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Abstract A least-squares data approximation approach to finding individual clus-
ters is advocated. A simple local optimization algorithm leads to suboptimal clusters
satisfying some natural tightness criteria. Three versions of an iterative extraction
approach are considered, leading to a portrayal of the cluster structure of the data. Of
these, probably most promising is what is referred to as the incjunctive clustering
approach. Applications are considered to the analysis of semantics, to integrating
different knowledge aspects and consensus clustering.

1 Individual clusters in graph theory and clustering

In spite of the ubiquitous use of partitions and hierarchies as the only two cluster
structures of interest (see, for example, [8]), individual clusters are prominent in the
analysis of similarity data from the start. Intuitively, cluster is a set of highly similar
entities that are dissimilar from entities outside of the cluster.

Currently, the most popular format for similarity data is of square matrix A =
(ai j) of pair-wise indices ai j expressing similarity between entities i, j ∈ I. The
greater the value of ai j, the greater the similarity between i and j. Some exam-
ples of similarity data are (i) individual judgements of similarity expressed using a
fixed range, (2) correlation coefficients between variables or time series, (3) graphs
represented by 1/0-similarity matrices, (4) weighted graphs, or networks, (5) proba-
bilities of common ancestry, especially in proteomics, (6) affinnity data obtained by
transformation of distances using a Gaussian or another kernel function. Consider
an example of a data set of this type.
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Table 1 presents the average scores given by each country to her 10 top choices at
the Eurovision song contests (up to and including year 2011). I compiled this using
public data at http://www.escstats.com/ (visited 28/2/2013). Each row of the table
corresponds to one out of selected nineteen European countries, and assigns a non-
zero score to those of the other eighteen that have been among the 10 best choices.
The cluster structure of the table should quantify to what extent the gossip of the
effects of cultural and ethnical links on voting is justified, because the quality of
songs and performances may be considered random from year to year, so that in the
ideal case when no cultural preferences are involved at evaluations, the similarity
matrix should be of a random structure too.

Table 1 Eurovision scoring: Each row contains the average score given by the row country to the
column country in Eurovision song contests (multiplied by 10).

Country Az Be Bu Es Fr Ge Gr Is It Ne Pol Por Ro Ru Se Sp Sw Ukr UK
1 Azerbajan 0 0 0 0 0 0 61 48 0 0 0 0 50 65 0 0 0 90 0
2 Belgium 38 0 0 0 0 39 40 0 0 47 0 0 0 0 0 34 0 0 42
3 Bulgaria 67 0 0 0 0 0 93 0 0 0 0 0 0 48 60 0 0 44 0
4 Estonia 41 0 0 0 0 0 0 0 43 0 0 0 0 88 0 0 0 43 0
5 France 0 37 43 0 0 0 0 56 47 0 0 54 0 0 80 0 0 0 41
6 Germany 0 0 0 0 34 0 37 35 0 0 55 0 0 0 70 0 0 0 42
7 Greece 54 0 80 0 41 0 0 0 0 0 0 0 40 0 80 44 0 38 0
8 Israel 50 0 0 0 0 0 0 0 0 43 0 0 66 74 50 0 0 62 43
9 Italy 0 0 100 0 54 0 0 0 0 0 0 0 120 0 0 0 0 65 52

10 Netherlands 39 46 0 0 0 38 0 45 0 0 0 0 0 0 70 0 0 0 0
11 Poland 84 43 0 39 0 0 0 0 90 0 0 0 0 0 0 0 0 82 0
12 Portugal 0 35 0 0 0 45 0 41 81 0 0 0 52 0 57 42 0 74 43
13 Romania 52 0 0 0 0 0 82 0 60 0 0 0 0 49 80 0 0 35 0
14 Russia 99 0 0 0 0 0 37 36 0 0 0 0 0 0 80 0 0 77 0
15 Serbia 0 0 53 0 0 0 73 0 0 0 0 0 0 44 0 0 0 44 0
16 Spain 0 0 78 0 0 51 45 0 74 0 0 43 79 0 47 0 0 46 0
17 Switzerland 0 0 0 0 44 0 0 42 47 0 0 0 0 0 106 41 0 0 41
18 Ukraine 111 0 0 0 0 0 0 0 0 0 60 0 0 98 90 0 0 0 0
19 UK 0 0 0 36 0 39 38 0 0 0 0 0 0 0 37 0 0 0 0

There are several individual cluster related graph-theoretic concepts: (a) con-
nected component (a maximal subset of nodes in which there is a path connecting
each pair of nodes), (b) bicomponent (a maximal subset of nodes in which each pair
of nodes belongs to a cycle), and (c) clique (a maximal subset of nodes in which
each pair of nodes is connected by an edge). Even more relevant is a more recent
concept of (d) the maximum density subgraph [5]. The density g(S) of a subgraph
S ⊂ I is the ratio of the number of edges in S to the number of elements |S|. For
an edge weighted graph with weights specified by the matrix A = (ai j), the density
of a subgraph on S ⊆ I g(S) is defined by the Rayleigh quotient sT As/sT s, where
s = (si) is the characteristic vector of S, viz. si = 1 if i ∈ S and si = 0 otherwise. The
maximum value of the Raleigh quotient of a symmetric matrix over any real vector s
is equal to the maximum eigenvalue and is attained at an eigenvector corresponding
to this eigenvalue. This gives rise to the so-called (e) spectral clustering.
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Cluster-specific individual cluster concepts include those of B-cluster [7] and
Apresian’s cluster [1].

2 Approximation models for summary and semi-average criteria

2.1 Least-squares approximation

The idea is to find such a subset S ⊆ I that its binary matrix s = (si j) approximates
a given symmetric similarity matrix A as close as possible. To take into account
the difference in the unit of measurement of the similarity as well as for its zero
point, matrix s should be also supplied with (adjustable) scale shift and rescaling
coefficients, say λ and µ . That would mean that the approaximation is sought in
the set of all binary λ + µ / µ matrices λ s+ µ with λ > 0. Unfortunately, such
an approximation, at least when follows the least squares approach, would have lit-
tle value as a tool for producing a cluster, because the optimal values for λ and µ

would not separate the optimal S from the rest [10, 11]. This is why this author uses
only one parameter λ , change of the unit of measurement, in formulating approxi-
mation problems in clustering. The issue of adjustment of similarity zero point, in
such a setting, is moved out of the modeling stage to the data pre-processing stage.
This amounts to substraction of a similarity shift value from all the similarity values
before doing data analysis. Choice of the similarity shift value may affect the clus-
tering results, which the user can take advantage of to differently contrast within-
and between- cluster similarities. In the remainder, it is assumed that a similarity
shift value has been subtracted from all the similarity entries. Another assumption,
for the sake of simplicity, is that the diagonal entries aii are all zero (after the pre-
processing step). From now on, S is represented by a vector s = (si) such that si = 1
if i ∈ S and si = 0, otherwise. Our approximation model is

ai j = λ sis j + ei j (1)

where ai j are the preprocessed similarity values, s = (si) is the unknown cluster
belongingness vector and λ , the rescaling value, also referred to as the cluster in-
tensity value. To fit the model (1), only the least squares criterion L2 = ∑i, j∈I e2

i j is
considered here.

2.1.1 Pre-specified intensity

We first consider the case in which the intensity λ of the cluster to be found is pre-
specified. Since s2

i = si for any 0/1 variable si, the least squares criterion can be
expressed as
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L2(S,λ ) = ∑
i, j∈I

(ai j−λ sis j)
2 = ∑

i, j∈I
a2

i j−2λ ∑
i, j∈I

(ai j−λ/2)sis j (2)

Since ∑i, j a2
i j is constant, for λ > 0, minimizing (2) is equivalent to maximizing

the summary within-cluster similarity after subtracting the threshold value π = λ/2,
i.e.,

f (S,π) = ∑
i, j∈I

(ai j−π)sis j = ∑
i, j∈S

(ai j−π). (3)

This is the so-called summary similarity criterion which satisfies the following
properties:

Statement 1 A cluster S optimizes criterion (3) over similarity matrix A if and only
if S optimizes it over symmetric similarity matrix A+A′.

Statement 2 The optimal cluster size according to criterion (3) can only decrease
when π grows.

One more property of the criterion is that it leads to provably tight clusters. Let
us refer to cluster S as suboptimal if, for any entity i, the value of criterion (3) can
only decrease if i changes its state in respect to S. Entity i changes its state in respect
to S if it is added to S, in the case that i 6∈ S, or removed from S if i ∈ S.

Statement 3 If S is a suboptimal cluster, then the average similarity a(i,S) of i with
other entities in S is greater than π if i ∈ S, or less than π if i 6∈ S.

An algorithm for producing a suboptimal cluster S starting from any entity i by
adding/removing a single entity can be drawn using property:

∆(S,k) = f (S± k)− f (S) =−2zk ∑
i∈S

aik, (4)

under the assumption that the diagonal similarities ai j are not considered and zk in
(4) corresponds to S, that is, taken before the change of sign.

2.1.2 Optimal intensity

When λ in (2) is not fixed but can be adjusted to further minimize the criterion, it is
easy to prove that the optimal λ is

λ = a(S) = sT As/[sT s]2, (5)

where a(S) is the average within cluster S similarity.
By putting this equation in the least-squares criterion (2), one can prove:

L2(S) = (A,A)− [sT As/sT s]2, (6)

which implies that the optimal cluster S is a maximizer of
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g2(S) = [sT As/sT s]2 = a2(S)|S|2 (7)

According to (7), the maximum of g2(S) may correspond to either positive or
negative value of a(S). The focus here is on maximizing (7) only for positive a(S).
This is equivalent to maximizing its square root, that is the Rayleigh quotient,

g(S) = sT As/sT s = a(S)|S| (8)

This criterion is a form of the so-called semi-average clustering criterion which
has a number of properties similar to those of the summary similarity criterion. In
particular a cluster tightness property is:

Statement 4 If S is a suboptimal cluster, then the average similarity a(i,S) of i with
other entities in S is greater than a(S)/2i if i ∈ S, or less than a(S)/2 if i 6∈ S.

An algorithm for producing a suboptimal cluster S starting from any i ∈ I can be
drawn by selecting such an entity i whose adding to S if i 6∈ S or removal from S if
i ∈ S makes the greatest increment of criterion (8).

2.2 Partitional, additive and incjunctive clusters: iterative
extraction

The approximation model can be extended to a set of (not necessarily disjoint) sim-
ilarity clusters S1,S2, ...,SK :

ai j =
K⊎

k=1

λksk
i sk

j + ei j, for i, j ∈ I, (9)

where sk = (sk
i ) and λk are k-th cluster belongingness vector and the intensity. The

symbol
⊎

denotes an operation of integration of the binary values together with their
intensities. We consider three versions of the operation: (a) additive clusters:

⊎
is

just summation; (b) partitional clusters:
⊎

denotes the fact that clusters are disjunct,
no overlapping; (c) incjunctive clusters:

⊎
is maximum over k = 1,2, ...,K, that is,

operation of inclusive disjunction.
The goal is to minimize the residuals ei j with respect to the unknown relations

Rk and intensities λk.
Additive cluster model was introduced, in the English language literature, by

Shepard and Arabie in [18], and independently, and even earlier, in a more general
form embracing other cluster structures as well, by the author in mid-seventies in
Russian ([10], see references in [11]). Incjunctive clusters have not been considered
in the literature, to our knowledge.

We maintain that cluster structures frequently are similar to that of the Solar sys-
tem so that clusters hidden in data much differ with respect to their “contributions”.
We proposed an iterative extraction method [10] to find clusters one by one (see also
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[11, 13]). Depending on the setting, that is, meaning of
⊎

in (9), one may use the
following options:

i Additive clusters. The iterative extraction works as this:

a. Initialization. Given a preprocessed similarity matrix A, compute the data scat-
ter T = (A,A). Put k = 0.

b. General step. Add 1 to k. Find cluster S (locally) maximizing criterion g(S) in
(8). Output that as Sk, the intensity of this cluster, the within-cluster average
a(S) as λk, and its contribution to the data scatter, wk = a(S)2|S|2.

c. Test. Check a stopping condition. If it does hold, assign K = k and halt. Oth-
erwise, compute the residual similarity matrix as A−λksksT

k and go back to
General step with the residual matrix as A.

The stopping condition can be either reaching a prespecified number of clusters
or contribution of the individual cluster has become too small or the total contri-
bution of the so far found clusters has become too large. The individual cluster
contributiona are additive in this process. Moreover, the residual matrix in this
process tends to 0 when k increases [10, 11].

ii Partitional clusters This method works almost like the iterative extraction at the
additive clustering model, except that here no residual matrix is considered, but
rather the found clusters are removed from the set of entities.

iii Incjunctive clusters. Make a loop over i∈ I. Run the semi-average criterion sub-
optimal algorithm at S = {i} for each i. Remove those of the found clusters that
overlap with others too much. This can be done by applying the same algorithm
to the cluster-to-cluster similarity matrix; entries in this matrix are defined as pro-
portional to the overlap values. The individual cluster over this matrix contains
those clusters that overlap too much - only one of them shoild be left.

For an example, let us apply each of these three strategies to the Eurovision
matrix, preliminarily made symmetric with zeroed diagonal entries.

a Additive clusters one by one: With the condition to stop when the contribution
of an individual cluster becomes less than 1.5% of the total data scatter, the al-
gorithm found, in addition to the universal cluster I with the intensity equal to
the similarity average, six more clusters (see Table 2). We can see that, say, pair

Table 2 Additive clusters found at the Eurovision song contest dataset.

n. Cluster Intensity Contribution, %
1 Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2 Azerbajan, Israel, Romania, Russia, Ukraine 49.5 7.13
3 Bulgaria, Greece, Italy, Romania, Spain 46.8 6.38
4 Azerbajan, Poland, Ukraine 66.8 3.90
5 Italy, Portugal, Romania 53.0 2.46
6 Greece, Romania, Serbia 43.7 1.67

Azerbajan and Ukraine belong to three of the clusters and contribute, therefore,
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the summary intensity value 70.0+49.5+66.8=186.3 as the “model” similarity
between them (the summary similarity between them in Table 1 is 201).

b Partitional clusters one by one. Here the algorithm is run on the entities remaining
unclustered after the previous step (see Table 3).

Table 3 Partitional clusters found one-by-one at the Eurovision song contest dataset.

n. Cluster Intensity Contribution, %
1 Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2 Italy, Portugal, Romania, Spain 56.1 5.50
3 Belgium, Netherlands 57.3 0.96
4 Germany, UK 45.3 0.60
5 France, Israel, Switzerland 11.6 0.12
6 Estonia, Poland 3.3 0.00

There are only two meaningful clusters, East European and Latin South Euro-
pean, in Table 3; the other four contribute too little. The first of the clusters is
just a replica of that in the additive clustering computation. Yet the second clus-
ter combines clusters 3 and 5 cleaned from the Balkans in the additive clusters
results Table 2.

c Incjunctive clusters from every entity. The semi-average algorithm has been ap-
plied starting from S = {i} for every i∈ I. Most of the final clusters coincide with
each other, so that there are very few different clusters (see Table 4).

Table 4 All four different incjunctive clusters found at the Eurovision song contest dataset starting
from every entity.

Cluster Intensity Contribution, %
1. Azerbajan, Bulgaria, Greece, Russia, Serbia, Ukraine 70.0 21.43
2. Belgium, Netherlands 57.3 0.96
3. Bulgaria, Greece, Serbia 110.6 10.7
4. Italy, Portugal, Romania, Spain 56.1 5.50

According to the data recovery model, these clusters lead to a recovered similar-
ity matrix as follows: first of all, the subtracted average value, 35.72, should be
put at every entry. Then the two entries of Belgium/Netherlands link are to be
increased by the intensity of cluster 2, 57.3. Similarly, the intensities of clusters
1 and 4 are to be added for any pair of entities within each. Then entries for pairs
from cluster 3 are to be changed for 35.7+110.6=146.3.
This is an example at which the local nature of the algorithm is of an advantage
rather than a drawback. Clusters in Table 4 reflect cultural interrelations rather
than anything else.
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3 Applications

3.1 Semantics of domain-specific nouns

The idea that semantics of domain-specific nouns lies in their relation to specific
situations, functions, etc., a few decades back was not that obvious in cognitive
sciences as it is now. In the absence of Internet, the researchers used the so-called
sorting experiments to shed light on semantics of domain specific nouns [16, 4]. In
a sorting experiment, a set of domain-specific words is specified and written down,
each on a small card; a respondent is asked then to partition cards into any number
of groups according to their perceived similarity among the nouns. Then. a simi-
larity matrix between the words can be drawn so that the similarity score between
two words is defined as the number of respondents who put them together in the
same cluster. A cognitive scientist may think that behind the similarity matrix can
be some “additive” elementary meanings. In the analysis of similarities between 72
kitchenware terms, the iterative one-by-one extraction with the semi-average sim-
ilarity suboptimal algorithm found that the clusters related to the usage only: (i) a
cooking process, such as frying or boiling; (ii) a common consumption use, such as
drinking or eating, and (iii) a common situation such as a banket [4]. In contrast to
expectations, none of the clusters reflected logical or structural similarities between
the kitchenware items.

3.2 Determining similarity threshold by combining knowledge

In [14] partitional clusters of protein families in herpes viruses are found. The simi-
larity between them is derived from alignments of protein amino acid sequences and
similarity neigbourhoods. At different similarity shifts, different numbers of clusters
can be obtained, from 99 non-singleton clusters (of 740 entities) at the zero similar-
ity shift to only 29 non-singleton clusters at the shift equal to 0.97 [14]. To choose a
proper value of the shift, external information can be used – of functional activities
of the proteins under consideration in [14]. Although function of most proteins un-
der consideration was unknown, the set of pairs of functionally annotated proteins
can be used to shed light onto potentially admissible values of the similarity shift. In
each pair, the proteins can be synonymous (sharing the same function) or not. Be-
cause of a high simplicity of virus genomes, the synonymous proteins should belong
in the same aggregate protein family, whereas proteins of different functions should
belong in different protein families. The similarity shift value should be taken as that
between the sets of similarity values for synonymous and nonsynonymous proteins.
Then, after subtraction of this value, similarities between not synonymous HPFs get
negative while those between synonymous HPFs remain positive. In [14] no non-
synonymous pair has a greater mbc similarity than 0.66, which should imply that the
shift value 0.67 confers specificity for the production of aggregate protein families.
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Unfortunately, the situation is less clear cut for synonymous proteins: although the
similarities between them indeed are somewhat higher, 24% pairs is less than 0.67.
To choose a similarity shift that minimizes the error in assigning negative and pos-
itive similarity values, one needs to compare the distribution of similarity values in
the set of synonymous pairs with that in the set of non-synonymous pairs and derive
the intersection point similarity value (see details in [14]).

3.3 Consensus clustering

Consensus clustering is an activity of summarizing a set of clusterings into a single
clustering. This has become popular recently because after applying different clus-
tering algorithms, or the same algorithm at different parameter settings, on a data
set, one gets a number of different solutions. Consensus clustering seeks a unified
cluster structure behind the solutions found (see, for example, [21, 13]). Here some
results of applying an approach from Mirkin and Muchnik [15] in the current setting
will be reported (see also [13]).

Consider a partition S = {S1, ...,SK} on I and corresponding binary membership
N×K matrix Z = (zik) where zik = 1 if i∈ Sk and zik = 0, otherwise (i = 1, ...,N,k =
1, ...,K). Obviously, ZT Z is a diagonal K×K matrix in which (k,k)-th entry is equal
to the cardinality of Sk, Nk = |Sk|. On the other hand, ZZT = (si j) is a binary N×
N matrix in which si j = 1 if i and j belong to the same class of S, and si j = 0,
otherwise. Therefore, (ZT Z)−1 is a diagonal matrix of the reciprocals 1/Nk and
PZ = Z(ZT Z)−1ZT = (pi j) is an N×N matrix in which pi j = 1/Nk if both i and
j belong to the same class Sk, and pi j = 0, otherwise. Matrix PZ represents the
operation of orthogonal projection of any N-dimensional vector x onto the linear
subspace L(Z) spanning the columns of matrix Z.

A set of partitions Ru, u = 1,2, ...,U , along with the corresponding binary mem-
bership N × Lt matrices Xu, found with various clustering procedures, can be
thought of as proxies for a hidden partition S, along with its binary membership
matrix Z. Each of the partitions can be considered as related to the hidden partition
S by equations

xu
il =

K

∑
k=1

cu
klzik + eu

ik (10)

where coefficients cu
kl and matrix zik are to be chosen to minimize the residuals eu

ik.
By accepting the sum of squared errors E2 = ∑i,k,u(eu

ik)
2 as the criterion to min-

imize, one immediately arrives at the optimal coefficients being orthogonal projec-
tions of the columns of matrices Xu onto the linear subspace spanning the hidden
matrix Z. More precisely, at a given Z, the optimal K×Lu matrices Cu = (cu

kl) are
determined by equations Cu = Z(ZT Z)−1Xu. By substituting these in equations (10),
the square error criterion can be reformulated as:
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E2 =
U

∑
u=1
||Xu−PZXu||2 (11)

where ||.||2 denotes the sum of squares of the matrix elements. It is not difficult
to show that the criterion can be reformulated in terms of the so-called consen-
sus similarity matrix. To this end, let us form N × L matrix X = (X1X2...XU )
where L = ∑

U
u=1 Lu. The columns of this matrix correspond to clusters Rl that are

present in partitions R1, ...,RU . Then the least squares criterion can be expressed as
E2 = ||X −PZX ||2, or equivalently, as E2 = Tr((X −PZX)(X −PZX)T ) where Tr
denotes the trace of N×N matrix, that is, the sum of its diagonal elements, and T ,
the transpose. By opening the parentheses in the latter expression, one can derive
that E2 = Tr(XXT −PZXXT ). Let us denote A = XXT and take a look at (i, j)-th
element of this matrix ai j = ∑l xilx jl where summation goes over all clusters Rl
of all partitions R1,R2, ...,RU . Obviously, ai j equals the number of those partitions
R1,R2, ...,RU at which i and j are in the same class. This matrix is referred to in the
literature as the consensus matrix. The latter expression can be reformulated thus as

E2 = NU−
K

∑
k=1

∑
i, j∈Sk

ai j/Nk.

This leads us to the following statement.

Statement 5 A partition S = {S1, ...,SK} is an ensemble consensus clustering if and
only if it maximizes criterion

g(S) =
K

∑
k=1

∑
i, j∈Sk

ai j/Nk (12)

where A = (ai j) is the consensus matrix.

Criterion (12) is but the sum of semi-average criteria for clusters S1, ..., SK .
Therefore, the iterative extraction algorithm in its partitional clusters format is ap-
plicable here. We compared the performances of this algorithm and a number of
up-to-date algorithms of consensus clustering (see Table 5) [19].

Table 5 Consensus clustering methods involved in the experiments.

n. Method Author(s) Reference
1 Bayes Wang et al. [23]
2 Vote Dimitriadi et al. [3]
3 CVote Ayad, Kamel [2]
4 Borda Sevillano et al. [17]
5 Fusion Guenoche [6]
6 CSPA Strehl, Ghosh [21]
7 MCLA Strehl, Ghosh [21]
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These algoritms have been compared with two versions of the iterative extraction
partitional clusters method above differing by the condition whether the option of
zeroing all the diagonal entries of the similarity matrix has been utilized or not (Lsc1
and Lsc2). Three types of datasets have been used: (a) datasets from the Irvine Data
Repository, (b) generated synthetic datasets, and (c) specially drawn artificial 2D
shapes. Here we present only results of applying the algorithms to the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset from UCI Data Repository (569 entities,
30 features, two classes) (see Figure 1). The results are more or less similar to each
other, although the superiority of our algorithm is expressed more clearly on the
other datasets [19].

Fig. 1 Comparison of the accuracy of consensus clustering algorithms at WDBC dataset.

Conclusion

The paper describes least squares approximation approaches for finding individual
similarity clusters which can be useful in several perspectives - summary similar-
ity criterion, semi-average criterion, spectral clustering criterion and approximation
criterion. The clustering criterion involves, in different forms, the concept of simi-
larity threshold, or similarity shift - a value subtracted from all the similarity matrix
entries. The threshold can be used for bridging different aspects of the phenomenon
under study together. This is demonstrated in section 3.2, in which the final choice
of clustering involves the protein function and gene arrangement in the genomic
circle, in addition to the original similarity derived from protein sequences.

The criterion leads to nice properties of the clusters: they are quite tight over av-
erage similarities of individual entities with them. Also, unlike methods for finding
global optima, the one starting from an entity leads to recovery of the local cluster
structure of the data, probably a single most important innovation proposed in this
paper.

This work was partially supported by the International Laboratory of Decision
Choice and Analysis at NRU HSE (headed by F. Aleskerov) and the Laboratory of
Algorithms and Technologies for Network Analysis NRU HSE Nizhny Novgorod
by means of RF goverment grant ag. 11.G34.31.0057 (headed by V. Kalyagin).
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