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For cooperative games with transferable utilities (TU games) excess functions e : R2 → R1

whose values e(x(S), v(S)), S ⊂ N are relative negative utilities of coalitions S with respect to

their payoffs x(S) =
∑

i∈S xi are defined. The excess values for the class of two-person games

are defined as those giving to both players equal excess values. An extension of this definition

to the class of all TU games is given.

For surplus sharing problems as a particular class of TU games, the excess values turned out

to be parametric methods which are allocation-consistent. However, allocation consistency may

not coincide with game theoretic consistency on the class of surplus sharing problems.

Necessary and sufficient conditions on the excess functions under which both definitions of

consistency – for the allocation methods and for TU game solutions – coincide on the class of

surplus sharing problems are given.
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1 Introduction

An allocation problem is a problem of distributing a single homogeneous divisible good among

a variable set of agents under the condition that each agent has a positive claim. If the sum of

claims of all agents is greater than the total amount of good then an allocation problem is a cost

sharing or rationing problem. In the opposite case, it is a surplus or profit sharing problem. A

rule of the distribution is called an allocation method (rule).

Allocation methods are characterized by some desirable properties which they should satisfy.

Young (1987) proved that every symmetric, continuous, and consistent allocation method has

a parametric representation and optimizes an additively separable objective function.

Parametric methods for cost allocation problems are generated by numerical standards

(Young (1994)) which are real-valued functions associating with every claim and amount of

good a negative utility of the amount for each agent. The standards have a ’hydraulic’ inter-

pretation invented by M.Kaminski (2000).

”Every agent gets one vessel from a system of connected vessels that are linked to a central

reservoir through a system of pipes. The amount of water in a central reservoir is equal to the

amount of good to be rationed. The allocation is obtained by opening the main sluice-gate and

letting the water flow down and fill the vessels. Since the vessels are connected, the water levels

in all vessels will be equal to one another.” (Kaminski (2000), p.132). This water level is equal

to the corresponding standard of every agent. Observe that in this interpretation the vessels

may have parts of zero volume (infinitely tight pipes). This cannot happen if the method is

strictly monotonic in the total amount of good. In this case, a parametric method equalizes the

standards of all agents. Consistency of such a method means that the standards are unchanged

after some agents leave with their shares of good.

The cost and surplus allocation problems may be considered as special classes of positive

TU games. The characteristic function values of the games are defined either by summation of

claims belonging to the agents of the corresponding coalitions (for surplus sharing problems) or

by the positive parts of the differences between the total amount to be allocated and the sums

of claims belonging to the agents of the complementary coalition (for cost sharing problems).

Solutions for TU games corresponding to allocation problems may be considered as alloca-

tion methods as well (see e.g. Moulin (1985)). The solutions are also characterized by their

properties, among which, as for the allocation methods, the most fundamental are symmetry

or/and anonymity, and consistency.

Recall that consistency of TU game solutions depends on the definitions of the reduced

games. Some solutions are consistent in one definition of the reduced games and are not con-

sistent in others. Moreover, some definitions of the reduced games (e.g. the one used in the
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definition of linear consistency due to Ruiz et al.(1998), when applied to the class of allocation

problems, do not coincide with the definition of allocation consistency.

However, even if both definitions coincide (e.g. for Davis–Maschler (1965) definition of

reduced games), some consistent allocation methods considered as solutions to the special classes

of TU games mentioned above may not be extendable to the whole class of TU games with the

preservation of the corresponding TU game consistency. Therefore, the question arises: given

a consistent allocation method, does the definition of the reduced game exist such that the

method could be extended to a consistent (w.r.t. this definition) solution to the whole class of

TU games or to the class of the positive ones?

In this, paper the answer to this question has been obtained for surplus sharing problems.

Since there is a one-to-one correspondence between two-person allocation problems and

two-person positive TU games, allocation methods for these problems coincide with TU game

single-valued solutions (values) for two-person games. Therefore, parametric methods generate

the solutions of two-person games equalizing the corresponding numerical standards, which are,

in terms of TU game theory, nothing but excess functions measuring negative utilities of players

and coalitions by their payoffs. Excess functions generate a class of excess TU game solutions.

Every excess solution is invariant under transformations of games and of the corresponding

solution vectors not changing the excess values. In particular, the well-known excess function

equal to the difference between the values of the characteristic function and of the corresponding

payoff of a coalition generates excess values which are translation covariant.

The present paper investigates the relationship between parametric methods for surplus

sharing problems and consistent excess values for positive TU games.

On the first stage, a class of the reduced games defining consistency of TU game solutions is

characterized axiomatically. The key tool providing the characterization of the reduced games

is Gorman’s overlapping theorem (Gorman(1968)) about separability of social welfare functions.

All consistent (up to some technical conditions) excess values in this definition of consistency

are found. Every consistent excess value minimizes an additively separable objective function.

The Lagrange technique leads to the condition of equalizing the sums in coalitions containing

any fixed player of some functions depending on the corresponding values of the excess function.

Then, on the second stage, among these solutions, we find those which are extensions of

strictly monotonic parametric allocation methods, i.e. coincide with them on the class of TU

games corresponding to surplus sharing problems.

On the class of surplus sharing problems they coincide with the one-parametric family of

consistent and decentralizable methods due to Moulin (1987).

The paper is organized as follows. In section 2 we give the definition of solutions and some

of their properties both for allocation problems and for cooperative games. An interrelation
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between them is briefly discussed. In section 3 the definition of excess solutions for TU games

is given and a correspondence between these solutions and parametric allocation methods is

established. Section 4 is devoted to the definition of consistency for TU game excess solutions.

The general form of consistent excess values is found.

The main result of section 5 shows that some mixtures of the egalitarian and of proportional

allocation methods (Moulin (1987)) for surplus sharing problems are unique, satisfying sym-

metry, continuity, and consistency in both allocation and game-theoretic senses. Concluding

remarks describe the open problems connected with the conjecture that strict monotonicity of

allocation methods and of characteristic functions of the reduced games, used in the paper, may

not be necessary.

2 Definitions and comparisons of allocation methods and

TU game solutions

Let N be any finite set. An allocation problem or a problem with claims, is a pair 〈x, T 〉, where

x ∈ RN
++ is the claim, T > 0 the total to be allocated. If T ≤

∑
i∈N xi, then the allocation

problem is a cost sharing problem, and if
∑

i∈N xi ≤ T, then the allocation problem is called a

surplus or profit-sharing problem.

Definition 1 A solution of 〈x, T 〉 is a vector t ∈ RN
+ such that

1)
∑

i ti = T, and

2) 0 ≤ ti ≤ xi. for T ≤
∑

i∈N xi, and xi ≤ ti ∀i for T ≥
∑

i∈N xi. .

An allocation method is a function F that assigns to every allocation problem a unique solution

vector t = F (x;T ).

The condition 2) is called the core property. If it does not hold, then the solution (allocation

method) is called unconstrained.

It is easy to note that the allocation problems can be considered as a particular class of

TU games. In fact a TU cooperative game is a pair 〈N, v〉, where N is a finite set of players,

v : 2N → R1 is a characteristic function with a convention v(∅) = 0. The values v(S), S ⊂ N

represent powers of coalitions. For cost allocation problems the characteristic function is defined

as follows:

v(S) = (T −
∑
j∈N\S

dj)+ = max{0, T −
∑
j∈N\S

dj)}, S ⊂ N. In fact, the coalition S can guarantee

itself the amount remained after satisfaction all other players by their claims if the amount is

positive.
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For surplus sharing problems the claims may be considered as the amounts which the agents

guarantee themselves separately and all coalitions different from the grand one are flat: v(S) =∑
j∈S dj, and v(N) = T as for cost allocation problems.

Surplus sharing problems can be also considered as TU bargaining problems whose disagree-

ment points coincide with claims and the bargaining sets are half spaces {x ∈ RN |
∑

i∈N xi ≤
T}.

Denote by Gc and Gs the classes of TU games coresponding to cost and surplus sharing

problems respectively. Note that the both classes are subclasses of positive TU games, i.e.

games with positive range of the characteristic functions.

Now we are going to compare the definition of cooperative game solutions with that of

solutions to allocation problems. For this purpose recall the definition of TU game solutions:

Let N be a universal set of players, GN , (G+) be the classes of all (positive) TU games whose

player sets are contained in N , GN ⊂ G be the class of all TU games with the set of players N :

〈N, v〉 ∈ GN ⇐⇒ N ⊂ N , v : 2N → R, v(∅) = 0.

Let Γ = 〈N, v〉 ∈ GN be an arbitrary game,

X(Γ) = {y ∈ RN |
∑
i∈N

yi ≤ v(N)},

be the set of feasible payoff vectors of the game Γ, and

Y (Γ) = {y ∈ Rn |
∑
i∈N

yi = v(N)}

be the set of efficient (Pareto optimal) payoff vectors.

For any x ∈ RN , S ⊂ N denote by xS the projection of x on the space RS, and x(S) :=∑
i∈S xi, with a convention x(∅) = 0. Throughout the paper we shall write v(i) instead of v({i})

and v(S ∪ i) instead of v(S ∪ {i}).

Definition 2 A solution for a class G ′ ⊂ GN is a mapping σ, assigning to each game Γ ∈ G ′ a

subset σ(Γ) ⊂ X(Γ) of its payoff vectors. A solution is efficient if σ(Γ) ⊂ Y (Γ).

If for any game Γ ∈ G ′ the set σ(Γ) consists of a single payoff vector, then the solution is

called single-valued or a value.

Evidently, Definition 2 of efficient single-valued solutions agree with Definition 1 on the

classes Gc and Gs except, possibly, for the condition 2) in Definition 1. This condition applied

to the classes Gc and Gs would mean that the solution set for each game should be contained in

its core that is in general not necessary for TU game solutions.
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We shall call allocation methods whose ranges do not satisfy the second condition in Defi-

nition 1 unconstrained allocation methods.

Moreover, we restrict ourselves by symmetric, anonymous, and continuous allocation meth-

ods and cooperative game values respectively.

Definition 3 An allocation method F is symmetric, if t = F (x;T ) and xi = xj imply ti = tj.

This definition may be also called by ”equal treatments of equals”: equal claims of agents

lead to equal gains (losses).

For TU game values we need a stronger property:

Definition 4 A value Φ for the class G is anonymous, if Φπ(i)(N, πv) = Φi(N, v) for all games

〈N, v〉, all i ∈ N and every permutation π of N. Here the game 〈N, πv〉 is defined by (πv)(πS) :=

v(S) for all S ⊆ N ;

Definition 5 A value Φ for the class GN is symmetric or satisfies the equal treatment property, if

the equalities v(S∪{i}) = v(S∪{j}) for all S 63 i, j and some i, j ∈ N imply Φi(N, v) = Φj(N, v).

It is obvious that if a value Φ is anonymous then it is symmetric, but not vice versa, and

that Definitions 3 and 5 coincide on the classes Gc,Gs.

Consider now the consistency property both for allocation methods and for TU game solu-

tions.

Definition 6 A solution F for allocation problems is consistent if for any S ⊂ N

t = F (x, T ) =⇒ tS = F (xS,
∑
i∈S

ti). (1)

Pairwise consistency requires (1) only for S, |S| = 2.

This property says that a solution vector remains to be a fair allocation when restricted to

any subgroup of the agents. The same property is applied to the characterization of TU game

solutions:

Definition 7 A solution σ is consistent in a class G ′ ⊂ GN of games, if for any game 〈N, v〉 ∈ G ′

from the class the reduced game, 〈N \ R, vxN\R〉 being obtained when a coalition R leaves the

game with the payoffs xR prescribed them by the solution, also belongs to the class G ′ and

x = (xN\R, xR) ∈ σ(N, v), implies xN\R ∈ σ(N \ T, vxN\R).
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Consistency of a solution, as in the allocation problems case, describes the property that for

every solution vector, any of its parts remains the solution of a reduced game when the comple-

mentary players leave the game with payoffs prescribed them by the solution vector. However,

Definition 7 does not answer what is the reduced game itself. In contrast with Definition 6,

the characteristic function of the reduced game is not defined uniquely by the definition of the

initial game and the payoff vector. Therefore, in order to give the formal definition of consis-

tency first it is necessary to define reduced games themselves. Several definitions of the reduced

games and the same number of the definitions of solution consistency are known. There is the

detailed survey of almost all of them in Thomson (1996). We recall here only the most popular

definitions of the reduced games.

The first one is due to Davis and Maschler (1965), who defined it for every payoff vector x

as follows:

vxN\R(S) =

v(N)− x(R), if S = N \R,

maxQ⊂R(v(S ∪Q)− x(Q)) otherwise.
(2)

The linearly reduced games (Ruiz et al. (1998)) are defined for R = {i} by

vxN\i(S) =

v(N)− xi, if S = N \ {i},

wn,sv(S) + (1− wn,s)(v(S ∪ i)− xi) otherwise,
(3)

where n = |N |, s = |S|, wn,s ∈ [0, 1]− weighting coefficients. For arbitrary sets of players

leaving the game the characteristic function of the linearly reduced game is obtained by the

repeated application of (3).

The subgame is a particular case of (3) when wn,s = 1 for all n, s = 1, . . . , n − 2, and the

complement reduced games — when wn,s = 0.

Note that in all definitions of the reduced games the reduced value of the grand coalition

N \R is equal to v(N)− x(R). If x ∈ σ(N, v) is a solution vector, then this definition preserves

its efficiency in any reduced game. Therefore, in the sequel we also follow this definition and

will define only the values of reduced characteristic functions for coalitions different from the

grand ones.

It is worthwhile to compare Definition 6 with those (2) and (3) for the classes Gc and Gs
with the help of the following diagram:

〈N, T ; {di}i∈N〉 −→ 〈N, v〉

↓ ↓

〈N \R, T −
∑

i∈R xi; {dj}j∈N\R〉 −→ 〈N \R, vx〉.

(4)
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Here 〈N, T ; {di}i∈N〉 is an allocation problem, 〈N, v〉 the corresponding to this problem TU

game from the class Gc or Gs, x ∈ RN
+ is an arbitrary vector satisfying Definition 1. In the

second line of the diagram the corresponding reduced allocation problem and game are placed.

The question is: for what definitions of the reduced games and payoff vectors the diagram

is commutative? It is easy to check that the answer is positive for the Davis–Maschler (2)

definition of the reduced games and every efficient vector x. 1

However, e.g. for the linear reduced games defined in (3) the diagram is commutative only

for the trivial case T =
∑

i∈N di.

The definitions of the reduced game providing TU game consistency of the extended para-

metric methods and commutativity of the diagram are found in the last section of the paper.

3 Parametric allocation methods and TU games solu-

tions

In this section we recall definitions and properties of the parametric allocation methods and

define their TU game analogues.

3.1 Parametric allocation methods

Definition 8 An allocation method F ( a value Φ) is continuous, if it is jointly continuous in

all arguments (the function Φ(N, v) is jointly continuous in all variables v(S), S ⊆ N.)

Young (1987) has found the general form of symmetric, continuous, and pairwise consistent

allocation methods. They are parametric:

Definition 9 An allocation method F is parametric, with representation f : R1
++ × [a, b] →

R1, f(d, a) = 0, f(d, b) = x, if

t = F (d, T ) ⇐⇒ ∃λ ∈ [a, b] s.t. ∀i ti = f(di, λ)

and
∑

i ti = T.

Theorem 1 (Young (1987)) . A continuous allocation method F is symmetric and pairwise

consistent if and only if it is representable by a continuous parametric function.

1The diagram is also commutative for the reduced games due to Hart —Mas-Colell (1989) for a solution

vector x = Φ(N, v).
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In the proof of the Theorem 1 it is shown that the continuous parametric methods are

monotone:

Definition 10 An allocation method F is (strictly) monotonic, if

T > T ′ =⇒ F (d;T ) ≥ F (d;T ′)

(T > T ′ =⇒ F (d;T ) > F (d;T ′)) .

It is clear that if a parametric method F is strictly monotonic, then it is representable by

a function f(d, λ) which is strictly monotonic in the second variable and, hence, there exists

the inverse function f−1(d, t) := e(d, t). In this notation x is the parametric solution to the

allocation problem 〈N, T ; {dj}j∈N〉 if x is a solution vector satisfying the equalities

e(di, xi) = λ for all i ∈ N. (5)

In the same paper Young has shown that the solution of a parametric method minimize an

additively separable objective function. Since in the rest of the paper we consider only strictly

monotonic parametric methods, we cite the result only for such parametric methods:

Theorem 2 (Young (1987)) . A symmetric, continuous, and strictly monotonic allocation

method F is pairwise consistent if and only if its solutions satisfy the following equation:

F (N, T : {dj}j∈N) = arg min
x∈RN

+
0≤di≤xi

∑
i∈N

∫ x

0

f−1(d, y) dy. (6)

For surplus sharing problems one more condition on x is: di ≤ xi; and for cost allocation

problems the condition is: di ≥ xi.

It is easy to check that the Lagrange conditions for the problem (6) lead to the equalities (5).

3.2 Excess solutions for TU games

There are solutions for TU games which also could be called ”parametric” because they coincide

with the parametric methods on the class of two-person games. For example,

Definition 11 A solution Φ for a class G ′ ⊂ GN is translation covariant, if Φ(N, v + a) =

Φ(N, v) + a for all a ∈ Rn and all games 〈N, v〉 ∈ G ′. Here the game 〈N, v + a〉 ∈ G ′ is defined

by (v + a)(S) := v(S) +
∑

j∈S aj for all S ⊆ N ;

Observe that translation covariant solutions possess the following property: let Φ be any

translation covariant solution, 〈N, v〉, 〈N,w〉 be two arbitrary games. Then the equalities

10



v(S)− x(S) = w(S)− y(S) for all S ⊂ N

imply

x ∈ Φ(N, v) ⇐⇒ y ∈ Φ(N,w). (7)

Recall that the difference v(S) − x(S) is the excess value of a coalition S w.r.t. x. The

relation (7) means that if for two TU games with the same player’s sets for some payoff vectors

x, y the excess vectors coincide, then both x, y belong to a translation covariant solution or do

not belong simultaneously.

For any surplus allocation problem 〈N, T ; d〉 considered as a game from the class Gs such a

solution is defined by the equalities:

x = Φ(N, T ; d) ⇐⇒ Φi(N, T ; d)− xi = Φj(N, T ; d)− xj, ∀ i, j ∈ N,
∑
i

Φi(x, T ) = T. (8)

The equalities (8) imply that Φ is the egalitarian method (Moulin (2001)). This method is

parametric with representation f(d, λ) = d− λ = e−1(d, λ).

For cost allocation problems the allocation method, corresponding to any translation covari-

ant single-valued solution for the class Gc, is the uniform loss method (Moulin (2001)) which

maximizes the lexmin ordering applied to the vectors of losses (xi − di), i ∈ N.
In the rest part of the paper we consider only the correspondence between allocation methods

for surplus sharing problems and TU game solutions.

Another example is the proportional solutions defined for positive TU games with help of

the proportional excess e(v, x) = v/x as follows:

Definition 12 A solution Φ is proportional for the class of positive TU games G+ if for any

〈N, v〉, 〈N,w〉 ∈ G+ the equalities

v(S)

x(S)
=
w(S)

y(S)
for all S ⊂ N

imply (7).

The parametric representation of proportional solutions on the class of allocation problems

is obtained with representation f(d, λ) = d/λ.

Definitions 11 and 12 may be extended to an arbitrary excess function e : R2 → R1 asso-

ciating with each TU game 〈N, v〉 every its payoff vector x and a coalition S ⊂ N a negative

utility e(v(S), x(S)) of the vector x for the coalition S.
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Definition 13 A solution Φ for a class G ′ ⊂ GN is called an excess solution, if there exists an

excess function e : R2 → R1 such that for any two games 〈N, v〉, 〈N,w〉 ∈ G ′ ⊂ GN the equalities

e(v(S), x(S)) = e(w(S), y(S)) for all S ⊂ N (9)

imply (7).

It is clear that each continuous excess function which is strictly monotonic in the second

variable defines the parametric, possibly unconstrained, solution Φe for allocation problems with

representation

f(x, λ) = e−1(x, λ) (10)

where the inverse function e−1 is taken w.r.t. the second variable.

In the sequel we consider only continuous and strictly monotonic in the second variable

excess functions.

In contrast with parametric allocations methods, one excess function can define many excess

TU game solutions. In fact, the equalities (9) imply that the excess function e defining an excess

solution is determined up to any monotonous transformation g : 2N × R → R such that the

equalities

g(S, e(v(S), x(S))) = g(S, e(w(S), y(S))) for all S ⊂ N

are equivalent to those (9).

For anonymous excess solutions the function g may depend only on the size of coalitions.

An example of such transformations is the per capita excess function, defined by the classical

excess e(x, y) = x− y and the function g(s, t) =
t

s
: such that g(s, v(S)− x(S)) =

v(S)− x(S)

s
.

Nevertheless, for technical simplicity we shall keep the definition of the excess functions as

functions of two variables. It is of no difficulty to add their dependence on coalitions’ sizes in

what follows.

The excess solutions admit a natural definition of their consistency. It will be the subject of

the next section.

4 Consistency for excess TU game solutions

The aim of this section is to describe all anonymous, continuous, and consistent TU game excess

values under some conditions on the reduced games. The main problem is to define TU game

consistency itself, because, as it had been already mentioned in section 2, it may be done by

different definitions of reduced games.
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4.1 Some properties of the reduced games

Since we deal only with the excess solutions, among which we are looking for consistent ones,

it is natural to define the reduced values of the corresponding excess values. It turns out to be

simpler than directly defining the characteristic function values for the reduced games. Such

an approach for proportional excess functions had been applied by the author in Yanovskaya

(2002).

Let an excess function e be given. Consider an arbitrary TU game 〈N, v〉 ∈ GN . Let T ⊂ N

be any coalition of players leaving the game, x be a payoff vector for 〈N, v〉.
We would like to define a reduced game 〈N \ T, vxT 〉 on the player set N \ T. It is possible

to define the characteristic function vxT by different ways. Therefore, we may impose some

assumptions for this function. We shall formulate them as axioms which the reduced game

should satisfy. Some axioms describe conditions on the characteristic function vxT , the other

ones deal with the values of the excess function e(vxT (S), x(S)), S ⊂ N \ T.

1. Independence of inessential players. The values of excess function for the reduced game

e(vxT (S), x(S)) depend only on the values e(v(S), x(S)) and e(v(S ∪Q), x(S ∪Q)), Q ⊂ T.

Therefore, we can denote the excess e(vxT (S), x(S)) as a function

e(vxN\T (S), x(S)) = ϕN,S,T ({e(v(S ∪Q)), x(S ∪Q))}Q⊂T ). (11)

In the statement of other axioms we suppose the property 1 to be fulfilled.

2. Path Independence. For any coalitions T1, T2,⊂ N such that T1∩T2 = ∅, S ⊂ N \(T1∪T2)
and a payoff vector x,

vxT1T2(S) = vxT2T1(S),

where vxT1T2(S) is defined from the equality

e(vxT1T2(S), x(S)) = ϕN,S,T1({e(vxT2(S ∪Q), x(S ∪Q))}Q⊂T1 , ).

Note that the properties 1 and 2 imply that it suffices only to consider the functions

ϕN,S,i(e(v(S), x(S)), e(v(S ∪ i), x(S ∪ i)) for one-person coalitions T = {i}. In fact, the path in-

dependence property permits to define all functions ϕN,S,T by the known functions ϕN,S′,i, S
′ ⊃

S, i ∈ N \ S ′.
The property 2 is also supposed to be fulfilled in the sequel. For simplicity of notation we

omit the index N in ϕN,S,i when it does not lead to a confusion. The next four properties are

rather technical:

3. Monotonicity. The functions ϕN,S,i are monotone increasing in each variable.
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4. Normalization condition.

ϕN,S,i(a, a) = a for any a ∈ R1.

5. Continuity The functions ϕN,S,i are continuous in both variables.

6. Anonymity.

ϕN,S,i = ϕn,s (12)

for some function ϕn,s : R2 → R1, where n = |N |, s = |S|.

Observe that anonymity implies that for any coalition T $ N \ S

ϕN,S,T = ϕn,s,t (13)

for some functions ϕn,s,t : Rt+1 → R1, where t = |T |.
We give a short discussion of the properties 1–6, which further will be considered as axioms

defining the characteristic functions of the reduced games.

Axiom 1 states that in the reduced games the value of the excess for a coalition S w.r.t. to

a payoff vector x in the reduced game depends only on the the excess values of the initial game

for the coalition S and all coalitions consisting of S and the leaving players and w.r.t. the same

payoff vector.

All known definitions of the reduced games satisfy this property for the excesses e(x, y) =

x− y and e(x, y) =
x

y
for positive games.

The second independence axiom, axiom 2, states independence of the way of reducing: it

doesn’t matter in what order we reduce a game and whether the reducing on a player subset is

made at once or by a consecutive elimination of players. This axiom is naturally fulfilled for the

Davis–Maschler definition of the reduced games and for complement consistency due to Moulin

(1985). As for linear dependence of reduced games on the initial ones (“linear consistency”), this

property was used by Yanovskaya and Driessen (2001) for the definition of weighting coefficients.

Axiom 3 is a property of strict monotonicity of excesses of the reduced games in excesses

of the initial one. The definition of Davis–Maschler of the reduced games (2) does not meet

this property: the excesses of the reduced games are only non-decreasing in both variables.

Moreover, this axiom also excludes from consideration the subgames as reduced games, and also

the complement reduced games (Moulin (1985)). But on the other hand, strict monotonicity

permits separability theorems be applied (see Gorman (1968)) for determining the general form

of reduced games.

Axiom 4 states that the equality of both excess values e(v(S), x(S)) and e(v(S ∪ i), x(S ∪
i), i 6∈ S implies that their common value coincides with the corresponding excess value for the

coalition S in the reduced game after leaving the player i.
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It is clear that both axioms 2 and 3 imply that all excess values e(vx(S), x(S)) in the reduced

game are between those e(v(S), x(S)), e(v(S ∪ i), x(S ∪ i)) in the initial game , i.e. they are

some “means” of these values.

Continuity of the functions ϕN,S,i assumed by axiom 5 does not need any comment.

Anonymity is a standard property. It states that the definition of the reduced excess for some

coalition depends only on its size. However, axiom 6 turns out to be unnecessary for consistency

of anonymous solutions: there are anonymous solutions (e.g. the core) which are consistent

w.r.t. definitions of the reduced games not satisfying axiom 6. In the sequel anonymity is only

supposed for simplification of expressions which are rather lengthy even under the condition of

anonymity.

4.2 Characterization of the reduced games

In this subsection we describe all reduced games satisfying axioms 1–6. The proof of the following

theorem is based on some lemmas on strict separability of social welfare functions which can

be found in (Yanovskaya 2002)). In order to make the paper self-contained, they are placed in

Appendix as well.

Theorem 3 Given a TU game 〈N, v〉 ∈ GN and a payoff vector x, then the reduced game

〈N \ S, vxS〉 satisfies axioms 1–6 if and only if its characteristic function is defined by repeated

application the following definition of the reduced games

〈N \ i, vx〉, when only one player leaves the game:

ψn−1,s(e(v
x(S), x(S)) = ψn,s(e(v(S), x(S)) + ψn,s+1(e(v(S ∪ i), x(S ∪ i)), (14)

where the collection of continuous monotonically increasing functions ψn,s : R1 → R1, for n =

3, . . . , s ≤ n− 2, satisfies the equalities

ψn−1,s = ψn,s + ψn,s+1 for all n = 3, . . . , s < n− 2. (15)

Proof. Let a collection of functions ϕn,s : R2 → R1, n = 1, . . . , s < n − 2 satisfy axioms 2–6.

Then Lemma 3 implies (14), and Lemma 4 implies (15).

Now we prove the ‘if’ part of the Theorem.

Let the reduced game 〈N \ i, vx〉 be defined by equalities (14) and (15). Then the functions

ϕn,s defined in (11) and (12) satisfy axioms 3 – 6. We have only to check Path Independence,

i.e. the equality
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ϕn,s,2

(
e(v(S), x(S)), e(v(S ∪ i), x(S ∪ i)), e(v(S ∪ j), x(S ∪ j)), e(v(S ∪ {i, j}), x(S ∪ {i, j}))

)
=

ϕn,s,2

(
e(v(S), x(S)), e(v(S ∪ j), x(S ∪ j)), e(v(S ∪ i), x(S ∪ i)), e(v(S ∪ {i, j}), x(S ∪ {i, j}))

)
.

(16)

for all S $ N \ {i, j} and all values v(S), v(S ∪ i), v(S ∪ j), v(S ∪ {i, j}), x(S), xi, xj.

By definition of the functions ϕn,s and using both equalities (15),(14), the left part of (16)

equals

ϕn−1,s

(
ϕn,s(e(v(S), x(S)), e(v(S ∪ i)), x(S ∪ i)),

ϕn,s+1(e(v(S ∪ j), x(S ∪ j)), e(v(S ∪ {i, j}), x(S ∪ {i, j}))
)

=

ϕn−1,s

(
(ψn,s + ψn,s+1)

−1 (ψn,s(e(v(S), x(S)) + ψn,s+1(e(v(S ∪ i), x(S ∪ i)),

(ψn,s+1 + ψn,s+2)
−1 (ψn,s+1(e(v(S ∪ j), x(S ∪ j)) + ψn,s+2(e(v(S ∪ {i, j}), x(S ∪ {i, j}))

)
=

(ψn−1,s + ψn−1,s+1)
−1

(
ψn,s(e(v(S), x(S)) + ψn,s+1(e(v(S ∪ i), x(S ∪ i))+

ψn,s+1(e(v(S ∪ j), x(S ∪ j))) + ψn,s+2(e(v(S ∪ {i, j}), x(S ∪ {i, j}))
)
.

(17)

The right hand of the equalities (17) is invariant under the permutation of i and j. Therefore,

we would obtain the same value if we begin with the right-hand side in (16), i.e. equality (16)

has been proved.

Theorem 3 defines reduced games through collections of functions, satisfying equalities (15).

Observe that the functions ψ2,1 in (14) may be chosen arbitrary.

4.3 Consistent excess values for TU games

The following Theorem describes the general form of efficient, anonymous, and consistent excess

values.

Theorem 4 For each continuous and strictly monotonic in the second variable excess function

e, any corresponding excess value Φ for the class G+ is efficient, anonymous, and consistent in

the definition (14) of the reduced games if and only if

Φ(N, v) = arg min
x∈X+(N,v)

∑
S⊂N

τn,s(v(S), x(S)), (18)

where τn,s : R2
++ → R1

++ is a collection of strictly convex and differentiable in the second variable

functions, n = 2, . . . , s ≤ n− 1, satisfying

∂τn,s(x, y)

∂y
= ψn,s (e(x, y)) , (19)
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and the functions ψn,s satisfy the condition of Theorem (3).

Proof. The ‘if’ part is checked directly: Let Φ be defined by (18) and Φ(N, v) = x. Note that

the minimum in (18) is attained in a unique strictly positive point because of strict convexity

of the functions τn,s.

Then the Lagrange conditions for Φ are the following:

∑
S3j

ψn,s (e(v(S), x(S))) =
∑
S3k

ψn,s (e(v(S), x(S))) for all j, k ∈ N. (20)

Substituting (14) into (20) we obtain∑
S3j

S⊂N\{i}

ψn−1,s
(
e(vxN\{i}(S), x(S))

)
=

∑
S3k

S⊂N\{i}

ψn−1,s
(
e(vxN\{i}(S), x(S))

)
for all j, k ∈ N \ {i}, s < n− 1.

(21)

The equalities (21) are just the Lagrange conditions for xi, i.e. the vector x without i− th
component xi, to be the solution of the problem

min
y∈RN\{i}++

y(N\{i})=v(N)−xi

∑
j∈N\{i}

τn−1,s(e(v(S), y(S))). (22)

Therefore, xi = Φ(N \ i, vx,i).

Let us prove the ‘only if’ part. Let Φ be an excess value which is efficient, anonymous, and

consistent in the definition (18) value and 〈N, v〉 be an arbitrary positive game, Φ(N, v) = x.

For arbitrary i, j ∈ N consider the reduced game on the set {i, j} w.r.t. the vector x. Then by

iterating the definition (14) and putting ψ2,1(t) ≡ t, we obtain

e(vxi,j(i), xi) =

(
n−2∑
q=0

(
n− 2

q

)
ψn,1+q

)−1 ∑
Q⊂N\{i,j,}

ψn,1+q(e(v({i} ∪Q), x({i} ∪Q)))

 . (23)

Since the value Φ is anonymous and consistent, for the reduced game 〈{i, j}, vxi,j〉 we should

have

e(vxi,j(i), xi) = e(vxi,j(j), xj). (24)

Substituting (24) in (23) we obtain

∑
Q⊂N\{i,j,}

ψn,1+q (e(v({i} ∪Q), x({i} ∪Q))) ==
∑

Q⊂N\{i,j}

ψn,1+q (e(v({j} ∪Q), x({j} ∪Q))) ,

The last equality holds for any i, j ∈ N. Thus, it can be rewritten as

17



∑
S3i
S⊂N

ψn,s (e(v(S), x(S))) =
∑
S3j
S⊂N

ψn,s (e(v(S), x(S))) for any i, j ∈ N. (25)

The equalities (25) coincide with (20). Therefore, the vector xminimizes the sum
∑

S⊂N τn,s(e(v(S), x(S))).

Compare Theorem 4 with Theorem 2. Both objective functions in (6) and (18) are additively

separable. The components in (6) and those in (18), corresponding to one element coalitions,

coincide up to monotonic functions ψn,s in (18) and (19). Just because of the functions ψn,s, a

parametric solution, in general, differs from the corresponding consistent TU game solution on

the class Gs. (18)

5 Double consistent surplus sharing methods

In this section we describe all continuous and strictly monotonic parametric methods for surplus

sharing problems which are consistent in the sense of TU game excess consistency (14), (15)

for the class Gs. As it had been already noted in subsection 3.1, excess functions for strictly

monotonic parametric methods are defined up to monotone transformations. Thus, it suffices

only to define their level lines.

Lemma 1 If an unconstrained strictly monotonic parametric method Φ with representation f

for surplus sharing problems is consistent in Definition 7 to the class Gs of TU games, where

the reduced games are defined by the equalities (14), then the level lines of the excess function

e = f−1 are straight lines.

Proof. Let 〈N = {1, 2, 3}, v〉 be a three-person TU game from the class Gs. Consider all its

reduced games on two-player sets, in particular on the player set {i, j}. Then for some functions

ψ3,1, ψ3,2 the following equalities hold for all x ∈ X(N, v) :

e(vxi,j(i), xi)) = ψ3,1(e(v(i), xi) + ψ3,2(e(v(i) + v(k), xi + xk)

e(vxi,j(j), xj)) = ψ3,1(e(v(j), xj) + ψ3,2(e(v(j) + v(k), xj + xk).
(26)

Let x = Φ(N, v) and at the same time x be a parametric solution of the three-person allocation

problem 〈{v(i)}i=1,2,3, v(N)〉 defined by the excess function e. Then, by Theorem 1 and (10) we

should have

e(v(i), xj) = e(v(j), xj). (27)

From (26), (27), and arbitrariness of the choice i, j ∈ {1, 2, 3} it follows that

e(v(i) + v(k), xi + xk) = e(v(j) + v(k), xj + xk) = e(v(i) + v(j), xi + xj). (28)
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We could take v(i) = v(j) for any pair of players i, j. Then by symmetry of the solution x

for the allocation problem we should have xi = xj and equalities (28) imply

e(v(i), xi) = e(v(j), xj) ⇐⇒ e(2v(i), 2xi) = e(2v(j), 2xj). (29)

Therefore from (28) and (29) it follows

e(v(i), xi) = e(v(j), xj) =⇒ = e

(
xi + xj

2
,
v(i) + v(j)

2

)
. (30)

The last relation means that the level lines of the function e are straight lines. Therefore,

e(v, x) = c =⇒ v = kx+ b, (31)

where the parameters k and b, in general, may depend on c.

As the level lines of a function cannot intersect, then for the general case, when both the

values of the characteristic functions and the players’ payoffs may be arbitrary numbers, we

should have k(c) ≡ k, i.e. the level lines are parallel. In this case we have e(v, x) = ϕ(x− λv)

for some increasing function ϕ.

However, for surplus sharing problems the domain of the excess functions is the positive

orthant R2
++, and the level lines may intersect outside of it. Because of the implication (26),(27)

=⇒ (28) this may happen only in zero point. If all they intersect in it, then e(v, x) =
x

v
for

all x, v ∈ R1
++. Suppose that at least one level line has a form x = av + b, b 6= 0, and let

k > 0, b > 0. Then either all the level lines are parallel straight lines, or there are some level

lines intersecting in zero point. By the property (27) =⇒ (28) the line y = ax is also a level

line. If x = Av is another level line of e, then all the lines x = qv, a ≤ q ≤ A are also the level

lines of e. Let A be the maximal number possessing this property (A may be equal to infinity).

It means that other level lines have the form x = Av + b. Note that there exist no level lines

x = kv with k < a.

Thus, the general form of the excess functions, satisfying the conditions of lemma 1 is the

following:

e(v, x) = const ⇐⇒


v
x

= c, if a ≤ x
v
≤ A,

x = av + b1(c), if x
v
< a,

x = Av + b2(c), if x
v
> A.

(32)

for some 0 ≤ a ≤ A ≤ ∞.
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Figure 1: Level lines of the excess function (32)

Reveal among these excess functions those for which the corresponding parametric solutions

for surplus sharing problems satisfy the core property.

Corollary 1 Under the assumptions of Lemma 1 a solution Φ for surplus sharing problems

satisfies the core property Φi(N, v) ≥ v(i)∀i ∈ N if and only if the corresponding excess function

has the following form:

e(x, y) = const ⇐⇒


x

y
= c, if

y

x
≤ A,

y = Ax+ b(c), if
y

x
≥ A

(33)

for some A ≥ 1.

Proof. The ’if’ part.

Let an excess function (33) be given. Then, taking into account (10), we can define the corre-

sponding parametric allocation method ΦA for surplus sharing problems as follows:

ΦA
i (x, T ) =


xi∑n
j=1 xj

T, if T ≤ A
∑n

j=1 xj,

Axi +
1

n

(
T − A

n∑
j=1

xj

)
, if T ≥ A

∑n
j=1 xj.

(34)

The inequality
∑

i∈N xi ≤ T, implies the core property ΦA
i (x, T ) ≥ xi for all i ∈ N.

The ’only if’ part.

Let an excess function e be defined in (32). Then the corresponding parametric solutions for

surplus sharing problems are described by the following two-dimensional family Φa,A :

Φa,A
i (x, T ) =



axi +
1

n

(
T − a

n∑
j=1

xj

)
, if T ≤ a

∑n
j=1 xj,

xi∑n
j=1 xj

T, if a
∑

i∈N xi ≤ T ≤ A
∑n

j=1 xj,

Axi +
1

n

(
T − A

n∑
j=1

xj

)
, if T ≥ A

∑n
j=1 xj.

(35)
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Let the solutions Φa,A satisfy the core property Φa,A
i (x, T ) ≥ xi for all i ∈ N. The inequality

T ≥
∑

i∈N xi implies that both numbers a,A are greater or equal to 1. Let us show that the

solutions Φa,A can not be defined by the first line in (35). In fact, for all T satisfying the

inequality

T ≤ a
n∑
j=1

xj

it should hold

axi +
1

n

(
T − a

n∑
j=1

xj

)
≥ xi,

that means

(a− 1)xi ≥
1

n

(
a

n∑
j=1

xj − T

)
∀i = 1, . . . , n. (36)

The last inequalities must hold for any x ∈ Rn
+ such that

∑n
i=1 xi < T. Put x = (1, ε

n−1 , . . . ,
ε

n−1),

where ε > 0 is a sufficiently small number. Then
∑n

i=1 xi = 1 + ε, and if T is enough close to∑n
i=1 xi : T = 1 + ε+ α, then for this case inequalities (36) for i 6= 1 have the form:

(a− 1)ε ≥ n− 1

n
((a− 1)(1 + ε)− α) . (37)

It is easy to notice that the inequality (34) does not hold for a fixed a > 1 and sufficiently small

ε and α.

Thus, we obtain the one-dimensional family of sharing solutions (37). Observe that this

family coincides with that in Moulin (1987), Theorem 1, describing all consistent and decen-

tralizable surplus sharing solutions.

Lemma 1 and Corollary 1 imply the main result of the section:

Theorem 5 A strictly monotonic parametric method Φ for surplus sharing problems satisfies

the core property and is consistent in Definition 7 to the class Gs of TU games, where the

reduced games are defined by equalities (14) if and only if the level lines of the corresponding

excess function satisfy (34)

Proof. We should prove only the ’if’ part of the Theorem.

Let Φ be a strictly monotonic parametric method for surplus sharing problems with excess

function e. By Corollary 1 it has the form (34). Consider an arbitrary three-person game

〈N = {1, 2, 3}, v〉 ∈ Gs and let x = Φ(N, v(N); {v(i)}i∈N). Then equalitites (27) hold. The

equalities (34) imply the relation (29) and, hence, (28). Now equalities (27) and (28) imply

the equalities e(vxij(i), xi) = e(vxij(j), xj) for all i, j = 1, 2, 3 that means consistency of Φ when

reducing a three-person players’ set on two-person ones.
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By induction in the number of players it is not difficult to check the TU-game consistency

of F on the whole class Gs.

In spite of double consistency of the values satisfying the conditions the Theorem diagram

(4) may be not commutative for the corresponding definition of the reduced games. In fact, for

usual excess function e(v, x) = v−x equality (14) has the following form for the surplus sharing

problems, where v(S) =
∑

i∈S di :

ψn−1,s (e(vx(S), x(S))) = ψn,s

(
e(
∑
i∈S

di − x(S))

)
+ ψn,s+1

e( ∑
j∈S∪{i}

dj, x(S ∪ {i})

 , (38)

and taking into account that the solution vector x for the parametric allocation method, corre-

sponding to the excess into consideration satisfies the equalities

xi − di = xj − dj = λ ∀i, j ∈ N,

we should have for commutativity of the diagram the equalities

ψn−1,s(sλ) = ψn,s(sλ) + ψn,s+1((s+ 1)λ), (39)

which are inconsistent with condition (15) in Theorem 3.

Thus, the last result reveals among the excess functions satisfying the conditions of Theorem

5 those for which diagram (4) is commutative.

Corollary 2 A strictly monotonic double consistent allocation method defined in (34) provides

commutativity of diagram (4) for the definition (14) of the reduced games if and only is it is

proportional.

Proof. it is clear that for surplus sharing problems 〈N, T ; d〉, their proportional solution vectors

x satisfy the equalities

v(S)

x(S)
=
v({i})
x({i})

∀i ∈ N,S ⊂ N,

where 〈N, v〉 ∈ Gs is the TU game, correwponding to the surplus sharing problem, i.e. v(S) =∑
j∈S dj. Therefore, equalities (15) and (14) imply vx(S) =

∑
j∈S dj and diagram (4) is commu-

tative.

Let now Φ be any surplus sharing method satisfying (34). Then it is either proportional, or

is defined by the second line in (34). The second case does not provide commutativity of the

diagram. The proof of this fact is analogous to the proven before Corollary 2 non-commutativity

of the diagram for the egalitarian method (see (38),(39)).
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6 Concluding remarks

In the main theorems of the paper — Theorems 3 and 5 — two assumptions about strict

monotonicity of characteristic functions of the reduced games and of parametric allocation

methods have been made. However, perhaps these restrictions are not essential and the results

will hold without them as well. In fact, the definition of the most popular Davis–Maschler

reduced game can be obtained as the limit in p→∞ of the reduced games determined by the

power functions ψn,s(t) = wn,s · tp ( for the positive values of the excess functions) (Yanovskaya

2002b).

On the other hand, strict monotonicity of parametric methods seems to be natural within

hydraulic interpretation because of practical impossibility of vessels with zero volume’s parts as

it happens in hydraulic metaphora of non strict monotonic parametric methods.

Moreover, some non-strictly monotonic parametric methods ( such as e.g. the contested

garment one) may be approximated by strictly monotonic ones. Whether such approximations

are always possible is an open problem.
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Appendix

In the Appendix some properties of the functions ϕn,s (12) and ϕn,s,t (13) defining the charac-

teristic function of the reduced games are established.

Lemma 2 . Let F : R4 → R1 be a continuous function, strictly increasing in each variable and

satisfying the conditions:

(i)F (a, b, c, d) = F̄ (ξ1(a, b), ξ2(c, d)), where F̄ is an increasing in each variable function, and

(ii)F (a, b, c, d) = F (a, c, b, d) for all a, b, c, d.

Then F (a, b, c, d) = U(ξ1(a) + ξ2(b) + ξ3(c) + ξ4(d)) for some continuous strictly increasing

functions U, ξi, i = 1, 2, 3, 4.

Proof. The first condition (i) means that the subsets of variables (a, b), (c, d) of the function

F are strictly separable from their complements (c, d), (a, b) respectively. The condition (ii)

implies that the subsets (a, c), (b, d) are strictly separable from (b, d), (a, c) respectively. It is

clear that any point x ∈ {a, b, c, d} can be represented by an intersection or difference of the

subsets (a, b), (c, d), (a, c), (b, d). Other subsets are union of the points. Therefore, any subset

23



of the set {a, b, c, d} is strictly separable from its complement that means the complete strict

separability of the function F. By Gorman’s theorem (Gorman (1968)) this property together

with continuity and monotonicity of the function F implies the additive form stated in the

Lemma.

In the next Lemma we find the form of the functions ϕn,s (12).

Lemma 3 If the reduced game satisfies the axioms 1–6, then

ϕn,s(a, b) = (ψn,s + ψn,s+1)
−1
(
ψn,s(a) + ψn,s+1(b)

)
for some continuous strictly increasing functions ψn,s, s ≤ n− 2 such that

ψn,s(0) = 0.

Proof. From (17) and Lemma 2 it follows

ϕn,s,2(a, b, c, d) = ϕn−1,s(ϕn,s(a, b), ϕn,s+1(c, d)) =

Ū(ξ1n,s(a) + ξ2n,s(b) + ξ3n,s(c) + ξ4n,s(d)).
(40)

for some continuous increasing functions ξin,s, i = 1, 2, 3, 4, s < n−2, where we denoted the values

of excesses e(v(S), x(S)), e(v(S ∪ i), x(S ∪ i), e(v(S ∪ j), x(S ∪ j), e(v(S ∪ {i, j}), x(S ∪ {i, j}))
by a, b, c, d respectively.

Axiom 4 implies

Ū = (ξ1n,s + ξ2n,s + ξ3n,s + ξ4n,s)
−1.

Without loss of generality we may suppose that ξin,s(0) = 0 for all i = 1, 2, 3, 4, s ≤ n − 2.

Then by substituting in (40) consecutively c, d = 0 a, b = 0, we obtain

ϕn,s(a, b) = ϕn−1,s(·, 0)−1
(

(ξ1n,s + ξ2n,s + ξ3n,s + ξ4n,s)
−1(ξ1n,s(a) + ξ2n,s(b))

)
;

ϕn,s+1(c, d) = ϕn−1,s(0, ·)−1
(

(ξ1n,s + ξ2n,s + ξ3n,s + ξ4n,s)
−1(ξ4n,s(c) + ξ4n,s(d)

)
.

Path independence axiom implies that ξ2n,s = ξ3n,s, and axiom 4 implies that the previous

equalities have the form

ϕn,s(a, b) = (ψn,s + ψn,s+1)
−1(ψn,s(a) + ψn,s+1(b)). (41)

ϕn,s+1(c, d) = (ψn,s+1 + ψn,s+2)
−1(ψn,s+1(c) + ψn,s+2(d)), (42)

where we denoted ξ1n,s = ψn,s, ξ
2
n,s = ξ3n,s = ψn,s+1, ξ

4
n,s = ψn,s+2.

Our next step is to reveal a link between the functions ψn,s for different n, s < n− 2.
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Lemma 4 In the conditions of Lemma 3 the functions ψn,s satisfy the equalities

ψn−1,s = ψn,s + ψn,s+1, s ≤ n− 2, n = 3, . . . ,

up to positive multipliers Bn.

Proof.

Substituting (41) and (42) in (40) we obtain

ϕn−1,s

(
(ψn,s + ψn,s+1)

−1(ψn,s(a) + ψn,s+1(b)), (ψn,s+1 + ψn,s+2)
−1(ψn,s+1(c) + ψn,s+2(d))

)
=

(ψn,s + ψn,s+1 + ψn,s+1 + ψn,s+2)
−1(ψn,s(a) + ψn,s+1(b) + ψn,s+1(c) + ψn,s+2(d)).

(43)

Lemma 3 holds for any s ≤ n− 2, n = 3, . . . . Therefore, applying it to the equality (17) we

obtain

ϕn,s,2(v(S), v(S ∪ i), v(S ∪ j), v(S ∪ {i, j}) =

(ψn−1,s + ψn−1,s+1)
−1
(
ψn−1,s

(
(ψ1

n,s + ψn,s+1)
−1(ψ(v(S)) + ψn,s+1(v(S ∪ i))

)
+

ψn−1,s+1

(
(ψn,s+1 + ψn,s+2)

−1
(

(ψ1
n,s+1(v(S ∪ j)) + ψn,s+2(v(S ∪ {i, j}))

))
=

(ψn,s + 2ψn,s+1 + ψn,s+2)
−1
(
ψn,s(v(S)) + ψn,s+1(v(S ∪ i))+

ψn,s+1(v(S ∪ j)) + ψn,s+2(v(S ∪ {i, j}))
)
.

(44)

The equalities (44) and axiom 2 imply that the expression

ψn−1,s

(
(ψn,s + ψn,s+1)

−1(ψn,s(a) + ψn,s+1(b)
)

+

ψn−1,s+1

(
ψn,s+1 + ψn,s+2)

−1(ψn,s+1(c) + ψn,s+2(d))
) (45)

does not depend on the permutations of b and c. In particular, we may equalize the value of

(45) for (a, b, c, d) = (a, b, 0, 0) and (a, 0, b, 0) respectively, and remembering that ψn,s(0) = 0

for all n, s ≤ n− 2, we obtain

ψn−1,s

(
(ψn,s + ψn,s+1)

−1(ψn,s(a) + ψn,s+1(b)
)

=

ψn−1,s(ψn,s + ψn,s+1)
−1ψn,s(a) + ψn−1,s+1

(
(ψn,s+1 + ψn,s+2)

−1(ψn,s+1(b))
)
.

(46)

The equality (46) holds for any a, b. Taking a = 0 we obtain

ψn−1,s(ψn,s + ψn,s+1)
−1 = ψn−1,s+1(ψn,s+1 + ψn,s+2)

−1 = fn,s, (47)

where by fn,s we denote both parts of the equality (47). Hence, (46) and (47) imply that the

function fn,s is additive. Since the functions ψn,s, ψn−1,s, ψn,s+1, ψn,s+2 are continuous (axiom
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5), the functions fn,s are linear, and the equalities ψn,s(0) = 0 for all n, s ≤ n − 2 imply that

fn,s(t) = Cn,st.

Substituting a = b in (46) we obtain

ψn−1,s = ψn−1,s(ψn,s + ψn,s+1)
−1ψn,s + ψn−1,s+1(ψn,s+1 + ψn,s+2)

−1ψn,s+1. (48)

The last equality together with (46) implies

ψn−1,s = Bn,s(ψn,s + ψn,s+1)

for some constants Bn,s, and

ψn−1,s+1 = Bn,s(ψn,s+1 + ψn,s+2), (49)

i.e. Bn,s = Bn do not depend on s.

As the functions ϕn,s in (41) and (42) (where n is fixed!) do not depend on multiplying ψn,s

by any positive constants Bn, we may put Bn = 1. This completes the proof.
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