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INTRODUCTION

Let f : Mn → Mn be a Morse–Smale diffeomorphism (the basic notions and facts of the theory of
dynamical systems can be found in [1]–[3]) of a closed n-manifold Mn (n ≥ 3), and let σ be a saddle
periodic point of the diffeomorphism f with k-dimensional (1 ≤ k ≤ n − 1) stable manifold W s(σ)
or unstable manifold W u(σ). The set Sepτ (σ) = W τ (σ) \ {σ} is called a separatrix (τ is either s
or u; for brevity, we use the notation τ = s and τ = u). If Sepτ (σ) does not intersect the separatrices
of other saddle periodic points, then Sepτ (σ) belongs to the unstable (if τ = s) or stable (if τ = u)
manifold of some nodal periodic point, say N . In this case, the topological closure of the separatrix
Sepτ (σ) coincides with W τ (σ) ∪ {N} and is a k-sphere topologically embedded in Mn, provided that
k = dimSepτ (σ) ≥ 2 [4]. The possibility of a wild embedding of such a k-sphere was first proved
in [5] when the manifold is a 3-sphere (M3 = S3) and k = 2 (similar examples were constructed
in [4], [6]–[10], where classification questions were also considered). More precisely, in [5], a gradient-
like diffeomorphism of the 3-sphere with one saddle and three nodes was constructed (we describe the
idea of the construction at the beginning of Sec. 2). If follows from results of [11] that there exist no
orientable closed 3-manifolds admitting a Morse–Smale diffeomorphism with three periodic points.
Since a Morse–Smale diffeomorphism of any closed manifold has at least one periodic source and one
periodic sink [3], it follows that, in the case n = 3, the least number of periodic points for which the
closure of a separatrix can be wildly embedded is four.

In [12], the existence of closed n-manifolds with n ≥ 4 admitting Morse functions with precisely three
critical points was proved, and such manifolds were studied. Thus, in the case n ≥ 4, there exist Morse–
Smale diffeomorphisms with precisely three periodic points. Any such diffeomorphism has precisely
one saddle (see Lemma 3). Therefore, it is natural to consider the question of whether the topological
closure of a separatrix of the (unique) saddle can be wildly embedded. The present paper is devoted to
this question. The main result is contained in the following theorem.

Theorem. Suppose that f : Mn → Mn is a Morse–Smale diffeomorphism of a closed manifold
of dimension n ≥ 4 and its nonwandering set consists of three fixed points, namely, a sink ω, a
source α, and a saddle s0. Then

• Mn is orientable;
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• the separatrices of the saddle s0 have the same dimension (and, therefore, the dimension n
of Mn is even);

• the closures of the unstable separatrix Sepu(s0) and the stable separatrix Seps(s0) are
topologically embedded (n/2)-spheres, i.e.,

W u(s0) ∪ {ω} = Sω, W s(s0) ∪ {α} = Sα,

respectively.

Moreover,

• if n ≥ 6, then the spheres Sω and Sα are locally flat;

• if n = 4, then there exists an f : M4 → M4 for which the spheres Sω and Sα are wildly
embedded.

The paper is organized as follows. All the assertions of the main theorem, except the last one,
are proved in Sec. 1. The last statement, which asserts the existence of an f : M4 → M4 with wildly
embedded closures of separatrices, is proved in Sec. 2.

1. CLOSURES OF SEPARATRICES FOR n ≥ 6

1.1. Basic Definitions

First, we recall some basic definitions. A diffeomorphism f of a smooth manifold M is called a
Morse–Smale diffeomorphism if its nonwandering set NW (f) consists of finitely many periodic points
(and, therefore, NW (f) = Per(f)), all periodic points are hyperbolic, and the invariant manifolds W s(x)
and W u(y) either are disjoint or intersect transversally for any points x, y ∈ NW (f).

The Kronecker–Poincaré index is the number Indp(f) = (−1)dim W u(p)Δ, where Δ is +1 or −1,
depending on whether or not f |W u(p) preserves orientation. By tr(f∗k) we denote the trace of the (linear)
map f∗k : Hk(M, R) induced by the diffeomorphism f on the k-dimensional homology group

Hk(M, R) = Hk(M), 0 ≤ k ≤ dimM.

If the fixed point set Fix(f) of a diffeomorphism f consists of hyperbolic points, then this diffeomorphism
satisfies the following relation, called the Lefschetz formula:

dimM∑

k=0

(−1)k tr(f∗k) =
∑

p∈Fix(f)

Indp(f).

A wild and a locally flat embedding of a submanifold in a manifold are defined as follows. For positive
integers 1 ≤ m ≤ n, consider Euclidean space R

m embedded in R
n so that the last n − m coordinates

of points from R
m are equal to 0. Let e : Mm → Nn be an embedding of a closed m-manifold Mm in the

interior of an n-manifold Nn. Then e(Mm) is said to be locally flat at a point e(x), x ∈ Mm, if there
exists a neighborhood U(e(x)) = U of e(x) and a homeomorphism h : U → R

n for which

h(U ∩ e(Mm)) = R
m ⊂ R

n.

Otherwise e(Mm) is said to be wildly embedded at e(x). In the case of a compact manifold Mm with
boundary, definitions are similar.
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1.2. Preliminary Results

In [4], the following assertion was proved; we state it below as a lemma for reference.

Lemma 1. Let f : Mn → Mn be a Morse–Smale diffeomorphism for which a separatrix Sepτ (σ) of
some saddle σ does not intersect the separatrices of other saddles and k = dim Sepτ (σ) ≥ 2. Then
Sepτ (σ) is contained in the unstable (if τ = s) or the stable (if τ = u) manifold of some periodic
sink, say N , the topological closure of Sepτ (σ) coincides with W τ (σ) ∪ {N}, and Sepτ (σ) itself is
a k-sphere topologically embedded in Mn.

The orientability of the manifold Mn is a consequence of the following lemma, which is of independent
interest.

Lemma 2. Let f : Mn → Mn be a Morse–Smale diffeomorphism for which there are no one-
dimensional separatrices and no separatrices with heteroclinic intersections. Then the mani-
fold Mn is orientable.

Proof. Suppose than Mn is nonorientable. Without loss of generality, we can assume that all periodic
points of the diffeomorphism f are fixed (otherwise we pass to some iteration of f ). As is well known,
there exists a double covering π̂ : M̂n → Mn, where M̂n is an orientable manifold. Let us show that
there exists a pullback f̂ of the diffeomorphism f by the covering π̂. We set f̂ = id at all points
π̂−1(Fix f). Take any point

x̂ ∈ M̂n, x̂ /∈ π̂−1(Fix f).

Its image π̂(x̂) belongs to either the stable manifold W s(ω) of some sink ω or the stable separatrix
Seps(σ) of some saddle σ. In the former case, since W s(ω) is simply connected and, therefore, the
preimage π̂−1(W s(ω)) consists of pairwise disjoint simply connected domains, it follows that there exists
a unique component Ŵ s of the preimage π̂−1(W s(ω)) containing x̂. Note that there also exists a unique
point ω̂ ∈ π̂−1(ω) belonging to the same component. We set

f̂(x̂) = ŷ ∈ π̂−1(f(π̂(x̂))) ∩ Ŵ s.

In the latter case, where π̂(x̂) ∈ Seps(σ), it follows by Lemma 1 that the closure of the separatrix Seps(σ)
is the k-sphere Sk

0 . By assumption, we have k ≥ 2. Therefore, Sk
0 is simply connected, and, therefore,

the preimage π̂−1(Sk
0 ) consists of pairwise disjoint k-spheres, one of which, say Ŝk

0 , contains x̂. We set

f̂(x̂) = ŷ ∈ π̂−1(f(π̂(x̂))) ∩ Ŝk
0 .

It can be verified directly that the map f̂ thus constructed is a Morse–Smale diffeomorphism satisfying
the relation π̂ ◦ f̂ = fπ̂.

Clearly, f̂ has no one-dimensional separatrices. It was shown in [13] that any Morse–Smale
diffeomorphism for which there are no one-dimensional separatrices has precisely one source and
precisely one sink. Since f has at least one source and at least one sink, it follows that f̂ must have
at least two sources and two sinks. This contradiction shows that the manifold Mn is orientable.

Following [14], we say that a saddle σ is of type (μ, ν) if μ = dim W u(σ) and ν = dimW s(σ). The
number μ (ν) is called the unstable (respectively, stable) Morse index.

Lemma 3. Let f : Mn → Mn be a Morse–Smale diffeomorphism whose nonwandering set NW (f)
consists of three fixed points. Then

• NW (f) consists of a sink, a source, and a saddle; moreover, the separatrices of the saddle
have the same dimension (and, therefore, the dimension n of the manifold Mn is even);

• Mn is orientable.
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Proof. First, we recall the Morse–Smale inequalities [15]. Let Mj denote the number of periodic
points p of f for which the stable manifold has dimension j = dimW s(p), and let βi(Mn) = βi be the
ith Betti number of the manifold Mn, i.e., βi(Mn) = rankHi(Mn, Z). Then the following relations
hold [15]:

M0 ≥ β0, M1 − M0 ≥ β1 − β0, . . . , Mn−1 − Mn−1 + · · · ≥ βn−1 − βn−1 + · · · , (1)
n∑

i=0

(−1)iMi =
n∑

i=0

(−1)iβi. (2)

For a connected manifold, we have β0 = 1; therefore, it follows from (1) that f has at least one sink and
at least one source. If f has two sinks ω1 and ω2 and one source α, then the connected set Mn \ {α}
is the union of the two disjoint open sets W s(ω1) and W s(ω2). Similarly, f cannot have two sources
and one sink. Thus, NW (f) consists of a sink ω, a source α, and a saddle σ. Suppose that σ is of type
(n − k, k). Then M0 = Mn = Mk = 1. For the diffeomorphism f−1, we have M0 = Mn = Mn−k = 1
and

Mj = 0, j 
= 0, n, k, n − k.

Equating the left-hand sides of (2) for f and f−1, we obtain (−1)k = (−1)n−k; therefore, the number
n = 2m is even. Moreover, n ≥ 4.

Let us show that k 
= 1. Assume the contrary. Since the manifolds W s(σ) and W u(σ) have no
heteroclinic intersections, it follows that their topological closures are

W s(σ) ∪ {α} def= S1
α, W u(σ) ∪ {ω} def= Sn−1

ω ;

these are a topologically embedded circle and a topologically embedded (n − 1)-sphere, respectively [4].
Since n ≥ 4 and Sn−1

ω is smoothly embedded, except possibly at one point, it follows that Sn−1
ω has a

neighborhood Uω homeomorphic to Sn−1
ω × (−1;+1) [16], [17]. Moreover, Uω can be constructed so that

f(Uω) ⊂ Uω. The only intersection point of Sn−1
ω and S1

α is σ; therefore, Sn−1
ω does not separate Mn.

Hence Mn
1 = Mn \Uω is a connected manifold with two boundary components homeomorphic to Sn−1

ω .
Attaching disjoint n-balls to these components, we obtain a closed manifold Mn

2 . It follows from
f(Uω) ⊂ Uω that f can be extended over Mn

2 to a diffeomorphism with one source and two sinks. It
was shown above that such a diffeomorphism does not exist. This contradiction proves the inequality
k 
= 1. Applying this result to f−1, we obtain k 
= n − 1. Thus,

M1 = Mn−1 = 0.

For a Morse–Smale diffeomorphism, the separatrices of the same saddle do not intersect; therefore,
both separatrices of the (unique) saddle of the diffeomorphism f have no heteroclinic intersections. This
observation and Lemma 2 imply the orientability of the manifold Mn.

Let us show that k = m. Suppose that, on the contrary, k 
= m. We can assume that k > m
(otherwise consider the diffeomorphism f−1). According to (1), we have β1 = · · · = βn−k−1 = 0,
because M1 = · · · = Mn−k−1 = 0. Poincaré duality for orientable manifolds (see e.g., [18, p. 145])
implies β1 = · · · = βk−1 = 0. Thus, βi = 0 for all i = 1, . . . , n − 1, and relation (2) takes the form
1 + (−1)k + (−1)n = 1 + (−1)n, which is impossible.

The equality k = m can be proved by a different method, which does not use the orientability of Mn.
Again, suppose that k 
= m; to be definite, assume that k < m. In this case, the codimension of the
manifold W s(σ) is at least 2. Hence there is a diffeomorphism κ : Mn → Mn close enough to the identity
which maps the union W s(σ) ∪ α to κ(W s(σ) ∪ α) so that

(κ(W s(σ) ∪ α)) ∩ (W s(σ) ∪ α) = ∅.

Moreover, we can assume that κ is equal to the identity diffeomorphism in some neighborhood of the
sink ω. The diffeomorphism κ−1 ◦ f ◦ κ = κ′ is a Morse–Smale diffeomorphism for which ω is a sink
and the closure of the saddle separatrix does not intersect W s(σ) ∪ α. Hence the stable manifolds of
the sink ω of the diffeomorphisms f and κ′ cover the entire manifold Mn. Since the stable manifold of
the sink is homeomorphic to the open n-ball, it follows that Mn is the n-sphere Sn [19]. Passing, if
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necessary, to some iteration, we can assume that f and the restriction f |W u(σ) preserve orientation. For
the n-sphere Sn, we have

H0(Sn) = Hn(Sn) = 1, Hk(Sn) = 0, 1 ≤ k ≤ n − 1;

therefore, the Lefschetz formula for a Morse–Smale diffeomorphism of the sphere Sn has the form

1 + (−1)n =
∑

p∈Fix(f)

Indp(f). (3)

Clearly, Indα(f) = (−1)n and Indω(f) = 1. Applying (3), we obtain Indσ(f) = 0 = (−1)dim W u(σ),
which is impossible. This contradiction proves the equality k = m.

1.3. Proof of Local Flatness for n ≥ 6

We have proved that if f is a diffeomorphism satisfying the assumptions of the main theorem, then
n = 2k, where k ≥ 2, and the nonwandering set NW (f) consists of a sink ω, a source α and a saddle s0

of type (k, k). Lemma 1 implies the following assertion.

Lemma 4. Let f : M2k → M2k be a Morse–Smale diffeomorphism whose nonwandering set
NW (f) consists of a sink ω, a source α, and a saddle s0 of type (k, k). Then the closure of
the unstable manifold W u(s0) and the stable manifold W s(s0) are the topologically embedded
k-spheres W u(s0) ∪ {ω} and W s(s0) ∪ {α}, respectively.

Set

Sk
ω = W u(s0) ∪ {ω}, Sk

α = W s(s0) ∪ {α}.

Lemma 5. Let f : M2k → M2k be a Morse–Smale diffeomorphism whose nonwandering set
NW (f) consists of a sink ω, a source α, and a saddle s0, and let k ≥ 3. Then Sk

ω and Sk
α are

flat k-spheres.

Proof. Let e : Mk → R
n be an embedding of a k-manifold (possibly with boundary) into R

n. It
was proved in [20] (see also [21], [22]) that, if n ≥ 5 and k 
= n − 2, then the embedding e has no
isolated points of wild embedding. Since the unstable and stable manifolds are smoothly embedded
submanifolds, it follows that the k-spheres Sk

ω and Sk
α can have points of wild embedding only at nodes.

Applying results of [20] to a neighborhood of a node homeomorphic to R
n, we see that Sk

ω and Sk
α are

locally flat topologically embedded k-spheres.

2. EXAMPLE OF A WILD EMBEDDING OF THE CLOSURE OF A SEPARATRIX

2.1. Idea of the Construction

We borrow the idea of the construction of similar examples from [9], [5]. For this reason, it makes
sense to recall the key points of these constructions. Consider a north-south flow f t

NS on the 3-sphere S3

which has one sink ω and one source α (see Fig. 1 (a)). All other orbits are wandering.
Let fNS = f1

NS denote the shift along the orbits of the flow f t
NS in the time t = 1. Consider the

Artin–Fox configuration consisting of the three arcs shown in Fig. 1 (b). As is well known, the Artin–
Fox curve lAF is obtained by shifts of this configuration. Therefore, we can embed the Artin–Fox curve
in S3 so that lAF is invariant with respect to fNS and joins the points ω and α, which are points of
wild embedding (in Fig. 3 (b), a tubular neighborhood of the curve lAF is shown). Let us represent a
tubular neighborhood T of the curve lAF (to be more precise, of the open arc lAF \ {ω,α}) as an infinite
cylindrical solid figure, on which we define a flow with one saddle and one node. This flow can be obtained
by rotating a Cherry cell in a strip around the central line (see Fig. 1 (c)). It is easy to define a flow gt

T

on T so that the shift g1
T = g along the orbits in the time t = 1 on the boundary of T coincides with the

shift fNS . Now, we can define a diffeomorphism f : S3 → S3 by setting f equal to fNS outside T and to g
inside T . As a result, we obtain a gradient-like Morse–Smale diffeomorphism with one saddle and three

MATHEMATICAL NOTES Vol. 92 No. 4 2012



502 ZHUZHOMA, MEDVEDEV

(a) (b) (c)

Fig. 1.

nodes for which the closure of the two-dimensional separatrix of the saddle is a wildly embedded (at one
point) 2-sphere. Note that the closure of one of the one-dimensional separatrices is wildly embedded as
well (at an endpoint).

To extend this construction, we represent the 4-sphere S4 as the result of the application to the
3-sphere S3 of a rotation R with precisely two fixed points, ω = S and α = N . Then the rotation of the
Artin–Fox curve yields the 2-sphere R(lAF) wildly embedded at the two points S and N . A tubular
neighborhood TR of this 2-sphere (to be more precise, of the open cylinder R(lAF) \ {N,S}) is replaced
by a special neighborhood U0 of a saddle of type (2, 2). By analogy with the three-dimensional case, a
diffeomorphism of the resulting 4-manifold is defined so that it has one sink, one source, and one saddle,
and the two-dimensional separatrices of the saddle, together with the nodes, form two wildly embedded
2-spheres.

2.2. The Special Neighborhood of a Saddle of Type (2, 2)

In Euclidean space R
4 with canonical coordinates (x1, x2, x3, x4), consider the flow f t

s determined by
the system of differential equations

ẋ1 = −x1, ẋ2 = −x2, ẋ3 = x3, ẋ4 = x4. (4)

The origin O = (0, 0, 0, 0) is a saddle for the flow f t
s; it has the stable 2-manifold

W s(O) = {(x1, x2, x3, x4) | x3 = 0 = x4}
and the unstable 2-manifold

W u(O) = {(x1, x2, x3, x4) | x1 = 0 = x2}.

It can be verified directly that the function

F (x1, x2, x3, x4) = (x2
1 + x2

2)(x
2
3 + x2

4)

is an integral of system (4). The equality F = 1 determines a 3-manifold, which we denote by H3 (see
Fig. 2 (a)).

This manifold separates R
4 into two open invariant sets, one of which is a neighborhood of the

saddle O. We denote this neighborhood by U0 and call it the special neighborhood. Clearly, ∂U0 = H3.
The set of points whose coordinates satisfy the relations

x2
1 + x2

2 = r2 and x2
3 + x2

4 =
1
r2

with fixed r > 0 is homeomorphic to the standard 2-torus T
2, because it can be naturally represented as

the direct product of the two circles

S1
1,2(r) = {(x1, x2, 0, 0) | x2

1 + x2
2 = r2}, S1

3,4

(
1
r

)
=

{
(0, 0, x3, x4)

∣∣∣ x2
3 + x2

4 =
1
r2

}
.
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(a) (b)

Fig. 2.

We denote this 2-torus by T 2
r . The one-parameter family {T 2

r }r>0 forms a foliation of codimension one
on H3. Note that T 2

r is the common boundary of the two solid tori

P 3
1,2,r =

{
(x1, x2, x3, x4)

∣∣∣ x2
1 + x2

2 = r2, x2
3 + x2

4 ≤ 1
r2

}
,

P 3
3,4,r =

{
(x1, x2, x3, x4)

∣∣∣ x2
1 + x2

2 = r2, x2
3 + x2

4 ≤ 1
r2

}
,

whose interiors are contained in the neighborhood U0 (see Fig. 2 (b)).

Suppose that the torus T 2 is the boundary of a solid torus P 3 = S1 × D2, that is, T 2 = ∂P 3 =
S1 × ∂D2. On T 2, there is a unique (up to isotopy) simple closed curve { · } × ∂D2 homotopic to zero
in P 3 (because it bounds a disk { · } × D2) and not homotopic to zero in T 2. Any such curve is called
a meridian. It is natural to refer to a simple closed curve S1 × { · } on T 2 which intersects the zero
meridian at precisely one point as a parallel. As is well known, the identification of the boundaries of
two copies of P 3 by means of a diffeomorphism T 2 → T 2 taking meridians to parallels and vice versa
yields a 3-sphere S3. Such a representation of S3 is called a standard Heegaard diagram of genus 1.

Lemma 6. The union P 3
1,2,r ∪ P 3

3,4,r is a representation of the 3-sphere in the form of a standard
Heegaard diagram of genus 1 (the boundaries of the solid tori P 3

1,2,r and P 3
3,4,r are identified by

means of the identity map). Moreover, in R
4, the 3-sphere

S3(r) = P 3
1,2,r ∪ P 3

3,4,r

bounds an open 4-ball B4
0 ⊂ U0 containing the saddle (0, 0, 0, 0) and separates the special

neighborhood U0 into three domains, U0, U4
1,2(r), and U4

3,4(r), where

U4
1,2(r) =

{
(x1, x2, x3, x4)

∣∣∣ x2
1 + x2

2 > r2, x2
3 + x2

4 <
1
r2

, (x2
1 + x2

2)(x
2
3 + x2

4) < 1
}

,

U4
3,4(r) = {(x1, x2, x3, x4)

∣∣∣ x2
1 + x2

2 < r2, x2
3 + x2

4 >
1
r2

, (x2
1 + x2

2)(x
2
3 + x2

4) < 1
}

.

Proof. Take any point

(a1, a2, a3, a4) ∈ T 2
r , a2

1 + a2
2 = r2, a2

3 + a2
4 =

1
r2

.

It is easy to show that the curve

{(x1, x2, a3, a4) | x2
1 + x2

2 = r2}
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is a meridian of T 2
r treated as the boundary of the solid torus P 3

3,4,r and a parallel of T 2
r treated as the

boundary of P 3
1,2,r. Similarly, the curve

{(a1, a2, x3, x4) | x2
3 + x2

4 = 1/r2}

is a parallel of T 2
r treated as the boundary of the solid torus P 3

3,4,r and a meridian of T 2
r treated as the

boundary of P 3
1,2,r. It follows that the union S3(r) = P 3

1,2,r ∪ P 3
3,4,r is a representation of the 3-sphere

in the form of a standard Heegaard diagram of genus 1. Clearly, in R
4, S3(r) bounds a 4-ball B4

0 ⊂ U0

containing the saddle (0, 0, 0, 0). The remaining assertions are verified directly as well.

Lemma 7. Each orbit of the flow f t
s contained in H3 intersects each 2-torus T 2

r precisely once, and
the intersection is quasi-transversal (this means that the tangent space to T 2

r and the orbits of
the flow intersect only in zero).

Proof. It follows from the form of (4) that the projection of any trajectory l ⊂ H3 on the plane
(x1, x2, 0, 0) is the orbit of an attracting node. Therefore, the projection of l intersects S1

1,2(r) precisely
once, and the intersection is transversal. Similarly, the projection of l on the plane (0, 0, x3, x4) intersects
S1

3,4(1/r) precisely once, and the intersection is transversal. The required assertion follows.

Lemma 7 makes it possible to parameterize the family {T 2
r }+∞

r=0 by the moment of time t at which
the 2-tori T 2

r intersect a given orbit; this parameterization is more convenient for our purposes. Let lt

be the trajectory passing through the point (1, 0, 1, 0) at t = 0. It can be verified directly that (1, 0, 1, 0)
belongs to the torus T 2

1 , and lt passes through the points (e−t, 0, et, 0) of the tori T 2
exp(−t) with t ∈ R. As

a consequence, H3 is diffeomorphic to R × T
2 under the map

{t} × T
2 → {t} × T 2

exp(−t).

For simplicity, we denote the torus T 2
exp(−t) by T

2
t (we can assume that we have made the change t =

− ln r) and the corresponding solid tori P 3
1,2,r and P 3

3,4,r by P 3
1,2,t and P 3

3,4,t, respectively. We denote the
sets into which the solid tori P 3

1,2,t0 and P 3
3,4,t0 separate U0 at fixed t = t0 according to Lemma 6 by U12

(if t ≤ t0) or U34 (if t ≥ t0). The torus T
2
t0 separates H3 into the sets

T
2
t≤t0 =

⋃

t≤t0

T
2
t , T

2
t≥t0 =

⋃

t≥t0

T
2
t ,

for which

∂U12(t ≤ t0) = T
2
t≤t0 , ∂U34(t ≥ t0) = T

2
t≥t0 .

On each T
2
t , we introduce coordinates (u, v), u, v ∈ [0; 1), by setting

x1 = e−t cos 2πu, x2 = e−t sin 2πu, x3 = et cos 2πv, x4 = et sin 2πv. (5)

On H3 = ∂U0, we obtain the coordinate system (t, u, v), which we denote by (t2, u2, v2).

For any fixed t, the curve u = 0 is the zero meridian of T
2
t treated as the boundary of P 3

1,2,t. Similarly,
the curve v = 0 is the zero meridian of T

2
t treated as the boundary of P 3

3,4,t. We refer to the curve u = 0
as the zero parallel of T

2
t treated as the boundary of P 3

1,2,t and to the curve v = 0 as the zero parallel
of T

2
t treated as the boundary of P 3

3,4,t. The intersection point of the zero meridian with the zero parallel
is said to be marked. On T

2
t , the marked point has coordinates (e−t, 0, et, 0).
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2.3. The Special Neighborhood of an Artin–Fox Cylinder

Consider the copy of the space R
4 with canonical coordinates (x1, x2, x3, x4). Suppose that the

flow f t
NS is determined by the system of differential equations

ẋ1 = x1, ẋ2 = x2, ẋ3 = x3, ẋ4 = x4. (6)

The origin (0, 0, 0, 0) is a repelling node, which we denote by N . It is convenient to consider this copy
of R

4 as the 4-sphere S4 minus the point S: R
4 = S4 \ {S}. The point S is identified in an obvious sense

with the ideal 3-sphere at infinity in R
4 so that any ray starting at the origin is an arc joining the points N

and S. Clearly, f t
NS can be extended to the entire 4-sphere S4 so that the point S becomes an attracting

node. The flow f t
NS is of type north-south, and any ray going from the origin is an orbit of f t

NS . The
diffeomorphism

fNS = f1
NS : (x1, x2, x3, x4) → (ex1, ex2, ex3, ex4)

is the shift by time t = 1 along the orbits of the linear flow f t
NS . Clearly, the spheres

S3
m = {(x1, . . . , x4) : x2

2 + x2
2 + x2

3 + x2
4 = e2m}, S2

m = S3
m ∩ {x4 = 0}

are invariant with respect to fNS .
In

R
3
+ = {(x1, x2, x3, x4) ∈ R

4 : x3 ≥ 0, x4 = 0},

we construct an Artin–Fox curve lAF = l as follows. On S2
0 , we take the three point

Y 0
0

(
1
2

; 0;
√

3
2

; 0
)

, Y 0
1 (0; 0; 1; 0), Y 0

2

(√
3

2
; 0;

1
2

; 0
)

.

In the annulus K3
01 bounded by the spheres S3

0 and fNS(S3
0) = S3

1 , we join the points Y 0
0 and Y 0

1 by an
arc d1 and the points fNS(Y 0

0 ) = Y 0
3 and Y 0

2 by an arc d3 (we specify the arrangement of the arcs later
on; see Fig. 3 (a)). We also join the points fNS(Y 0

1 ) and fNS(Y 0
2 ) by an arc d2 so that the arcs d1, d2,

and d3 form an Artin–Fox configuration in the annulus K3
01.

(a) (b)

Fig. 3.

We require that the arcs d1, d2, and d3 lie on rays issuing from the origin in neighborhoods of their
endpoints. We can assume that A = d1 ∪ f−1

NS(d2)∪ d3 is a simple arc whose endpoints Y 0
0 and fNS(Y 0

0 )
are identified by fNS . Then the union

l◦
def=

⋃

k∈Z

fk
NS(A)

is a simple curve joining the points S and N in S4. The arc

l = {S,N}
⋃

k∈Z

fk
NS(A) = {S,N} ∪ l◦
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is an Artin–Fox curve [23].
As is well known (see, e.g., [19, p. 118 of the Russian original]), at each of the points N and S, the

complement S3 \ l does not have the homotopy type of the circle (this means that, for any sufficiently
small neighborhood U of, say, the point N , there exists a smaller neighborhood U ′ such that the image
π1(U ′ \ l) in π1(U \ l) under the embedding homomorphism is not an infinite cyclic group). Note that
we regard the 3-sphere S3 both as the space R

3 extended by adding the point S and as a part of the
4-sphere S4.

The rotation R of the half-space R
3
+ about the 2-plane x4 = 0 = x3 is determined by

x1 = x1, x2 = x2, x3 = x3 cos 2πv − x4 sin 2πv, x4 = x3 sin 2πv + x4 cos 2πv, (7)

where v ∈ [0, 1]. Thus, R(l) is a 2-sphere topologically embedded in S4, because the points S and N
are fixed with respect to the rotation R, and the remaining part l◦ = l \ ({S,N}) of the Artin–Fox curve
is contained in the interior of the half-space R

3
+. We sometimes endow objects obtained by applying the

rotation R with the subscript R; for example, R(l) = lR.

Lemma 8. The 2-sphere R(l) is wildly embedded in S4 at the points S and N .

Proof. According to [24, Theorem 3], the groups π1(S4 \ lR) and π1(S3 \ l) are isomorphic (to be more
precise, any closed path in S4 \ lR is homotopic to a path in S3 \ l, and vice versa). Since the complement
S3 \ l does not have the homotopy type of the circle at each of the points N and S, it follows that S4 \ lR
does not have the homotopy type of the circle either at each of the points N and S. By virtue of [20,
Theorem 1 (c)], none of the points N and S is locally flat.

Let us parameterize the arc A by means of any diffeomorphism θ0 : [0; 1] → A for which

θ(0) = Y 0
0 , θ

(
1
3

)
= Y 0

1 , θ

(
2
3

)
= Y 0

2 , θ(1) = fNS(Y 0
0 ).

Clearly, we can extend θ0 to a smooth parameterization θ : R → l◦ by setting

θ(t) = f
[t]
NS ◦ θ0(t mod1),

where [t] denotes the integer part of the number t ∈ R. It follows by construction that the Artin–Fox
curve l is invariant with respect to fNS and perpendicularly intersects each 3-sphere S3

m, m ∈ Z, at
the points

l◦(m), l◦
(

m +
1
3

)
, l◦

(
m +

2
3

)

corresponding to the parameters t = m, m + 1/3, and m + 2/3; moreover, the open arc l◦ is contained in
the interior of the half-space R

3
+. This implies the existence of a tubular neighborhood T (A) of the arc A

such that T (A) is diffeomorphic to the direct product A × D2 and intersects S3
0 in the three 2-disks

D0,0 = {0} × D2, D1/3,1 =
{

1
3

}
× D2, D2/3,2 =

{
2
3

}
× D2,

where Y 0
i ∈ Di/3,i, i = 1, 2, 3, and the 3-sphere S3

1 in the 2-disk

fNS(D00) = {1} × D2.

Without loss of generality, we can assume that T (A) does not intersect the plane x3 = 0 = x4 (and,
therefore, is contained in the interior of the half-space R

3
+). Then the set

T (l◦) =
⋃

k∈Z

fk
NS(T (A))

is a tubular neighborhood of l◦ invariant with respect to fNS . The product structure on T (A) is carried
over to T (l◦) by means of iterations of fNS, so that T (l◦) is diffeomorphic under the identification iAF
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to the product R × D2. To emphasize that the product R × D2 is related to T (l◦), we denote it by
(R × D2)AF. The product structure makes it possible to naturally carry over the parameterization θ to
any curve

R × {z})AF ⊂ (R × D2)AF

with any z ∈ D2; moreover, any curve of this form is invariant with respect to fNS . This and Lemma 8
imply the following assertion.

Corollary. The complement S4 \ (T (l◦)R ∪ {N,S}) does not have the homotopy type of the circle
at each of the points N and S.

Proof. The curve (R × {z})AF ∪ {N,S} is an Artin–Fox curve isotopic to l in T (l◦) ∪ {N,S}, and the
isotopy is fixed at the points N and S. Therefore, l is a retract of the set T (l◦) ∪ {N,S}, and hence lR is
a retract of the set T (l◦)R ∪ {N,S}.

2.4. Main Construction

Clearly, under the rotation R defined by (7), the tubular neighborhood (R × D2)AF forms a neigh-
borhood R(R × D2)AF of the infinite 2-cylinder R(l◦) = l◦R. It follows from the presence of a product
structure that the neighborhood R(R × D2)AF is diffeomorphic to R × D2 × S1, and its boundary is
homeomorphic to R × S1 × S1. Therefore, on the boundary of the neighborhood R(R × D2)AF, there
are coordinates (t, u, v), where v is defined according to (7). We denote these coordinates by (t1, u1, v1).

Let I be the union of the points N and S with the interior of (R × D2)AF:

I = int(R × D2)AF ∪ {N,S}.

We set M1 = S4 \ I . Note that, removing the interior of the set (R × D2)AF from S4, we obtain
a compact set with boundary homeomorphic to S2 × S1. Removing also the points N and S, we
obtain a noncompact smooth 4-manifold, and its noncompactness is caused by the removal of two
boundary points. Thus, the boundary ∂M1 of the set M1 is homeomorphic to R × S1 × S1, that is,
∂M1 � R × S1 × S1.

Take M2 = cl U0. Since U0 is the domain in R
4 bounded by the submanifold H3 of codimension one,

it follows that M2 is a noncompact smooth 4-manifold. Recall that, on the boundary

∂M2 = H3 � R × S1 × S1

of the manifold M2, there are coordinates (t2, u2, v2). Consider the map Ξ: ∂M2 → ∂M1 defined by

t1 = t2, u1 = u2 − v2, v1 = v2. (8)

According to [25] (see also [26]), the set

M4
∗ = M1

⋃

Ξ

M2,

that is, the sets M1 and M2 attached to each other along boundaries by the diffeomorphism Ξ, is a
smooth noncompact 4-manifold. As mentioned above,

M ′
1 = S4 \ int(R × D2)AF

is a compact set, and M1 = M ′
1 \ {N,S}. Since the image Ξ(∂M2) of the attaching diffeomorphism Ξ

does not contain the points N and S, it follows that M4
∗ = M1 ∪Ξ M2 can be represented as the result of

attaching M ′
1 to M2 and removing the two points N and S, i.e., as

M4
∗ = (M ′

1 ∪Ξ M2) \ {N,S}.

In what follows, we shall prove that the set M ′
1 ∪Ξ M2 admits the structure of a smooth (closed) 4-

manifold. To this end, for each of the points N and S, we shall construct a sequence of four-dimensional
annuli Ki � S3 × [0; 1] converging to N and S and surrounding these points in an obvious sense.
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First, we prove a lemma in which the case where the Heegaard diagram of genus 1 is the 3-
sphere is considered. In this lemma, the boundary of the solid torus P 3 is denoted by T 2, and on T 2,
meridians and parallels are naturally defined. By μ and λ we denote the generators of the homology
group H1(T 2, Z) corresponding, respectively, to a meridian and a parallel of the torus T 2. As is well
known, a diffeomorphism of the torus T 2 induces an automorphism of the group H1(T 2, Z), which can
be represented as

μ 
→ rμ + pλ, λ 
→ sμ + qλ, qr − ps = ±1, where r, s, p, q ∈ Z.

Lemma 9. Suppose that the 3-sphere S3 is represented as the standard Heegaard splitting
S3 = P 3 ∪ P∗ of genus 1 of two solid tori P 3 and P∗. Consider the manifold obtained by removing
the solid torus P 3 from S3 and again attaching P 3 to P∗ by a diffeomorphism ψ : T 2 → T 2 (the
boundaries of P 3 to P∗ are naturally identified with T 2), which induces either the automorphism
μ 
→ −μ + λ, λ 
→ −λ or the automorphism μ 
→ λ, λ 
→ −μ − λ. Then the 3-manifold P 3 ∪ψ P∗
thus obtained is a 3-sphere.

Proof. As is well known, if P 3 and P∗ are attached to each other by a diffeomorphism ψ : T 2 → T 2

inducing an automorphism of the form

μ 
→ rμ + pλ, λ 
→ sμ + qλ, qr − ps = ±1,

then P 3
⋃

ψ P∗ is the lens space L(p, q). In the case of the automorphisms specified in the statement of
the lemma, we obtain the lens space L(1,−1). Since L(p, q) = L(p, q mod p), it follows that

L(1,−1) = L(1,−1mod 1) = L(1, 0) = S3.

Clearly, we have

R(S2
m) = S3

m ⊂ R
4 \ {N,S}.

Let us denote the exterior of the sphere S3
m together with S3

m by

K(≥ m) = {(x1, x2, x3, x4) : x2
1 + x2

2 + x2
3 + x2

4 ≥ e2m}.
By K(m1,m2) we denote the closed annulus bounded by the spheres S3

m1
and S3

m2
. Finally, we denote

the interior of the sphere S3
m together with S3

m punctured at N by K(≤ m).
According to Lemma 7, the tori T2

0 and T
2
1 separate H3 into the three sets T

2
t≥1, T

2
0≤t≤1, and T

2
t≤0, one

of which (T2
0≤t≤1) is compact and homeomorphic to the direct product of the 2-torus T 2 and [0; 1]. The

other two sets are homeomorphic to the direct product of T 2 and [0;∞). Let us denote the restrictions
of the diffeomorphism Ξ to the sets T

2
t≥1, T

2
0≤t≤1, and T

2
t≤0 by Ξt≥1, Ξ0≤t≤1, and Ξt≤0, respectively.

The boundary of the tubular neighborhood (R × D2)AF is a 2-cylinder; the circles ({0} × ∂D2)AF

and ({1} × ∂D2)AF separate this cylinder into the compact cylinder

C0≤t≤1 = ([0; 1] × S1)AF

and the two noncompact cylinders

Ct≥1 = ([1;+∞) × S1)AF, Ct≤0 = ((−∞; 0] × S1)AF.

Under the action of the rotation R, these cylinders C0≤t≤1, Ct≥1, and Ct≤0 form the sets

C0≤t≤1,R � [0; 1] × S1 × S1, Ct≥1,R � [1;+∞) × S1 × S1, Ct≤0,R � (−∞; 0] × S1 × S1,

respectively. By virtue of (8), Ξt≥1 maps T
2
t≥1 to Ct≥1,R, Ξ0≤t≤1 maps C0≤t≤1,R to T

2
0≤t≤1, and Ξt≤0

maps Ct≤0,R to T
2
t≤0.

Since

∂U12(t ≤ 0) = T
2
t≤0 and ∂U34(t ≥ 1) = T

2
t≥1,

it follows that M4
∗ = M1 ∪Ξ M2 can be represented as the union of the following three (intersecting)

sets:
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1) U12(t ≤ 0) ∪Ξt≤0
[K(≤ 0) \ I] def= BN ;

2) U34(t ≥ 1) ∪Ξt≥1
[K(r ≥ 1) \ I] def= BS ;

3) B4(0 ≤ t ≤ 1) ∪Ξ0≤t≤1
[K(−1, 1) \ I] def= B∗.

The set B∗ is compact, while BN and BS are not. According to [25] (see also [26, Chap. 3]), B∗ has
the structure of a smooth manifold induced by Ξ and the structures on B4(0 ≤ t ≤ 1) and K(−1, 1). Let
us prove that each of the sets BN and BS has a one-point compactification, and the compact set thus
obtained can be endowed with the structure of a smooth manifold extending the smooth structure of
the manifold B∗. First, consider BN . The set BN contains the sequence of 3-manifolds S∗,−m, m ∈ N,
obtained by removing the sets S3

−m ∩ I from the 3-spheres S3
−m. For fixed m, the manifold S∗,−m is the

3-sphere S3
−m minus the three (disjoint) solid tori

D−m,1 × S1, D−m+1/3,2 × S1, D−m+2/3,3 × S1.

In BN , to each boundary component (homeomorphic to the 2-torus) of the manifold S∗,−m the
corresponding solid tori P 3

1,2,−m, P 3
1,2,−m+1/3, and P 3

1,2,−m+2/3 are attached by the diffeomorphism Ξt≤0.

Let us show that

S∗,−m

⋃

Ξt≤0

(P 3
1,2,−m ∪ P 3

1,2,−m+1/3 ∪ P 3
1,2,−m+2/3)

def= S3
m,∗

is a 3-sphere. On the boundary T−m of the solid torus P 3
1,2,−m, there are coordinates (−m,u2, v2)

defined by (5). According to Lemma 6, the meridians of the torus T−m bounding the solid tori P 3
1,2,−m

are determined by v2 = const, and the parallels are determined by u2 = const.
On the boundary T 2

−m,1 of the solid torus D−m,1 × S1, there exist coordinates (−m,u1, v1) in which
the meridians are given by v1 = const and parallels, by u1 = const. It follows from (8) and Lemma 9
that, removing the solid torus D−m,1 × S1 from the 3-sphere S3

−m and attaching the solid torus P 3
1,2,−m,

we again obtain a 3-sphere. Repeating this argument for the solid tori

D−m+1/3,2 × S1, P 3
1,2,−m+1/3, D−m+2/3,3 × S1, P 3

1,2,−m+2/3,

we see that S3
m,∗ is a 3-sphere.

Let us show that, for any m ≥ 1, the spheres S3
m,∗ and S3

m+1,∗ in BN bound an annulus homeomor-
phic to S3 × [0; 1]. Note that the spheres S3

m,∗ and S3
m+1,∗ in BN bound a compact set N4 with nonempty

boundary ∂N4 = S3
m,∗ ∪ S3

m+1,∗. Indeed, N4 is obtained by attaching the three compact sets

U12

(
−m +

1
3
≤ t ≤ −m +

2
3

)
, U12

(
−m − 1

3
≤ t ≤ −m

)
,

U12

(
−m − 1 ≤ t ≤ −m − 2

3

)

to K(−m ≤ −m− 1) \ I . The boundaries of these sets consist of the corresponding solid tori contained
in the boundaries of the 3-spheres S3

m,∗ and‘S3
m+1,∗ and the sets

T
2
−m+1/3≤t≤−m+2/3, T

2
−m−1/3≤t≤−m, T

2
−m−1≤t≤−m−2/3,

in which all points become interior after the attachment.
To prove that N4 and S3 × [0; 1] are homeomorphic, we show that N4 is embedded in R

4. First,
on the Artin–Fox curve, we take the arc d corresponding to the parameter −m − 2 ≤ t ≤ −m + 1 and
consider its tubular neighborhood

[−m − 2;−m + 1] × D2 ⊂ (R × D2)AF,
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which is a part of the tubular neighborhood of the entire Artin–Fox curve and has the natural structure
of a direct product. We extend d over the half-space int R

3
+ = {(x1, x2, x3) | x3 > 0} to a smooth (open)

curve L going from the origin to infinity so that the following conditions hold.

Condition 1. There exists a smooth diffeotopy ϕα, 0 ≤ α ≤ 1, on R
3
+ such that

(a) ϕ0 = id;

(b) the diffeomorphism ϕ1 takes L to the ray

L = ϕ1(L) = {(x1, x2, x3) | x1 = x2 = x3 ≥ 0};

(c) ϕα = id outside the 3-ball containing the arc d, and ϕα = id near the plane x3 = 0 for all
0 ≤ α ≤ 1.

Condition 2. The tubular neighborhood [−m + 1;−m − 2] × D2 can be extended to a tubular neigh-
borhood T (L) ⊂ R

3
+ of the curve L endowed with the direct product structure: T (L) = (R × D2)L.

The arc d can be deformed into the interval in space R
3
+; hence there exists an extension to the curve L

and a diffeotopy ϕα with the required properties. It follows from Condition 1 that L coincides with the
ray L near the origin and outside a sufficiently large ball.

Clearly, the ray L transversally intersects the 3-spheres

S3
r = {(x1, x2, x3) | x2

1 + x2
2 + x2

3 = r2}
of radius r > 0. Hence the ray L has a tubular neighborhood T (L) admitting the structure of a direct
product generated by the intersections of the spheres S3

r with L, i.e., such that

T (L) = (R × D2)L, where ({r} × D2)L = S3
r ∩ T (L).

Passing, if necessary, to smaller tubular neighborhoods, we can assume that the diffeotopy ϕα satisfies
the following additional condition.

Condition 3. The diffeotopy ϕ1 takes T (L) to T (L) so that the direct product structure is preserved.

Let Rτ denote the rotation of the half-space R
3
+ about the 2-plane x4 = 0 = x3 which is defined

by (7) with v = τ . Clearly, Rτ is a diffeomorphism. Therefore, if A,B ⊂ R
3
+ are two sets diffeomorphic

under fixed Rτ and disjoint from the plane x4 = 0 = x3, then

R(A) =
⋃

0≤τ≤1

Rτ (A) = R(B) =
⋃

0≤τ≤1

Rτ (B).

It follows that T (L)R = T (L)R, and, therefore,

R
4 \ T (L)R = R

4 \ T (L)R. (9)

The direct product structures on T (L) = (R × D2)L and T (L) = (R × D2)L can be naturally extended
to direct product structures on T (L)R and T (L)R, respectively, which allows us to introduce coordinates
on ∂T (L)R and ∂T (L)R by analogy with the coordinates (t1, u1, v1) on the boundary of the neighbor-
hood R(R × D2)AF. We use the same symbol Ξ (hoping that this will not lead to confusion) to denote
the diffeomorphisms

Ξ: ∂M2 → ∂T (L)R, Ξ: ∂M2 → ∂T (L)R
defined by (8). Identifying the boundaries by means of Ξ, we obtain the two sets

R1 = (R4 \ T (L)R) ∪Ξ M2, R2 = (R4 \ T (L)R) ∪Ξ M2.

Condition 3 and relation (9) imply that R1 and R2 are homeomorphic. Since L is a ray, it follows from
Lemma 9 that R2 is homeomorphic to the direct product of 3-spheres and a once-punctured ray, i.e., R2
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is the space R
4 minus the origin. According to Condition 2, R1 contains N4. Therefore, N4 is embedded

in R
4.

It follows from the construction that the 3-spheres S3
m,∗ and S3

m+1,∗ have no points of wildness.
Locally flat 3-spheres in R

4 bound an annulus homeomorphic to S3 × [0; 1] [17]; hence, for any m ≥ 1,
the spheres S3

m,∗ and S3
m+1,∗ in BN bound an annulus homeomorphic to S3 × [0; 1]. We denote this

annulus by KN (−m,−m − 1). It follows from the above considerations that the noncompact part BN

is the countable union of annuli adjacent to each other along boundary 3-spheres. Therefore, BN has a
one-point compactification BN∗ to which the topological structure of the manifold BN can be extended.

It can also be proved in a quite similar way that BS has a one-point compactification BS∗ to which
the topological structure of the manifold BN can be extended.

By virtue of (8), the diffeomorphisms

fNS : M1 → M1 and f1
s : M2 → M2

are compatible on the boundaries ∂M1 and ∂M2. Hence they induce a homeomorphism f : M4 → M4

with three fixed points, namely, the sink S, the source N , and the saddle O. According to [26] and [25],
the compact set obtained from M4 by removing spherical neighborhoods US and UN of the nodes S
and N , respectively, admits the structure of a smooth manifold. By construction, we can choose US

and UN so that

f(US) ⊂ US and f−1(UN ) ⊂ UN .

Thus, we can return the spherical neighborhoods US and UN back so as to obtain a closed smooth
4-manifold (we denote it by the same symbol M4), on which a diffeomorphism conjugate to f is defined
(we denote this diffeomorphism by the same symbol f ). According to the Corollary and Theorem 1
from [20], the closures of the unstable and stable separatrices of the saddle O are 2-spheres topologically
embedded in M4, which are not locally flat at the points S and N , respectively. This completes the
construction.
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