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Abstract

Work solutions are proposed for problems of leader definition and role distribution in homoge-
neous groups of robots. It was shown that transition from a swarm to a collective of robots with
hierarchical organisation is possible using exclusively local interaction. The local re-voting algo-
rithm is central to the procedure for choice of leader while distribution of roles can be achieved
by a wave method. The basis for this approach is the static swarm model characterised by the
absence of a set control centre; it represents the network fixed at some time interval as a set of
locally interacting agents. A task of cooperative hunting by distributed mobile robots based on
local interaction was considered. Two strategies were used for the hunting task solution:
individual hunting and pack-hunting. Simulation results showed that symbiosis of leader elec-
tion and role distribution procedures has advantages over the individual strategy.
ª 2015 Elsevier B.V. All rights reserved.
Introduction

Active research into the creation of systems of interacting
robots has been ongoing for nearly a quarter of a century.
Approaches such as collective, swarm and flocking robotics
have been prominent in modern robotics and the theory of
multi-agent systems, but the overwhelming tendency of
research in this area remains at a theoretical, model level.
According to Yogeswaran and Ponnambalam (2010) and Shi,
Tu, Zhang, Liu, and Wei (2012), it is apparent that this
absence of valid, significant results is not least connected
with the relative neglect of a number of important tasks.
Research in the field of group robotics (to coin a generalised
name for collective, swarm, flock etc. robotics) has a very
fragmentary character.

One warning sign is the obvious transfer of the enter of
gravity of research to swarm robotics, which can be viewed
as a simpler, more basic level of group robotics model.

The reason seems in the following. A swarm as a homoge-
neous set of agents is capable of solving tasks of a very lim-
ited class – so-called simple tasks. We will try to explain
this thesis. If we cannot explain the behaviour of the entire
logically
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system, knowing its properties and the principles of func-
tioning of its components (emergent properties), such a sys-
tem is called difficult. Otherwise, we deal with a simple
system. The swarm is not a complex system since the prin-
ciples and algorithms of functioning of its entities are iden-
tical. In this sense, we speak about simplicity of the tasks
solved by a swarm.

The solution of complex challenges means existence
of functional heterogeneity. Differentiation of functions,
realisation of levels of abstraction at information pro-
cessing, planning, etc. are the tasks demanding exis-
tence of some structure. Let us consider a system
consisting of identical elements (agents) with various
roles. From this viewpoint, the mechanism of defining
a leader can be considered a possible method to initiate
formation of structures, as a certain analogue of forma-
tion of the centre of crystallisation. So, we consider
cognitive abilities growth of a swarm using a mechanism
of functional heterogeneity. Further, we consider the
mechanisms at the basis of this functional
heterogeneity.

We elaborate two among the many problems in swarm
robotics that remain insufficiently studied. The first is the
problem of leader definition in a homogeneous group of
robots and the second is role distribution among members
of the group under conditions of exclusively local
interaction.

Leadership

One of the basic features of swarm robotics is the
local character of interaction of robots, with each
other and with their environment (Shi et al., 2012).
This kind of interaction is called implicit communication
according to Yogeswaran and Ponnambalam (2010),
which means that each robot in the group directly
interacts only with neighbours within some limited visi-
bility range.

In such systems, it usually follows that robots make
decisions independently on further actions, guided by
some simple rules of local interaction. However, the
overwhelming majority of examples of task solution in
the field of swarm robotics concern the coordinated
movement of a swarm. For instance, in the obvious
and rather simple task characterised as the ‘Leader–Fol-
lower’ method in Song and Zhao (2014), it is considered
that there is an a priori leader in the group who sets this
movement.

There are many variants of local interaction rules, from
the formalistic in Pavlovsky, Kirikova, and Pavlovsky
(2010) to the very exotic. For instance, Dewi, Risma, and
Oktarina (2012) describe the virtual spring-damper model
of flocking mobile robots’ behaviour. The ‘spring’ compo-
nent of the model defines the force of attraction to the lea-
der (not follower to follower), and the ‘damper’ component
defines the repelling force.

Another especially technical approach has been pro-
posed in Gigliotta, Mirolli, and Nolfi (2014), in which one
of the robots must become the ‘leader’ of the group by
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maximising the value of its communicative output. The
main issue of this method is that it leads to the appear-
ance of a set of leaders, and a number of them depend
on the topology of the swarm. In a very interesting project
described in Nissan EPORO (2009), autonomous robots used
the rather simple ‘Fish Behaviour’ interaction rules for col-
lision-free driving, in which all robots were equipped with
a set of complex sensors. The general direction of robot
movement is set from the outside. Therefore, we deal
mainly with the a priori set leader, or with techniques that
avoid defining the leader under the conditions of some
specific objective.

However, in a number of works, a swarm leader is
elected. In Kim, Shin, Woo, Eom, and Lee (2008), group
leader selection is based on optimising power consump-
tion, making it necessary to know the distances between
robots and the power consumed by transfer of the mes-
sage from one robot to another. In Yu, Jian, and Wang
(2008), swarm traffic control using the centre of masses
or the geometrical centre of a swarm is described. This
method requires that coordinates of agents, their speed
and their direction of movement must be known. Another
paper, for example, Loukas, Woehrle, Glatz, and
Langendoen (2012) describes a localised mechanism for
determining the information potential on each node,
based on local process information and the potential of
neighbouring nodes. In that instance, the node with the
minimum potential was considered to be the leader. A
similar technical approach was offered in Karpov
(2012), in which the agent with the greatest weight
was appointed as leader. The difference between the
leader and other members of the group (or a flock)
was that the leader did not use the rule ‘move to the
nearest neighbour’. This approach provided a solution
to the problem of coordinated movement, turning a
swarm into a flock.

In this paper, we are interested in the problem of leader
identification in a more general case, in terms of mecha-
nisms of local information interaction.

Role distribution

As a solution to the basic problem of coordinated movement
of robots, it is sufficient that there is a leader. However,
more complex challenges solved by a group of robots
require differentiation of their functions and, generally
speaking, distribution of tasks between robots; this is per-
haps one of the most problematic concepts of swarm
robotics. In reviews mentioned above Yogeswaran and
Ponnambalam (2010) and Shi et al. (2012), task distribution
in robot groups was considered rather declaratively. At
best, some physical models, methods of distributed plan-
ning, optimisation and other general mechanisms are men-
tioned in Kalyaev, Kapustjan, and Ivanov (2011). In
practice, one usually deals with either the centralised con-
trol systems or with homogeneous groups without functional
differentiation. For example, Kukushkin, Katalinic, Cesarec,
Zdyb, and Kettler (2012) describe an assembly system model
with self-organising behaviour (Bionic Assembly System ––
8), Leader election algorithms for static swarms, Biologically
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BAS). The behaviour of each mobile robot in this system
depends on its internal state and on the state of the system.
A central computer plans the global production of BAS, syn-
chronising the supply of parts and so on. Another example is
a system organised in a two-level linear hierarchy. Facing
the robot swarm’s heading direction, the leftmost robot in
the front line is assigned as the global leader automatically.
The rest of the robots in the front line work as the group lea-
der, and the ones after them are the followers (Wu, Qu, Xu,
& Chen, 2014).

So, it is possible to draw the conclusion that differ-
entiation of functions and distribution of tasks is not
considered an actual problem by swarm robotics.
Instead, it is usually taken that the swarm has to solve
only simple, mass problems like coordinated movement.
This certainly reduces the importance of the swarm
approach and goes straight to the main declared thesis
of swarm robotics as an approach to the solution of com-
plex behavioural tasks using a set of simple technical
devices –– robots.

In the present case, it is considered that the problems of
leader formation and role distribution are extremely impor-
tant for the development of swarm robotics. This paper con-
siders some ways in which these tasks might be solved, such
as modelling the organisation of a group of robots as a static
swarm.

The remainder of the paper is organised as follows. Sec-
tions ‘Task definition’, ‘Static swarm’ and ‘Voting task’ are
devoted to the static swarm definition. Section ‘Voting
task’ describes a set of voting algorithms that solve model
a task of leader election. The experimental results are pre-
sented in Section ‘Experiments’. Sections ‘Task dis-
tribution’ and ‘Pack-hunting task’ describe a variant of
the role distribution task solution and demonstrate a
pack-hunting task solution based on procedures of leader
election and roles distribution. Finally, Section ‘Conclu-
sions’ summarises the conclusions and suggestions for
future work.

As a starting point, we consider the question of agent’s
structure and then turn to the main object of this work,
namely static swarm.
Communication
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Fig. 1 Robots with four commu
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Task definition

The task is formulated as follows. Consider a set of sim-
ple devices (robots or agents) capable of directing local
interaction between neighbours. The question is whether
it is possible to formulate conditions under which it will
be possible for such a system to solve more complex
problems, both at the behavioural level and at the
levels of information processing, decision-making, and
so on. In other words, it is necessary to define the con-
ditions of emergence of synergetic effects or emergent
properties.

There are two main classes of swarm models: micro
and macro. The first of is based on the behaviour of
individuals, while the second class is based on the
description of the swarm as a whole. For example, at
the micro-level, models of finite-state machines are
widely used, and at the macro-level, hydrodynamics
models are common. Hybrid models combining both
approaches are less often applied. For example, Berman
et al. describe a model of the dynamics of environment
state in Berman, Halasz, Kumar, and Pratt (2007) that
defines the behaviour of members of a swarm (agents).
The reasoning in the present study generally belongs to
the micro-level class because our interest is in the
mechanism of local interaction of robots in a swarm
(as in Stefanuk, 2004).

To begin, consider the structure of an agent, where the
main objective is a set of some simple devices. Simplicity
here means some principal limitation of cognitive abilities
(sensors, calculations and memory).

Further, some serious restrictions will be placed on the
robots’ communication opportunities, in which each
robot can communicate with no more than some limited
number of its neighbours. It will further be assumed that
the robots have a fixed number of communication ports
(i.e. contact points that form information channels). For
example, robots must be connected physically to each
other’s communication ports for communication as
organised in Fig. 1.
ommunication 
Channel

nication ports and their links.
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Fig. 2 An example of the network organisation.
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Static swarm

One of the models describing the organisation of a great
number of locally interacting agents or robots is the so-
called static swarm. This arrangement is characterised by
the absence of a control centre and represents the given
network fixed at some time interval as a set of agents
(Karpov, 2013).

It is a rather natural scheme. Majority of works with a
decentralised focus have a fundamentally static view: the
structures that describe the degree of ‘local central-
isation’ are fixed during the assignment process (Liu &
Shell, 2012).

The main feature of a static swarm is that at some
moment, instead of a set of separated agents, the com-
puting structure is completely defined, enabling the solu-
tion of difficult calculation and data processing tasks. It
follows that a static swarm can be considered as an
object with qualitative properties other than a simple
set of agents.

The main properties of a static swarm are activity, local-
ity of interactions and functional heterogeneity.
Activity

Certainly, unlike the computer network, the network of
agents has to be capable of perceiving signals from the
environment, and of producing some effector functions
(such as motion, for example) in order to have an impact
on the outside environment.
Locality of interaction

An important feature of a static swarm is essentially the
local nature of interaction: agents communicate only with
their neighbours.

Functional heterogeneity

The solution of complex tasks (i.e. manifestation of emer-
gent properties of a system) assumes heterogeneity exists
in the group in terms of differentiation of functions carried
out by agents: strategic and tactical management, gather-
ing and information processing, realisation of effector func-
tions, and so on. The organisation of the mechanism of this
functional heterogeneity is therefore an important
question.

From the practical point of view, the static swarm is a
particularly temporary structure. Naturally, the movement
of agents changes links between elements and leads to
structural changes in the swarm. Therefore, functioning of
the entire system is reduced to some timepoint agents form
the static structure for the joint solution of a task, for
example, exchange of information, logical conclusion and
so forth. The agents gather for some kind of ‘conference’,
after which the static swarm breaks up and its elements
function according to the received roles before the
‘conference’.
Please cite this article in press as: Karpov, V, & Karpova, I (200
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Let us consider the following task. Let there be a set of
agents (robots) capable of local information exchange
between nearest neighbours. Further, at some timepoint,
the static swarm must realise a certain procedure for role
distribution: some individual must act as a control centre,
another must serve as the data processing function, another
has to collect information from the external environment,
and so on.

The general principles of role distribution can be
based on the following obvious reasoning: a node (agent)
with a maximum number of links (neighbours) becomes a
candidate for the control centre role. Its nearest neigh-
bours are analysers of information; they prepare informa-
tion for decision-making. Nodes located on the periphery
of a network are responsible for gathering information.
An example of such a network of agents is shown in
Fig. 2.

Here, node A becomes a main control centre; its nearest
neighbours (B) are assigned the role of analyser; and periph-
eral nodes (S) act as external sensors. Labels C, E and D des-
ignate other roles. The main question, then, is how do these
node-agents choose the central, main node. There are sev-
eral possible ways to organise such a vote.

Voting task

Consider the following formulation of the voting task. Let
there be a set of agents with limited communication oppor-
tunities, so that agents are capable only of directing local
interactions between neighbours. The task requirement is
that agents must choose a leader by voting.

All further assumptions are based on the fact that the
topology of a network is unknown and that all reasoning
must have an especially ‘local’ character (i.e. considered
from the point of view of the agent taking part in
voting).

At some timepoint, agents receive a global signal that
the vote is beginning. At this moment, each agent estab-
lishes communication channels with its neighbours, and a
8), Leader election algorithms for static swarms, Biologically
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generally directed graph is formed. The graph’s node is an
agent; incoming edges are interpreted as the ability to
receive data from source nodes. In this way, communication
channels are formed.

Let a static swarm be fixed (i.e. assume that its topology
will not change further).

Each agent is described as

A ¼ ða; L;C;WÞ

where a = agent’s identifier or name; L = a list of agent-
neighbours from whom agent a can receive information
(incoming edges); C = a candidate’s identifier, for whom
agent a votes; W = weight of candidate C, i.e. the number
of votes which, in the agent’s opinion, should be given to
the candidate.

The essence of a voting procedure is that each agent
defines for whom its neighbours vote. Depending, then, on
the weight of the candidate for whom the neighbour votes,
the agent can change its opinion and vote for the same
candidate.

Fig. 3 presents one step of this voting scheme. The node
labels indicate the following: the agent’s identifier a is the
‘numerator’, and values Ca and Wa represent the candi-
date’s identifier and weight.

Assume that agent a votes for candidate Ca and agent c
votes for candidate Cc. If weight Wa is less Wc then agent
a can change its opinion and revote, adding one more voice
to the weight of the new candidate.

The probability that agent i will change their opinion
under the influence of the opinion of agent j (an opponent)
can be defined as follows:

pij ¼
Wi

Wi þWj

That is, the tendency to change opinion naturally
depends on the degree of conviction or weight of the
candidate.

The distribution of voices of candidates and their
weight at an initial timepoint is also implemented quite
naturally; each agent votes for itself (declares itself the
candidate), and the weight of this decision is equal to
the number of this agent’s neighbours. The number of
links is not the only possible variant of determination
of weight of the agent. Here, we can use other
reasons.

Algorithms for the agent’s voting behaviour are given
below.
Please cite this article in press as: Karpov, V, & Karpova, I (2008
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Algorithm G1(a). Agent’s decision-making––1

a –– agent
Ca –– the candidate for whom agent a votes
Wa –– candidate’s weight
La –– list of agent’s candidates
Procedure G1(a)
To choose among neighbours of the opponent with

maximum weight Aop:
Aop 2 La; Cop–Ca

Wop ¼ maxWi
i2La

To calculate value of probability of change of opinion:

pa ¼
Wop

WaþWop

To change opinion with probability pa:
Ca  Cop

Wa  Wop þ 1
end procedure G1(a)
It is possible to ‘roughen’ the decision-making algorithm,
forcing the agent to change its opinion on the candidate if
there is a stronger opponent in its environment. If parity
is observed between scales of opinion of the agent and
the strongest opponent, the choice of decision can be car-
ried out probabilistically.

Algorithm G2(a). Agent’s decision-making––2

Procedure G2(a)
To choose among neighbours of the opponent with the

maximum weight Aop:
Aop 2 La; Cop–Ca

Wop ¼ maxWi
i2La

if Wop>Wa then – The opponent is ‘stronger’. We change
the opinion:

Ca  Cop

Wa  Wop þ 1
else
if Wop = Wa then – Forces are equal. We change the

opinion – with probability 0.5
p ‹ rand() – Random value from 0 to 1

if p > 0.5 then
Ca  Cop

Wa  Wop þ 1
end if

end if
end procedure
), Leader election algorithms for static swarms, Biologically
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A common voting scheme might look like this:
Algorithm V(A). Voting
A –– a set of agents
a –– agent
Ca –– the candidate for whom agent a votes
Wa –– candidate’s weight
La –– list of agent’s candidates
Eoj –– flag of end of a voting procedure
procedure V(A)
eof ‹ false
for all a 2 A do – Agents initialisation
Ca  a
Wa  dimðLaÞ

end for
while not eoj do – Main cycle of vote
for all a 2 A do – Cycle on all agents

G1(a)
end for
‘Definition of conditions of completion of voting

procedure eoj’
end while

end procedure V(A)

6

In this algorithm, the biggest problem is the item ‘Def-
inition of conditions of completion of voting procedure
eoj’. In the absence of global information on a network’s
state, the agent has to make the decision for itself that
voting is finished. Information received from the immedi-
ate environment is obviously not sufficient for this pur-
pose, and two variants of agent behaviour are therefore
possible:

1. To consider that voting must be completed in at most
some certain number of steps, involving top assessment
of the number of voting algorithm steps.

2. To realise some procedure for an exchange of messages
defining that voting is completed, and no agent further
changes their decision.

The first variant must prove convergence of iterative
voting procedures. Some reasoning can be based by anal-
ogy with a schema for reaching a consensus. DeGroot
(1974) defines consensus as mutual agreement on a sub-
ject among a group of people (agents in our terminol-
ogy). The main issue is that with DeGroot’s schema
convergence can be proved only for some partial
situations.

Another interpretation of the voting process is the well-
known Polya urn model (a Polya urn scheme). The main
issue in the leader election is an emergence of cycles of
re-voting, when agent A changes its opinion and agrees with
the opinion of agent B, and agent B, in turn, agrees with A.
The role of one agent A or B can affect a group of agents,
i.e. the group of agents voting for candidates A and B. How-
ever, the essence of the voting process is that the change in
the agent’s opinion results in the opponent increasing its
weight. We can interpret a pair of agents with opposite
opinions as a Polya’s urn. The number of white and black
Please cite this article in press as: Karpov, V, & Karpova, I (200
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balls in the urn corresponds to the weight of the agent’s
opinions. When the agent’s changes agree with the oppo-
nent, the weight of the new opinion increases. This means
that the number of balls in the urn increases too. So, the
voting process is equal to the procedure of a ball’s choice
from the urn. A Polya scheme converges, but in practice
we have one issue. The voting procedure produces cyclic
processes with time delay. Unfortunately conditions for
convergence of Polya scheme with time delays are not
investigated.

The second variant also implies the existence of some
assessed number of voting steps prompting the agent to
send a request defining voting procedure completion. The
realisation of procedures of this sort also presents a number
of highly technical difficulties –– in particular, an increase
in network traffic, as each agent must realise this procedure
irrespective of the others.

Justification of these algorithms requires answers to two
main questions: (1) convergence of the algorithms to one
solution and (2) estimation of the number of voting steps.
Unfortunately, these questions currently remain open, as
we can speak only about the results of modelling, according
to which the process of voting converges. Clearly, the num-
ber of voting steps does not exceed the number of robots in
the group.

Centralised voting

There are problems with the above result, particularly
from the local nature of the agents’ decision-making. If
each agent knew the graph structure, definition of the lea-
der would be quite a routine task. In fact, it is possible to
provide a rather simple scheme for exchange of messages
between agents, which would allow describing the full
graph structure. The number of steps does not exceed
the number of robots N in a group. To achieve this, it is
enough for the robots to report to each other everything
they know about the structure of the graph at the present
time, as follows:

At an initial timepoint, information about the structure
of the graph for each agent is limited to knowledge of its
neighbours. This incomplete graph is represented, for exam-
ple, by the list of edges Li0 sent by agent i to its neighbours.
Having received such a list, each agent combines it with
their existing list for a fuller picture in the form of a new
list:

Lit ¼
[

k2Z
Lkt�1

This is a combination of the lists received from all neigh-
bours from some area Z at the previous timepoint.

Through no more than N steps, then, each robot will
have all the information about the graph’s structure.
Further, all of them elect the only leader, proceeding,
for example, from reasons of maximum connectivity,
equidistance and so on. An obvious and ineradicable defi-
ciency of such a scheme is a very big flow of informa-
tion, which should be reported to robot neighbours.
The practicality of this scheme in real systems is rather
doubtful.
8), Leader election algorithms for static swarms, Biologically
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Experiments

Two types of series of experiments were carried out. In the
first type, some fixed topology structures were investigated
– a line, a ring and a square. The main idea was to check the
convergence of the algorithms in these special (degenerate)
cases. The second type of carried a statistical orientation.

As a further example of a voting procedure, Fig. 4 shows
three steps in the voting procedure for a solid group of
robots.

In the first step, each agent votes for itself, so that the
number of cells designating ‘borders’ of distribution of
voices for the corresponding candidates is equal to the num-
ber of robots. The second step (re-voting) shows an integra-
tion voting areas for chosen candidates. Finally, in the sixth
step, all votes are assigned to a single candidate, and the
voting procedure comes to an end. An example of the pro-
cess of voting in extremely adverse conditions is shown in
Fig. 5, involving two clearly expressed zones connected by
two isthmuses.

In this situation, a cyclic process of distribution of
voices can be observed. At the 20th step of the vote,
two stable areas are formed, each of which votes for their
own candidate, and a process of cyclic re-voting begins. It
is clearly visible how preference areas actually trade
places in the 37th step. The process continues only as
far as step 51, when all oscillations stop and a single can-
didate remains.
Fig. 4 Voting procedure in a s

1

20

...

3

...

Fig. 5 Cyclic voting procedu
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The second type of series carried out a statistical
orientation. Planar graphs of 50–200 agents were gener-
ated. For each value of N (N = 50, 75, 100, . . ., 200), one
hundred experiments were carried out. Therefore, the total
number of experiments was 700. We varied the average
number of agent’s links (neighbours), parameter L. The
value of L changed from 3 to 7. Fig. 6 shows the distribution
of the L value per number of robots (N). This diagram illus-
trates all experiments show a similar distribution of L. This
implies that we should work with equally distributed topolo-
gies of robot groups.

In these experiments, a voting procedure finished
after election of the single leader (normal exit) or
after 500 voting steps (failure). Only 25 of 700 experi-
ments or 3.5% ended in failure where two leaders were
left after 500 steps. The simulation results are pre-
sented in Fig. 7.

These results show that failure does not depend on the
number of robots in a group. On the hand, the number of
voting steps increases with the group size. The dependence
of the average number of voting steps on the number of
robots is shown in Fig. 8.

Therefore, we can claim that the voting procedure con-
verges in a statistically significant number of experiments,
and the convergence rate weakly depends on the number
of robots.

It is necessary to underline that at the end of the voting
procedure we have only one leader. However, we cannot
...

olid group. Steps 1, 2 and 6.

37

...

...

re. Steps 1, 3, 20 and 37.
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predict, which node will be a leader. So, we can only reach
the solution from a set of possible variants.
Task distribution

In the absence of morphological distinctions between
agents, role distribution in a static swarm is defined exclu-
sively by the current topology of the system. The dis-
tribution process is presented as a well-known procedure
of control wave distribution. The initiator of distribution is
the leader, whose role is designated as R0. Direct neighbours
of the leader receive an initial message, according to which
a role R1 is assigned to them, and so on. Thus, the role of
robot i is defined by the roles in its environment:
Please cite this article in press as: Karpov, V, & Karpova, I (200
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Ri ¼ max
k2Z

Rk þ 1

The wave distribution of roles is realised exclusively by local
interaction, but there is one essential problem. For success-
ful functioning of the system, M roles are required, with the
process of distribution of a wave consisting of L steps
(Fig. 9).

If M = L, there is no problem. If M < L, there are too many
performers with role RM. This is not a good situation, but it
is not fatal because in a static swarm we are not interested
in role distribution optimisation (like Kalyaev et al. (2011)).
If M > L, however, the situation is worse, as there is a defi-
ciency of performers, which is extremely undesirable.
Agents playing several roles at once (combination of
specialisations) can cover the performance deficit, so that
8), Leader election algorithms for static swarms, Biologically
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definition of the procedure whereby an agent should assume
additional functions seems simple. For example, if an agent
with a role number L has no neighbours with roles bigger
than L, it means that this agent is at the periphery. Further,
if we know that M roles are needed, this agent has to
assume roles from L to M. The prevention of any deficiency
can also be defined in advance. If there is a group of N
agents with maximum connectivity to each agent s (the
maximum number of neighbours), it is possible to estimate
the minimum number of roles M. Estimation of the M value
is

M � logSN
Pack-hunting task

We consider the following task. Let there be a field on which
there are some agents of two kinds, predators and their vic-
tims. The field has a limited size and forms a toroidal sur-
face, i.e. the edges of the field are closed. The task
consists of defining rules of predator behaviour so that they
are victims for minimum time. In some sense, we have a
variant of the pursuit-evasion problem here.

Agents can move and they are equipped with four sen-
sors. Every sensor can detect another agent in front,
behind, at the left and to the right of it. The field of vision
of the agent is limited. The agent can send a broadcasting
Fig. 10 A set of packs. Local Leaders are red.
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message. This message can be accepted only its close
neighbours.

A victim is an agent with very primitive behaviour. When
a predator appears in its field of vision, it victim runs away
in the opposite direction. They are pure individualists. The
victim perishes when the predator appears near it in the
next field.

We assume that the speed of the victim is twice that of
the predator.

For a toroidal surface and low predator speed, it
becomes a very complex challenge to catch up with the vic-
tim. Thus, formation of groups of hunters, i.e. packs, can be
useful.

The formation of a pack is not a primitive process. If
predators have a behavioural rule ‘IF (sensor detects a
predator) THEN (move to it)’ then after some time all
predators will form compact motionless groups. In this sit-
uation, predators need a leader to lead this pack. This lea-
der can be named as Local Leader.

As mentioned above, there is a simple technical escape.
Each agent has its individual and unique parameter, an
identifier ID. This ID can play the role of the agent’s
weight. The agent with the greatest weight becomes the
Local Leader. The Local Leader does not use the rule
‘move to the nearest neighbour’. It tries to find a victim
and uses a wandering strategy. All other members of the
group follow it.

Fig. 10 shows a set of wandering packs with Local Leaders
(red colour).

This compact (packing) motion is not enough for success-
ful hunting. The pack does not catch up with a fast victim.
The pack has to surround it. This means that it is necessary
to cast beaters. So, we have a situation with role
distribution.

A schema of pack-hunting is given below and consists of
two stages: Search for Victim and Hunting Procedure.

Search for Victim:

1. A pack formation. Hunters follow Local Leaders.
2. If some agent detects a victim, then start Hunting

Procedure.
The others predators (white) follow them.

8), Leader election algorithms for static swarms, Biologically
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Fig. 11 (a) Hunters detect a victim. (b) Roles are distributed. Hunters bypass a victim. (c) Hunters ‘attack’ a victim.
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Hunting Procedure:
1. Leader election. The initial weight of a candidate is

neither its ID number nor the number of neighbours.
Initial weights are determined by proximity to the
victim.

2. Role distribution. In this task, predators have two roles:
the left and right beaters. The main objective is to
bypass the victim from two sides and not to allow it to
escape.

Fig. 11 shows an example of three stages of the hunting
procedure.

A series of experiments was carried out. Parameters of
experiments are:

Agent number: 30 hunters (Nh), 10 victims (Nv).
Size of field: 100 · 100 cells (a toroidal surface).
Hunter’s speed: 1 (one step per timepoint).
Victim speed: 2.
Modelling time, T: 500 steps.

Two strategies of hunting were estimated: individual
hunting and pack-hunting.

Fig. 12 shows the averaged results of 50 experiments.
It is clear that an individual strategy is more preferable

in a situation when there is a lot of ‘food’. It is easy to
hunt. A pack-hunting strategy gets advantages when ‘food’
becomes scarce. In general, this strategy is more
successful.

We want to underline that the cornerstone of this solu-
tion is a symbiosis of the leader election and role dis-
tribution procedures.
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Conclusions

Simple and effective methods have been proposed for
the solution of important problems of swarm robotics
such as leader definition and role distribution in a group
of agents. Efficiency is understood as the acceptability
of robots with limited cognitive abilities (insufficiency
of sensory abilities, computing capacities, communica-
tions channels etc.––in short, all that is peculiar to a
swarm).

The simulation results showed that 93–98 per cent of
simulations give full consensus in leader election, and this
consensus is reached in a relatively low number of steps.
This confirms the validity of the proposed algorithms.

The leader definition and role distribution introduce a
differentiation of functions in homogeneous groups of
robots, which provides a growth of cognitive abilities of a
swarm and transition to complex task solutions. Advantages
of this approach are, for example, the task of cooperative
hunting by distributed mobile robots. In some sense, we
can say that the cognitive abilities of a pack of hunters in
a static swarm are higher than those of an ‘ordinary’ swarm
(a homogenous set of individuals without functional
differentiation).

Despite its simplicity, realisation of these mechanisms
confirms the basic possibility of the formation of very com-
plex structures in the organisation of homogeneous groups,
and again confirms that distinctions between a swarm, flock
and collective of robots are somewhat artificial.

The static swarm model is a convenient way of looking at
swarm robot organisation. While it is limited to exclusively
8), Leader election algorithms for static swarms, Biologically
/j.bica.2015.04.001
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local interaction between agents, it offers all the advan-
tages of a system understood as a network of connected
agents, allowing solutions to problems such as storage and
data processing, coordinated movement and so on
(Karpov, 2013).

In future work, we hope to investigate the mechanism of
logical consequence in static swarms, hypothesising that
logical consequence procedures can be implemented by
exclusively local interaction methods.
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