейла на двумерных многообразиях", *Mamem. cб.*, **189**:8 (1998), 93–140; англ. пер.: А. А. Oshemkov, V. V. Sharko, "Classification of Morse-Smale flows on two-dimensional manifolds", *Sb. Math.*, **189**:8 (1998), 1205–1250.
- [16] С.Ю. Пилюгин, "Фазовые диаграммы, определяющие системы Морса-Смейла без периодических траекторий на сферах", Дифференц. уравнения, 14:2 (1978), 245–254; англ. пер.: S. Ju. Piljugin, "Phase diagrams determining Morse-Smale systems without periodic trajectories on spheres", Differential Equations, 14:2 (1978), 170–177.
- [17] В.З. Гринес, Е.Я. Гуревич, В.С. Медведев, "Граф Пейкшото диффеоморфизмов Морса-Смейла на многообразиях размерности, большей трех", Дифференциальные уравнения и динамические системы, Тр. МИАН, 261, МАИК, М., 2008, 61–86; англ. пер.: V.Z. Grines, E. Ya. Gurevich, V.S. Medvedev, "Peixoto graph of Morse-Smale diffeomorphisms on manifolds of dimension greater than three", Proc. Steklov Inst. Math., 261 (2008), 59–83.
- [18] В.З. Гринес, Е.Я. Гуревич, В.С. Медведев, "О классификации диффеоморфизмов Морса-Смейла с одномерным множеством неустойчивых сепаратрис", Дифференциальные уравнения и динамические системы, Тр. МИАН, 270, МА-ИК, М., 2010, 62–85; англ. пер.: V.Z. Grines, E. Ya. Gurevich, V.S. Medvedev, "Classification of Morse-Smale diffeomorphisms with one-dimensional set of unstable separatrices", *Proc. Steklov Inst. Math.*, 270:1 (2010), 57–79.

- [19] У. Терстон, Трехмерная геометрия и топология, МЦНМО, М., 2001; пер. с англ.: W. P. Thurston, Three-dimensional geometry and topology, Princeton Math. Ser., 35, Princeton Univ. Press, Princeton, NJ, 1997.
- [20] Ч. Косневски, Начальный курс алгебраической топологии, Мир, М., 1983; пер. с англ.: С. Kosniowski, A first course in algebraic topology, Cambridge Univ. Press, Cambridge—New York, 1980.
- [21] J. Dugundji, H. A. Antosiewicz, "Parallelizable flows and Lyapunov's second method", Ann. of Math. (2), 73 (1961), 543–555.
- [22] В. Гуревич, Г. Волмэн, Теория размерности, ИЛ, М., 1948; пер. с англ.: W. Hurewicz, H. Wallman, Dimension theory, Princeton Math. Ser., 4, Princeton Univ. Press, Princeton, NJ, 1941.
- [23] G. S. Young, "On the factors and fiberings of manifolds", *Proc. Amer. Math. Soc.*, 1 (1950), 215–223.
- [24] С. Смейл, "Дифференцируемые динамические системы", УМН, **25**:1 (1970), 113–185; пер. с англ.: S. Smale, "Differentiable dynamical systems", Bull. Amer. Math. Soc., **73**:6 (1967), 747–817.
- [25] C. Bonatti, V. Grines, V. Medvedev, E. Pécou, "Three-manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves", Topology Appl., 117:3 (2002), 335–344.
- [26] D. Rolfsen, Knots and links, Amer. Math. Soc. Chelsea Publ., Providence, RI, 2003.

B. 3. Гринес (V. Z. Grines)

Нижегородский государственный университет им. Н. И. Лобачевского

E-mail: vgrines@yandex.ru

Е. Я. Гуревич (E. Ya. Gurevich)

Нижегородский государственный университет

им. Н.И. Лобачевского

E-mail: elena_gurevich@list.ru

B. C. Медведев (V. S. Medvedev)

Нижегородский научно-исследовательский институт прикладной математики и кибернетики

E-mail: medvedev@uic.nnov.ru

О. В. Починка (О. V. Pochinka)

Нижегородский государственный университет

им. Н. И. Лобачевского

E-mail: olga-pochinka@yandex.ru

Поступила в редакцию 15.12.2011 и 02.05.2012