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Abstract. In a previous paper the authors have attached to each Dynkin
quiver an associative algebra. The definition is categorical and the algebra
is used to construct desingularizations of arbitrary quiver Grassmannians. In
the present paper we prove that this algebra is isomorphic to an algebra con-
structed by Hernandez-Leclerc defined combinatorially and used to describe
certain graded Nakajima quiver varieties. This approach is used to get an
explicit realization of the orbit closures of representations of Dynkin quivers
as affine quotients.

1. Introduction

Let Q be a Dynkin quiver and let k be an algebraically closed field of character-
istic zero. In [8] the authors have defined an algebra BQ. The definition of BQ is of
categorical nature and in principle can be applied not only to the path algebra of a
Dynkin quiver, but to any algebra with finite number of indecomposable representa-
tions. The algebra BQ plays a crucial role in the construction of desingularizations
of quiver Grassmannians for the quiver Q (see also [7], [10]). Roughly speaking,
given a representation M of the path algebra kQ and a dimension vector e, one

can construct a BQ-module M̂ and a dimension vector ê of the Gabriel quiver of
BQ. Then the quiver Grassmannian Gre(M) can be desingularized by means of the

quiver Grassmannian Grê(M̂) of the algebra BQ (if GreM is not irreducible, then
one needs several such quiver Grassmannians). A central role in the definition of
BQ is played by a certain category of embeddings between projective modules of Q.
This approach allows usage of homological tools for the study of the geometry of
various objects related to a quiver, such as representation varieties, orbit closures,
quiver Grassmannians, etc. In this paper we continue the study of the algebras BQ.
Let us briefly describe our main results.

Let Q̂ be the Gabriel quiver of the algebra BQ. In [8] the quiver Q̂ was described

in terms of the representation theory of kQ. For example, Q̂ has two types of
vertices: vertices of the first type are labelled by the non-projective indecomposable
kQ-modules, and vertices of the second type are in one-to-one correspondence with

the vertices of the initial quiver Q. The arrows of Q̂ can be also explicitly described
in representation-theoretic terms. By definition, there exists an admissible ideal I

such that BQ = kQ̂/I. One of our goals is to describe the ideal I.

In [11, Section 9], Hernandez and Leclerc introduced an algebra Λ̃Q, defined by an

explicit combinatorial description of its Gabriel quiver Γ̃Q and by an explicit set of
relations. This algebra was used to provide a realization of certain graded Nakajima
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quiver varieties via the representation varieties of the algebra Λ̃Q. More precisely,
the graded quiver varieties in question are isomorphic to the representation varieties
Rd(Q) of the quiver Q, and they are realized as affine quotients of representation

varieties of Λ̃Q. Our first result is:

Theorem 1.1. The algebras BQ and Λ̃Q are isomorphic. In particular, the quiver

Q̂ is isomorphic to Γ̃Q.

We also rederive the Hernandez-Leclerc realization of the representation varieties
Rd(Q) of the quiverQ as affine quotients of representation varieties of BQ. Actually,
our approach allows us to strengthen the results of [11]. Namely, in [11, Section 9],
the authors show that not only the representation varieties Rd(Q) are isomorphic
to certain graded quiver varieties, but moreover the stratification of Rd(Q) by the
orbits of the structure group Gd coincides with the Nakajima stratification. In other
words, this means that the closure of any Gd-orbit is isomorphic to the quotient

of some representation variety of the algebra Λ̃Q = BQ. Our approach allows us
to describe this representation variety explicitly. Namely, for a d-dimensional kQ-

module M recall the kQ̂-module M̂ (used in the construction of desingularizations

of quiver Grassmannians). Let d̂ be the dimension vector of M̂ (note that d̂ depends
on the isomorphism type of M , not only on the dimension vector d). We prove:

Theorem 1.2. We have the following quotient descriptions of orbit closures:

(i) The closure of the Gd-orbit of M is isomorphic to an affine quotient of

the variety of BQ-representations of dimension vector d̂.
(ii) The closure of the Gd-orbit of M is isomorphic to an affine quotient of

the G
̂d-orbit of M̂ .

A combinatorial algorithm for computing the dimension vector d̂ is given in [11]

(see also [15], Corollary 3.14, which contains several homological descriptions of d̂).
We note that in view of Theorem 1.1, the first part of Theorem 1.2 is proved in
[11].

The paper is organized as follows. In Section 2 we collect the definition and
main properties of the algebra BQ. In Section 3 we describe the quotient maps

relating the representation varieties of Q̂ to that of Q and prove Theorem 1.2. In
Section 4 the connection with the Hernandez-Leclerc construction is established
and Theorem 1.1 is proved.

2. The algebra BQ

To a Dynkin quiver Q we attach an associative algebra BQ (see [8]). The main

ingredients of the construction are a quiver Q̂, an ideal I ⊂ kQ̂, the algebra BQ =

kQ̂/I, and a functor Λ : modkQ → modBQ. All these objects are introduced
and described in [8], except for the ideal I, which we describe in Section 4. Let us
recall the definitions.

For the path algebra kQ of Q, we consider the category mod kQ of finite dimen-
sional left modules over kQ, and we consider the subcategory proj kQ of projective
modules. We define Hom(proj kQ) as the k-linear category whose objects are mor-
phisms P → Q between objects of proj kQ and whose morphism spaces from P → Q
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to R → S are commutative squares:

P → Q
↓ ↓
R → S.

Let HQ be the full subcategory of Hom(proj kQ) with objects being injective mor-
phisms P → Q such that the image is not contained in any proper direct summand
of Q. We define the algebra BQ as End(A)op for a minimal additive generator A in
HQ. More precisely, the indecomposable objects in HQ are of two types, namely:

• for every non-projective indecomposable object U of mod kQ, an embed-
ding PU ⊂ QU such that 0 → PU → QU → U → 0 is a minimal projective
resolution,

• for every vertex i of Q, the trivial embedding Pi = Pi,

where Pi is the projective cover of the simple kQ-module Si, attached to the vertex i.
Thus the algebra BQ is given as

BQ = EndHQ
(
⊕
U

(PU ⊂ QU )⊕
⊕
i

(Pi = Pi))
op.

Then the quiver Q̂ of BQ is given as follows:

• There are vertices:
– [U ] for every non-projective indecomposable in mod kQ,
– [i] for every vertex of Q.

• There are arrows:
– [U ] → [V ] whenever there is an irreducible map V → U in mod kQ,
– [i] → [Si] for every vertex i of Q which is not a sink,
– [τ−1Si] → [i] for every vertex i of Q which is not a source.

Thus BQ = kQ̂/I for a certain admissible ideal I, and we think of left modules

over BQ as certain representations of Q̂. Moreover, the category modBQ of left
modules over BQ is equivalent to the category modHop

Q of contravariant k-linear
functors from HQ to the category mod k of finite dimensional k-vector spaces.

We have a restriction functor res from mod BQ to mod kQ given on the level of
functors as follows: we restrict a functor F : Hop

Q → mod k to the subcategory of

HQ of objects of the form (P = P ) yielding a functor F : (proj kQ)op → mod k.
The category of such functors is naturally equivalent to mod kQ.

We give a description of the functor res on the level of representations: given a
representation F of modBQ, it can be viewed as a special kind of representation

of the quiver Q̂. We define the representation M = resF of Q as follows: first, we
define Mi = F[i] for all vertices i of Q. Let α : i → j be an arrow of Q. Then

Ext1(Si, Sj) is non-zero (and in fact one-dimensional), thus there exists a non-zero
morphism τ−1Sj → Si in mod kQ. Factoring it into irreducibles, there then exists
a path τ−1Sj → . . . → Si in the Auslander-Reiten quiver of kQ. By the definition

of Q̂, this yields a path

[i] → [Si] → . . . → [τ−1Sj ] → [j]

in Q̂. We defineMα : Mi → Mj as the composition of the maps in the representation

F of Q̂ corresponding to this path. Well-definedness, that is, independence of the
path, of this definition follows from the fact that F is a representation of BQ, and
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that there is a one-dimensional space of morphisms from (Pj = Pj) to (Pi = Pi) in
HQ.

We define a functor Λ : mod kQ → modBQ as follows: Λ(M) = M̂ , viewed as
a contravariant functor on HQ, is given by

M̂(P → Q) = Im(Hom(Q,M) → Hom(P,M)).

On the level of representations, we can view M̂ as a representation of Q̂ as

follows: M̂[i] = Mi and M̂[U ] = Im(Hom(QU ,M) → Hom(PU ,M)) for a minimal
projective resolution 0 → PU → QU → U → 0 of U in modQ.

3. Quotient map

As before, letQ be a Dynkin quiver with a set of verticesQ0 and arrows α : i → j,
and let k be an algebraically closed field of characteristic zero. For a dimension
vector d ∈ NQ0, we fix vector spaces Mi of dimension di for i ∈ Q0 and define
Rd(Q) =

⊕
α:i→j Hom mod k(Mi,Mj), on which the group Gd =

∏
i∈Q0

GL(Mi)

acts via base change (gi)i(Mα)α = (gjMαg
−1
i )α:i→j . The orbits OM for this action

correspond bijectively to the isomorphism classes [M ] of representation of kQ of
dimension vector d by definition. We are interested in the geometry of the Zariski
orbit closures OM .

We write d̂ for the dimension vector of M̂ = Λ(M) as a representation of Q̂.

In particular, d̂ has entries d̂U for every non-projective indecomposable U of kQ

and entries d̂i (which coincide with the di by definition of Λ). We can consider the

variety of representations R
̂d(Q̂), which contains the closed subvariety R

̂d(BQ) of
representations of BQ, that is, those which are annihilated by the ideal I.

On R
̂d(BQ) we have an action of the structure group G

̂d, which can be canon-
ically written as the product of a group G′

̂d
and the group Gd, where the first

subgroup consists of the structure groups at the vertices [U ] of Q̂, and the second
subgroup consists of the structure groups at the vertices [i].

The restriction functor res : modBQ→mod kQ of [8] induces a Gd -equivariant
map π from R

̂d(BQ) to Rd(Q).

Proposition 3.1. The image of the induced map π∗ : k[Rd(Q)] → k[R
̂d(BQ)] be-

tween coordinate rings coincides with the ring k[R
̂d(BQ)]

G′
̂d of G′

̂d
-invariant func-

tions.

Proof. The following method is the deframing procedure of [9]. We introduce an

auxilliary quiver Q̃ associated to d as follows:

• Q̃ has vertices:
– [U ] for the non-projective indecomposables U of mod kQ,
– and one additional vertex ∞.

• We have the following arrows in Q̃:
– arrows [U ] → [V ] corresponding to the irreducible maps V → U in

mod kQ,
– di arrows from ∞ to [Si] for every vertex i of Q which is not a sink,
– di arrows from [τ−1Si] to ∞ for every vertex i of Q which is not a

source.

We define a dimension vector d̃ for Q̃ by d̃[U ] = d̂[U ] and d̃∞ = 1.
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A choice of bases of the spaces Mi yields an isomorphism between R
̂d(Q̂) and

Rd̃(Q̃). Noting that the structure group for the latter variety of representations is
isomorphic to G′

̂d
×Gm, this isomorphism is also G′

̂d
-equivariant. In particular, we

have

k[R
̂d(Q̂)]G

′
̂d � k[Rd̃(Q̃)]G

′
̂d
×Gm = k[Rd̃(Q̃)]G

′
̂d ,

since the dilation action at the one-dimension space can be neglected. We now
apply the main result of [14] that the latter invariant ring is generated by taking
traces along oriented cycles. By cyclic invariance of the trace, noting that the
subquiver supported outside the vertex ∞ has no oriented cycles, we only need
to consider traces along cycles starting and ending in the vertex ∞. Translating

these invariant functions back to R
̂d(Q̂), we see that the invariant ring k[R

̂d(Q̂)]G
′
̂d

is generated by the matrix entries representing paths in Q̂ starting and ending in
some of the vertices [i]. Without loss of generality, we can restrict to the matrix

entries representing paths in Q̂ starting in [i] and ending in [j] whenever we have an
arrow i → j in Q. But the map π is induced from the functor res which precisely

defines the matrices representing the arrows i → j by these paths in Q̂. The
proposition is proved. �

Remark 3.2. The above argument replaces reference to the theory of Nakajima
quiver varieties in [11, Proof of Proposition 9.4] (see also [13], Theorem 1.3).

Theorem 3.3. Via the map π, the variety OM is the quotient of O
̂M

by G′
̂d
.

Proof. By the previous proposition, the map π : R
̂d(BQ) → π(R

̂d(BQ)) ⊂ Rd(Q) is

a quotient by G′
̂d
. The subset O

̂M
is closed and G′

̂d
-invariant, thus the restriction

π : O
̂M

→ π(O
̂M
) is a quotient. The latter image is closed by properties of

quotients, it is Gd-stable by Gd-equivariance of π, and it contains π(O
̂M
) = OM

as a dense subset. Thus it coincides with OM . Again by properties of quotients,
the restriction is a quotient itself. �

We will show that, in fact, the whole representation variety R
̂d(BQ) is mapped

to the closure of OM under the map π. To do this, we have to know the precise

relation between the functors F and r̂esF , which we describe using the methods of
[8]:

Theorem 3.4. For every functor F in modHop
Q , there exist canonical exact se-

quences

0 → F1 → F → Ext1BQ
(Ĉoker , F ) → 0,

0 → Ext1BQ
(F1, ̂τQCoker )∗ → F1 → r̂esF → 0,

and dually

0 → Ext1BQ
(F, ̂τQCoker )∗ → F → F2 → 0,

0 → r̂esF → F2 → Ext1BQ
(Ĉoker , F2) → 0.

Proof. For every functor F , we define functors F1, F2 and F3 as follows: given an
object P ⊂ Q of HQ, we have a canonical sequence of maps

(P = P )
f
��(P ⊂ Q)

g
��(Q = Q)
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in HQ by [8, Proof of Lemma 5.3]. We define

F1(P ⊂ Q) = Im(F (Q = Q)
F (g)

��F (P ⊂ Q)),

F2(P ⊂ Q) = Im(F (P ⊂ Q)
F (f)

��F (P = P )),

F3(P ⊂ Q) = Im(F (Q = Q)
F (g◦f)

��F (P = P )),

with the natural definition on morphisms. In particular, Fi(P = P ) = F (P = P ),
for every i = 1, 2, 3. We thus have

F3 = (F1)2 = (F2)1 = r̂esF

by definition. Thus the existence of the second and fourth claimed exact sequence
follows from existence of the first and third. Existence of the first sequence is
equivalent to exactness of

0 → Im(F (Q = Q) → F (P ⊂ Q)) → F (P ⊂ Q) → Ext1(Q̂/P , F ) → 0

for all objects P ⊂ Q of HQ. By [8, Proof of Theorem 5.6], we have a projective
resolution of functors

0 → Hom( , (P ⊂ Q)) → Hom( , (Q = Q)) → Q̂/P → 0.

Applying Hom( , F ) to this sequence and using Yoneda’s Lemma, this yields a right
exact sequence

F (Q = Q) → F (P ⊂ Q) → Ext1(Q̂/P , F ) → 0.

This proves the above exactness claim.
To prove the existence of the third exact sequence, we use methods of Auslander-

Reiten theory, to which we refer to [2]. We denote by τ = τQ the Auslander-Reiten
translate in the category mod kQ, and by τBQ

the Auslander-Reiten translate in
the category modBQ.

As above, we have to prove exactness of

0 → Ext1(F, ̂τ (Q/P ))∗ → F (P ⊂ Q) → Im(F (P ⊂ Q) → F (P = P )) → 0.

Since the image of Λ consists of objects of injective dimension at most one [8,
Theorem 5.6], we can apply the Auslander-Reiten formula [2, Corollary 2.15] and
identify

Ext1(F, ̂τ (Q/P ))∗ � Hom(τ−1
BQ

̂τ (Q/P ), F ).

We use the (inverse) Nakayama functors ν(−) (resp. ν
(−)
BQ

) of the category mod

kQ (resp. modBQ); see [2, IV.2]. The functor ν−BQ
is given, by definition, by

ν−BQ
(Hom((P ⊂ Q), )∗) = Hom( , (P ⊂ Q)). Starting from an object P ⊂ Q of

HQ, we consider the exact sequence 0 → P → Q → Q/P → 0, which induces an
exact sequence

0 → τ (Q/P ) → νP → νQ → ν(Q/P ) = 0

by [2, Proposition 2.4.(a)]; the last equality follows since Q/P has no projective
direct summand by assumption. By [8, Proof of Theorem 5.6], this injective cores-
olution of τ (Q/P ) induces an injective coresolution

0 → ̂τ (Q/P ) → Hom((P = P ), )∗ → Hom((P ⊂ Q), )∗ → 0
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of ̂τ (Q/P ). This in turn, by [2, Proposition 2.4.(b)], yields a right exact sequence

ν−BQ
Hom((P = P ), )∗︸ ︷︷ ︸
�Hom( ,(P=P ))

→ ν−BQ
Hom((P ⊂ Q), )∗︸ ︷︷ ︸
�Hom( ,(P⊂Q))

→ τ−1
BQ

τ̂Q/P → 0.

Applying Hom( , F ) to this sequence and using Yoneda’s Lemma, this yields a
sequence

0 → Hom(τ−1
BQ

Q̂/P , F ) → F (P ⊂ Q) → F (P = P ).

The above claimed exactness follows. The theorem is proved. �

Corollary 3.5. The following conditions are equivalent for a functor F in mod
Hop

Q and a representation N of mod kQ:

(i) resF � N ,
(ii) There exist exact sequences

0 → G → F → F ′ → 0 and 0 → F ′′ → G → N̂ → 0

such that resF ′ = 0 = resF ′′.

Moreover, a functor F belongs to the essential image of Λ if and only if Ext1(F, V̂ ) =

0 = Ext1(V̂ , F ) for all V .

Proof. The first claim follows from the previous theorem and exactness of the func-
tor res. The second claim follows from the previous theorem and [8, Theorem
5.6]. �

Remark 3.6. The second statement of the corollary gives an alternative description
of the essential image of the functor Λ to [8, Proposition 6.11].

These homological properties allow us to derive the following information on the
quotient map π and the structure of its fibres:

Corollary 3.7. The quotient map π maps the whole variety R
̂d(BQ) onto OM .

Proof. Given a functor F of the same dimension vector as M̂ with restriction
N = resF , we thus have to prove that ON belongs to the closure of OM . By
[6], the latter is equivalent to dimHom(U,M) ≤ dimHom(U,N) holding for all
non-projective indecomposables U . For each such U , use a minimal projective reso-
lution 0 ��P ��Q ��U ��0 as before and calculate using the definition of the functor
Λ:

dim[U ]F = dim[U ]M̂ = dim Im(Hom(Q,M) → Hom(P,M))

= dimHom(Q,M)− dimHom(U,M).

By the previous theorem, we have dim[U ]F ≥ dim[U ]N̂ , and thus

dimHom(U,M) = dimHom(Q,M)− dim[U ]F

≤ dimHom(Q,N)− dim[U ]N̂ = dimHom(U,N),

proving the claim. �

Remark 3.8. If M̂ and N̂ have the same dimension vector, then M � N . Indeed,
by the lemma above we have N ∈ OM and M ∈ ON .
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One can ask whether this description of the orbit closureOM as an affine quotient
has applications to the study of its geometric properties, in the spirit of the proof
[1]—in the case of Q being an equioriented type A quiver—of such orbit closures
being normal Cohen-Macaulay varieties with at most rational singularities. To
this effect, we consider the stratification of the representation variety R

̂d(BQ) by

the inverse images π−1(ON ) of the orbits in OM under the quotient map π and
formulate the following:

Conjecture 3.9. For every N , we have dimπ−1(ON ) ≤ dimO
̂M
, with equality

holding only for N = M .

We discuss briefly the potential applications of a positive answer to this con-
jecture. Using the arguments of [3, 2.1,2.2], the homological Euler form of the
algebra BQ (being of global dimension at most two) can be calculated to give

〈d̂, d̂〉 = dimEnd(M) if d̂ = dimM̂ . It follows that O
̂M

is an irreducible compo-
nent of R

̂d(BQ), and that every irreducible component has at least this dimension.

Assuming the above conjecture, O
̂M

= R
̂d(BQ) is the only irreducible component,

which is locally a complete intersection and thus Cohen-Macaulay. A more refined
analysis of the strata π−1(ON ) is expected to prove regularity in codimension one
of R

̂d(BQ). This implies normality, and could thus provide a uniform proof of nor-

mality of every orbit closure OM . Note that the first statement of Corollary 3.5
gives an intrinsic description of the stratum π−1(ON ).

4. The Hernandez-Leclerc construction and

graded Nakajima varieties

In [11, Section 9.3] an algebra Λ̃Q is introduced. Let us collect the main ingredi-
ents of the Hernandez-Leclerc construction. Let Q be a Dynkin quiver with the set
of vertices I of cardinality n and let g be the corresponding simple Lie algebra. We
denote by αi, i ∈ I simple roots, by 
+ and 
− the sets of positive and negative
roots, and by W the Weyl group of g. Let si ∈ W , i ∈ I be the simple reflections,
si(λ) = λ − (λ, α)αi. A Coxeter element C ∈ W is the product si1si2 . . . sin of
simple reflections each showing up exactly once. For a quiver Q we denote by siQ
a new quiver, which is obtained from Q by reversing all arrows at the vertex i. The
Coxeter element C is said to be adapted to Q, if i1 is a source of Q, i2 is a source
of si1Q, ik+1 is a source of si1 . . . sikQ. For example, if Q = 1 → 2 ← 3 → 4, then
C = s1s3s2s4.

A height function ξ : I → Z is a function satisfying ξj = ξi − 1 if there is an
arrow i → j in Q. For Q = 1 → 2 ← 3 → 4 a possible height function is ξ4 = 1,
ξ3 = 2, ξ2 = 1, ξ1 = 2. Let us define a set

Î = {(i, p) ∈ I × Z : p− ξi ∈ 2Z}.
A crucial role in the whole picture is played by the following bijection ϕ : Î →

+ × Z. The bijection ϕ is defined as follows. First, for a vertex i ∈ I we denote
by γi ∈ 
+ the sum of all simple roots αj such that there is a path form j to i in
Q (these are exactly the vertices showing up in the injective envelope of the simple
module attached to the vertex i). Now ϕ is defined by the rules:

• ϕ(i, ξi) = (γi, 0);

• Let ϕ(i, p) = (β,m). Then ϕ(i, p−2) =

{
(C(β),m), if C(β) ∈ 
+,

(−C(β),m− 1), if C(β) ∈ 
−.
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Remark 4.1. It follows that if ϕ(i, p) = (β,m), then

ϕ(i, p+ 2) =

{
(C−1(β),m), if C−1(β) ∈ 
+,

(−C−1(β),m+ 1), if C−1(β) ∈ 
−.

Example 4.2. Let us give an example. Let Q = 1 → 2 → 3 → 4 and the height
function is fixed as ξ1 = 4, ξ2 = 3, ξ3 = 2, ξ4 = 1. The underlying Lie algebra is
sl5 and 
+ consists of the roots

αi,j = αi + αi+1 + · · ·+ αj , 1 ≤ i ≤ j ≤ 4.

The adapted Coxeter element C is equal to s1s2s3s4. Let us draw the set Î as
follows:

(1,6) (3,6)
(2,5) (4,5)

(1,4) (3,4)
(2,3) (4,3)

(1,2) (3,2)
(2,1) (4,1)

(1,0) (3,0)
(2,-1) (4,-1)

(1,-2) (3,-2)
(2,-3) (4,-3)

(1,-4) (3,-4)

Then the corresponding images ϕ(i, p) look as follows:

(α1,4, 1) (α2,3, 1)
(α2,4, 1) (α3,3, 1)

(α1,1, 0) (α3,4, 1)
(α1,2, 0) (α4,4, 1)

(α2,2, 0) (α1,3, 0)
(α2,3, 0) (α1,4, 0)

(α3,3, 0) (α2,4, 0)
(α3,4, 0) (α1,1,−1)

(α4,4, 0) (α1,2,−1)
(α1,3,−1) (α2,2,−1)

(α1,4,−1) (α2,3,−1)

In [11] the authors define the following graph Γ̃Q. The vertices of Γ̃Q are of two
sorts:

wj(p), where ϕ(j, p) = (αi, 0) for some i ∈ I

and

vj(p− 1), where ϕ(j, p) ∈ 
+ × {0} and ϕ(j, p− 2) ∈ 
+ × {0}.
In particular, the number of vertices wj(p) is equal to the number of simple roots
(the number of vertices of Q) and (as we will see) the number of vertices vj(p− 1)
is equal to the number of positive roots minus the number of simple roots. In the
example above (Q equioriented type A4) the vertices are

w1(4), w1(2), w1(0), w1(−2), v1(3), v1(1), v1(−1), v2(2), v2(0), v3(1).
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Remark 4.3. Recall that our Q̂ from [8] also has two sorts of vertices: vertices [i],
i ∈ I and vertices [U ], that correspond to indecomposable non-projective U . In
what follows we denote the indecomposable representation of kQ corresponding to
a positive root β by Uβ . Also for an indecomposable representation U we denote
by dimU ∈ 
+ the root

∑
dimUiαi.

Lemma 4.4. Let ϕ(j, p) = (β, 0) ∈ 
+ ×{0}. Then ϕ(j, p− 2) ∈ 
+ ×{0} if and
only if Uβ is non-projective.

Proof. The conditions ϕ(j, p) = (β, 0) ∈ 
+ × {0} and ϕ(j, p − 2) /∈ 
+ × {0}
mean that C(β) ∈ 
−. Hence we are looking for positive roots β such that C maps
them to a negative root. We want to show that these roots correspond to the ones
defining projective indecomposable modules. This is proved in Proposition 4.1 of
[12] (the dual version of that, to be precise). �

Recall (see [11]) that the arrows of Γ̃Q are of three types:

• aj(p) : wj(p) → vj(p− 1),
• bj(p) : vj(p) → wj(p− 1),
• Bij(p) : vi(p) → vj(p− 1) if there is an arrow i → j or j → i.

Remark 4.5. In Q̂ we also have three types of arrows.

Example 4.6. Let Q = 1 → 2 → 3 → 4 and ξ1 = 4, ξ2 = 3, ξ3 = 2, ξ4 = 1 as

above. Then the quiver Γ̃Q looks as follows:

w1(4)

a1(4) ���
��

��
��

�
w1(2)

a1(2) ���
��

��
��

�
w1(0)

a1(0) ���
��

��
��

��
w1(−2)

v1(3)

b1(3)

����������

B12(3) ���
��

��
��

�
v1(1)

b1(1)

����������

B12(1) ���
��

��
��

�
v1(−1)

b1(−1)

�����������

v2(2)

B21(2)

����������

B23(2) ���
��

��
��

�
v2(0)

B21(0)

�����������

v3(1)

B32(1)

����������

Example 4.7. Let Q = 1 → 2 ← 3 and ξ1 = 2, ξ2 = 1, ξ3 = 2. Then C = s1s3s2
and the bijection ϕ : Î → 
+ × Z looks as follows:

(1,4) (3,4)
(2,3)

(1,2) (3,2)
(2,1)

(1,0) (3,0)
(2,-1)

(1,-2) (3,-2)
(2,-3)

−→

(α12, 1) (α23, 1)
(α22, 1)

(α11, 0) (α33, 0)
(α13, 0)

(α23, 0) (α12, 0)
(α22, 0)

(α33,−1) (α11,−1)
(α13,−1)
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Then we have vertices w1(2), w2(−1), w3(2), v1(1), v2(0), v3(1) and the quiver Γ̃Q

looks as follows:

w1(2)
a1(2)

�� v1(1)
B21(1)

�� v2(0)

b2(0)

��

v3(1)
B32(1)
		 w3(2)

a3(2)
		

w2(−1)

This picture agrees with the corresponding example in [8].

Lemma 4.8. (a) Let ϕ(j, p) = (β, 0) and ϕ(j, p − 2) = (γ, 0), β, γ ∈ 
+. Then
τUβ = Uγ .

(b) Assume that the vertices i, j ∈ I are connected by an arrow i → j. Let
ϕ(i, p) = (β, 0) and ϕ(j, p − 1) = (γ, 0) with β and γ in 
+. Then there is an
irreducible map Uγ → Uβ.

Proof. By definition γ = Cβ = CdimUβ = dim τUβ (for the last equality see e.g.
[16, 2.4 (4)] or [2, lemma 5.8]). Since the indecomposable Q-representations, for Q
Dynkin, are uniquely determined by their dimension vector, part (a) follows.

To prove part (b) we notice that for p = ξi, ϕ(i, ξi) = (dim Ii, 0) by definition
of ϕ; and in view of part (a), Uβ = τkIi for k given by 2k = ξi − p. Similarly
Uγ = τ lIj with 2l = ξj − p+1. Since there is an arrow i → j in Q, then ξj = ξi− 1
by definition of ξ, and hence k = l. Again by our assumption that there is an arrow
i → j, Ii is an indecomposable direct summand of Ij/soc Ij, and hence there is an
irreducible map Ij → Ii (see e.g. [2, remark IV.4.3 (b)]). It follows that there is an
irreducible morphism τ sIj → τ sIi for every s, by functoriality of τ , and hence also
for s = k = l. �

Proposition 4.9. The quivers Γ̃Q from [11] and Q̂ from [8] are isomorphic. More

precisely, there exists an isomorphism between Γ̃Q and Q̂ sending wj(p) to [i], if
ϕ(j, p) = (αi, 0), and sending vj(p− 1) to [Uβ ], if ϕ(j, p) = (β, 0).

Proof. We need to show that the arrows aj(p), bj(p) and Bij(p) are in correspon-

dence with the arrows in Q̂.
First, let us look at aj(p) : wj(p) → vj(p − 1). We know that ϕ(j, p) = (αi, 0)

(from the definition of wj(p)) and hence vj(p − 1) corresponds to Uαi
(the simple

representation attached to the vertex i). We thus get an arrow [i] → [Uαi
], which

is indeed present in Q̂.
Second, let us look at bj(p) : vj(p) → wj(p − 1). We know that ϕ(j, p − 1) =

(αi, 0). The vertex vj(p) corresponds to the pair (j, p+1) ∈ Î. Let ϕ(j, p+1) = β.
From Lemma 4.8, part (a), we know that Uβ = τ−1Uαi

. We thus obtain an arrow

[τ−1Uαi
] → [i], which is indeed present in Q̂.

Finally we consider the arrows Bi,j(p) : vi(p) → vj(p − 1), where i and j are
connected by an arrow (i → j or j → i). The existence of the corresponding arrows

in Q̂ follows from Lemma 4.8, part (b). �

Finally, the algebra Λ̃Q is defined in [11, Section 9.3] as the path algebra of the

quiver Γ̃Q subject to the relations

(4.1) ai(p− 1)bi(p) =
∑
j−i

ε(i, j)Bji(p− 1)Bij(p),
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for all vertices i and all p, where the sum ranges over all vertices j adjacent to i, and
ε(i, j) is an appropriate sign. For our purposes, a modified form of these relations
(without the signs) will be more suitable:

Lemma 4.10. The algebra Λ̃Q is isomorphic to the path algebra of the quiver Γ̃Q

subject to the relations

(4.2) ai(p− 1)bi(p) =
∑
j−i

Bji(p− 1)Bij(p),

for all vertices i and all p, where the sum ranges over all vertices j adjacent to i.

Proof. We twist the arrow Bi,j(p) by a sign ε(i, j, p). Then the sign ε(i, j) in (4.1)
vanishes and gives the desired relation (4.2) if and only if ε(j, i, p−1)ε(i, j, p)ε(i, j) =
1 for all i, j, p, which can be rewritten as

ε(j, i, p− 1) = ε(i, j)ε(i, j, p).

This gives a way to define the correct signs inductively: for every pair of adjacent
vertices i, j in Q, we take the maximal p such that Bi,j(p) exists and choose ε(i, j, p)
arbitrarily. Then for all smaller q, the above relation tells us how to define the sign
ε(i, j, q). �

Theorem 4.11. The algebra Λ̃Q is isomorphic to the algebra BQ.

Proof. We compute defining relations for the algebra BQ. Since BQ is of global

dimension at most two, we can localize the relations by computing Ext2 between
simple objects by [3, Section 1], which in the language of contravariant functors
on HQ are the SPU⊂QU

for U a non-projective indecomposable over kQ, and the
SPi=Pi

for the vertices i of Q. It is shown in [8] that the SPi=Pi
have projective and

injective dimension at most one, thus it suffices to compute Ext2(SPU⊂QU
, SPV ⊂QV

)
for two non-projective indecomposables U and V over kQ. Moreover, it is shown
in [8] that Ext∗(SPU⊂QU

, F ) can be computed as the homology of the complex

F (PU ⊂ QU ) → F (PB ⊂ QB) → F (PτU ⊂ QτU ),

where 0 → τU → B → U → 0 is the Auslander-Reiten sequence ending in U ,
and PB = PU ⊕ PτU , QB = QU ⊕ QτU (note that PB and QB do not necessarily
define a minimal resolution of B). Thus, if Ext2(SPU⊂QU

, SPV ⊂QV
) is non-zero, we

have V = τU , in which case Ext2(SPU⊂QU
, SPV ⊂QV

) is one-dimensional. Thus to

define the algebra BQ as a quotient of kQ̂, it suffices to determine a single relation
involving paths from the vertex [U ] to the vertex [τU ]. To do this, we compare
morphisms in HQ and in mod kQ. By [8], we have an isomorphism

HomHQ
((P ⊂ Q), (R ⊂ S)) � HomkQ(Q/P, S/R),

where HomHQ
((P ⊂ Q), (R ⊂ S)) is defined as the quotient of HomHQ

((P ⊂
Q), (R ⊂ S)) by the subspace generated by morphisms factoring through an object
of HQ of the form (T = T ). In particular, we have HomHQ

(PU ⊂ QU , PV ⊂ QV ) �
Hom(U, V ) if there exists an irreducible map from U to V , and HomHQ

(PτU ⊂
QτU , PU ⊂ QU ) � Hom(τU, U) if there is no vertex [j] between [τU ] and [U ] in Q̂.
First let us assume that this is the case. Then the relation in BQ between [τU ] and
[U ] is the mesh relation, that is, the sum over all paths from [τU ] to [U ] is zero.
Otherwise, let us assume that there is a vertex [j] between [τU ] and [U ]. Then,

by definition of Q̂, we have U = Si and τU = τSi = Sj for vertices i and j of Q.
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In particular, we have an Auslander-Reiten sequence 0 → Sj → B → Si → 0 in
mod kQ, so that there exists an arrow i → j in Q and B is the two-dimensional
indecomposable supported on i and j. A direct computation using the projective
resolution 0 →

⊕
j→k Pk → Pj → Sj → 0 of Sj (and similarly for Si) shows that

in this case we have a commutativity relation for the commutative square

[B]
↗ ↘

[Si] [τSi = Sj ].
↘ ↗

[j]

We conclude that the defining relations of BQ coincide with the defining relations

(4.2) of Λ̃Q under the identification between the quivers Γ̃Q and Q̂. �
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